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Closure operators in the categories of modules.

Part III (Operations in CO and their properties)

A. I.Kashu

Abstract. This article is a continuation of the works [1] and [2] (Part I and Part II)
and contains some results on the family CO of all closure operators of a module
category R-Mod. The principal operations in CO (meet, join, product, coproduct)
are studied and their properties are elucidated. Also the question on the preservation
of types of closure operators with respect to these operations is investigated.
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1 Introduction. Preliminary notions

Continuing the investigation of closure operators of a module category [1, 2], in
this part of the work the principal operations are analyzed, which are defined in the
family of all closure operators CO of a module category R-Mod: the meet, join,
product and coproduct [1–5]. The properties of these operations will be studied, as
well as the relations between them. Moreover, the types of operators are indicated
(weakly hereditary, idempotent, hereditary, maximal, minimal, cohereditary) which
are preserved by the application of these operations.

The main definitions and some preliminary results can be found in [1–6]. For
convenience we would remind some necessary definitions and facts.

Let R be a ring with unit and R-Mod be the category of unitary left R-modules.
For the module M ∈ R-Mod we denote by L(M) the lattice of all submodules of
M . A closure operator in R-Mod is a function C which associates to every pair
N ⊆ M , where N ∈ L(M), a submodule of M denoted by CM(N) with the
conditions: (c1) N ⊆ CM(N); (c2) if N,P ∈ L(M) and N ⊆ P , then CM(N) ⊆
CM(P ) (monotony); (c3) if f : M → M ′ is an R-morphism and N ⊆ M , then
f
(

CM(N)
)

⊆ CM′

(

f(N)
)

(continuity). We denote by CO the family of all closure
operators of a category R-Mod.

The principal operations in CO are defined as follows, where N ∈ L(M):
1. The meet

∧

α∈A

Cα of a family {Cα ∈ CO | α ∈ A}:

(

∧

α∈A

Cα

)

M
(N) =

⋂

α∈A

[

(Cα)
M

(N)
]

; (1.1)
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2. The join
∨

α∈A

Cα of a family {Cα ∈ CO | α ∈ A}:

(

∨

α∈A

Cα

)

M
(N) =

∑

α∈A

[

(Cα)M (N)
]

; (1.2)

3. The product C · D of two closure operators C,D ∈ CO:
(

C · D)M(N) = CM

(

DM(N)
)

; (1.3)

4. The coproduct C # D of two closure operators C,D ∈ CO:
(

C # D)M(N) = CDM (N)(N). (1.4)

It is easy to observe that by the rules (1.1)–(1.4) we obtain the closure operators
and the family CO of all closure operators of R-Mod is a complete “big lattice”
with respect to the meet and join (which will be named the lattice operations). As
to the other two operations we can remark that they are associative and for every
C,D ∈ CO we have: C · D ≥ C ∨ D, C # D ≤ C ∧ D [3].

We remind in continuation the most important types of closure operators [1–3].
The operator C ∈ CO is called:

1) weakly hereditary if for every N ⊆ M is true the relation:

CCM (N)(N) = CM(N); (1.5)

2) idempotent if for every N ⊆ M we have:

CM

(

CM(N)
)

= CM(N); (1.6)

3) hereditary if for every submodules L ⊆ N ⊆ M the relation holds:

CN(L) = CM(L) ∩ N ; (1.7)

4) cohereditary if for every submodules K,N ∈ L(M) we have:
(

CM(N) + K
)

/K = CM/ K

(

(N + K)/K
)

; (1.8)

5) maximal if for every N ⊆ M is true the relation:

CM(N)/N = CM/N(0̄); (1.9)

or: for every submodules K ⊆ N ⊆ M we have:

CM(N)/K = CM/K(N/K); (1.9′)

6) minimal if for every N ⊆ M is true the relation:

CM(N) = CM(0) + N ; (1.10)

or: for every submodules L ⊆ N ⊆ M we have:

CM(N) = CM(L) + N. (1.10′)

We remark the following known facts:
a) every hereditary closure operator is weakly hereditary;
b) every cohereditary closure operator is idempotent;
c) the operator C ∈ CO is cohereditary if and only if it is maximal and minimal

([2], Lemma 6.2).
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2 Operations in CO : distributivity

In this section we will study the interaction between the lattice operations
(∧), (∨) of CO and the operations (·), (#) of product and coproduct. We be-
gin with the following relations of distributivity.

Proposition 2.1. For every family of closure operators {Cα ∈ CO | α ∈ A} and

for every operator D ∈ CO the following relations hold:

(

∧

α∈A

Cα

)

· D =
∧

α∈A

(Cα · D); (2.1)

(

∨

α∈A

Cα

)

· D =
∨

α∈A

(Cα · D); (2.2)

(

∧

α∈A

Cα

)

# D =
∧

α∈A

(Cα # D); (2.3)

(

∨

α∈A

Cα

)

# D =
∨

α∈A

(Cα # D). (2.4)

Proof. (2.1). For every N ⊆ M from the definitions of operations it follows:

[(
∧

α∈A

Cα

)

· D
]

M
(N) =

(
∧

α∈A

Cα

)

M

(

DM(N)
)

=
⋂

α∈A

[(

Cα

)

M

(

DM(N)
)]

=

=
⋂

α∈A

[(

Cα · D
)

M
(N)

]

=
[

∧

α∈A

(Cα · D)
]

M
(N),

therefore the relation (2.1) is true.

(2.2). By definition for every N ⊆ M we have:

[(
∨

α∈A

Cα

)

· D
]

M
(N) =

(
∨

α∈A

Cα

)

M

(

DM(N)
)

=
∑

α∈A

[(

Cα

)

M

(

DM(N)
)]

=

=
∑

α∈A

[(

Cα · D
)

M
(N)

]

=
[

∨

α∈A

(Cα · D)
]

M
(N),

hence the relation (2.2) holds.

(2.3). For N ⊆ M by definition we obtain:

[(
∧

α∈A

Cα

)

# D
]

M
(N) =

(
∧

α∈A

Cα

)

D
M

(N)
(N) =

⋂

α∈A

[(

Cα

)

D
M

(N)
(N)

]

=

=
⋂

α∈A

[(

Cα # D
)

M
(N)

]

=
[

∧

α∈A

(Cα # D)
]

M
(N),

which proves (2.3).
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(2.4). Similarly, for every N ⊆ M we have:
[(

∨

α∈A

Cα

)

# D
]

M
(N) =

(
∨

α∈A

Cα

)

D
M

(N)
(N) =

∑

α∈A

[(

Cα

)

D
M

(N)
(N)

]

=

=
∑

α∈A

[(

Cα # D
)

M
(N)

]

=
[

∨

α∈A

(Cα # D)
]

M
(N),

hence (2.4) is true.

The other relations of distributivity of the indicated types can be obtained by
some supplementary conditions on the operators. To concretize this idea we need
the following two auxiliary statements.

Lemma 2.2. If C ∈ CO is a hereditary closure operator, then it preserves

the intersection in the superior term, i.e. for every family of submodules {Nα ∈
L(M) |α ∈ A} and every submodule K ⊆ Nα (α ∈ A) the following relation holds:

C ⋂

α∈A

Nα
(K) =

⋂

α∈A

[

CNα(K)
]

. (2.5)

Proof. From the heredity of C ∈ CO
(

see (1.7)
)

in the situation K ⊆ Nα ⊆ M
we obtain CNα(K) = CM(K) ∩ Nα for every α ∈ A, therefore

⋂

α∈A

[

CNα(K)
]

=

CM(K) ∩
(

⋂

α∈A

Nα

)

.

On the other hand, by the hereditary of C in the situation K ⊆
⋂

α∈A

Nα ⊆ M we

have C ⋂

α∈A

Nα
(K) = CM(K) ∩

(
⋂

α∈A

Nα

)

and comparing with the previous relation

we obtain (2.5).

Lemma 2.3. If C ∈ CO is a minimal closure operator, then it preserves the sum

in the inferior term, i.e. for every family of submodules {Nα ∈ L(M) | α ∈ A} the

relation is true:

CM

(

∑

α∈A

Nα

)

=
∑

α∈A

[

CM(Nα)
]

. (2.6)

Proof. Let L ⊆ Nα ⊆ M . From the minimality of C
(

see (1.10′)
)

it follows that
∑

α∈A

[

CM(Nα)
]

=
∑

α∈A

[

CM(L) + Nα

]

= CM(L) +
(

∑

α∈A

Nα

)

.

By the minimality of C in the situation L ⊆
∑

α∈A

Nα ⊆ M we have

CM

(
∑

α∈A

Nα

)

= CM(L) +
(

∑

α∈A

Nα

)

,

hence (2.6) is true.

Using the Lemmas 2.2 and 2.3 we obtain the following relations of distributivity.
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Proposition 2.4. a) If the closure operator C ∈ CO is hereditary, then for every

family of closure operators {Dα ∈ CO | α ∈ A} the following relation holds:

C #
(

∧

α∈A

Dα

)

=
∧

α∈A

(C # Dα). (2.7)

b) If the closure operator C ∈ CO is minimal, then for every family of closure

operators {Dα ∈ CO | α ∈ A} the relation is true:

C ·
(

∨

α∈A

Dα

)

=
∨

α∈A

(C · Dα). (2.8)

Proof. a) For every N ⊆ M from the definitions it follows that:
[

C #
(

∧

α∈A

Dα

)]

M
(N) = C (

∧

α∈A

Dα)
M

(N)(N) = C ⋂

α∈A

[(Dα)
M

(N)](N);

[
∧

α∈A

(

C # Dα

)]

M
(N) =

⋂

α∈A

[(C # Dα)M(N)] =
⋂

α∈A

[C(Dα)
M

(N)(N)].

By assumption the operator C is hereditary, therefore it preserves the intersec-
tion in superior term (Lemma 2.2). The application of (2.5) in our case shows that
the right sides of the previous relations coincide, therefore (2.7) is true.

b) For every N ⊆ M we have:
[

C ·
(

∨

α∈A

Dα

)]

M
(N) = CM

[(
∨

α∈A

Dα

)

M
(N)

]

= CM

[
∑

α∈A

(

(Dα)M(N)
)]

;

[
∨

α∈A

(C · Dα)
]

M
(N) =

∑

α∈A

[(

C · Dα

)

M
(N)

]

=
∑

α∈A

[

CM

(

(Dα)M(N)
)]

.

The operator C is minimal, hence it preserves the sum in the inferior term
(Lemma 2.3). By the relation (2.6) we obtain that the right sides of the previous
equalities coincide. This proves (2.8).

To give a complete picture we can mention also the last two possible cases of
distributivity of considered operations, which are obtained by some supplementary
assumptions on the closure operators.

Proposition 2.5. a) If the closure operator C ∈ CO preserves the intersection in

the inferior term, i.e.

CM

(

⋂

α∈A

Nα

)

=
⋂

α∈A

[

CM(Nα)
]

, (2.9)

where {Nα | α ∈ A} ⊆ L(M), then for every family of closure operators {Dα ∈
CO | α ∈ A} the relation holds:

C ·
(

∧

α∈A

Dα

)

=
∧

α∈A

(

C · Dα

)

. (2.10)
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b) If the closure operator C ∈ CO preserves the sum in the superior term, i.e.

C ∑

α∈A

(Nα)(N) =
∑

α∈A

[

CNα(N)
]

, (2.11)

where {Nα | α ∈ A} ⊆ L(M), N ⊆ Nα (α ∈ A), then for every family of closure

operators {Dα ∈ CO | α ∈ A} the relation is true:

C #
(

∨

α∈A

Dα

)

=
∨

α∈A

(

C # Dα

)

. (2.12)

Proof. a) For every N ⊆ M we have:

[

C ·
(

∧

α∈A

Dα

)]

M
(N) = CM

[(
∧

α∈A

Dα

)

M
(N)

]

= CM

[
⋂

α∈A

(

(Dα)
M

(N)
)]

;

[
∧

α∈A

(

C · Dα

)]

M
(N) =

⋂

α∈A

[(C · Dα)
M

(N)] =
⋂

α∈A

[CM

(

(Dα)
M

(N)
)]

.

By assumption the operator C preserves the intersection in the inferior term,
and so applying the relation (2.9) we see that the right sides of the previous equalities
coincide, therefore (2.10) is true.

b) Similarly, for every N ⊆ M we have:
[

C #
(

∨

α∈A

Dα

)]

M
(N) = C (

∨

α∈A

Dα)
M

(N)(N) = C ∑

α∈A

[(Dα)
M

(N)](N);

[
∨

α∈A

(

C # Dα

)]

M
(N) =

∑

α∈A

[(C # Dα)
M

(N)] =
∑

α∈A

[C(Dα)
M

(N)(N)
]

.

By hypothesis C preserves the sum in the superior term, and applying (2.11)
now we obtain (2.12).

3 Principal operations and preservation of types of operators

Now we will study the question on the behaviour of closure operators when the
principal operations are applied. For that we consider consecutively all principal
operations of CO and show the types of closure operators which are preserved by
the application of given operation. Some similar facts are mentioned in [3].

a) The join in CO

Proposition 3.1. If the closure operators Cα (α ∈ A) of CO are weakly heredi-

tary, then the operator
∨

α∈A

Cα also is weakly hereditary.
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Proof. By the monotony and weak heredity of Cα

(

see (1.5)
)

, for every N ⊆ M
and α ∈ A we have:

(Cα) ∑

α∈A

[(Cα)
M

(N)](N) ⊇ (Cα)(Cα)
M

(N)(N) = (Cα)
M

(N),

and from the relation
∑

α∈A

[(Cα)M (N)] ⊆ M the inverse inclusion follows. Therefore

(Cα) ∑

α∈A

[(Cα)
M

(N)](N) = (Cα)
M

(N)

for every α ∈ A, consequently

∑

α∈A

[(Cα) ∑

α∈A

[(Cα)
M

(N)](N)] =
∑

α∈A

[(Cα)M (N)].

From the definition of join in CO now we have:

(
∨

α∈A

Cα

)

(
∨

α∈A

Cα)
M

(N)
(N) =

(
∨

α∈A

Cα

)

M
(N),

i.e. the operator
∨

α∈A

Cα is weakly hereditary.

Proposition 3.2. If the closure operators Cα (α ∈ A) of CO are maximal, then

the operator
∨

α∈A

Cα is also maximal.

Proof. By definition
(

see (1.9′)
)

for every submodules K ⊆ N ⊆ M and every
α ∈ A we have [(Cα)

M
(N)] /K = (Cα)

M/K
(N/K). Using this relation we obtain:

[(
∨

α∈A

Cα

)

M
(N)

]

/K =
[

∑

α∈A

(

(Cα)
M

(N)
)]

/K =
∑

α∈A

[(

(Cα)
M

(N)
)

/K
]

=

=
∑

α∈A

[

(Cα)
M/K

(N/K)
]

=
(

∨

α∈A

Cα

)

M/K
(N/K),

which means that the operator
∨

α∈A

Cα is maximal.

Proposition 3.3. If the closure operators Cα (α ∈ A) of CO are minimal, then

the operator
∨

α∈A

Cα is also minimal.

Proof. We consider the situation: L ⊆ N ⊆ M . The minimality of Cα

(

see (1.10′)
)

implies (Cα)
M

(N) = (Cα)
M

(L) + N . Using this relation we obtain:
(

∨

α∈A

Cα

)

M
(N) =

∑

α∈A

[

(Cα)
M

(N)
]

=
∑

α∈A

[

(Cα)
M

(L) + N
]

=

=
[

∑

α∈A

(

(Cα)
M

(L)
)]

+ N =
[(

∨

α∈A

Cα

)

M
(L)

]

+ N,

therefore the operator
∨

α∈A

Cα is minimal.



CLOSURE OPERATORS IN THE CATEGORIES OF MODULES, III 97

Taking into account that C ∈ CO is cohereditary if and only if it is maximal
and minimal (see Section 1), from Propositions 3.2 and 3.3 follows

Corollary 3.4. If the operators Cα (α ∈ A) are cohereditary, then the operator
∨

α∈A

Cα is also cohereditary. �

b) The meet in CO

Proposition 3.5. If the operators Cα (α ∈ A) of CO are hereditary, then the

operator
∧

α∈A

Cα is also hereditary.

Proof. By definition
(

see (1.7)
)

the heredity of Cα means that for every submodules
L ⊆ N ⊆ M we have (Cα)

N
(L) = (Cα)

M
(L) ∩ N . Therefore:

[(
∧

α∈A

Cα

)

M
(L)

]

∩ N =
[

⋂

α∈A

(

(Cα)
M

(N)
)]

∩ N =
⋂

α∈A

[(

(Cα)
M

(L)
)

∩ N
]

=

=
⋂

α∈A

[(

Cα)N (L)
]

=
(

∧

α∈A

Cα

)

N
(L),

so
∧

α∈A

Cα is hereditary.

Proposition 3.6. If the operators Cα (α ∈ A) of CO are maximal, then the

operator
∧

α∈A

Cα is also maximal.

Proof. In the situation K ⊆ N ⊆ M the maximality of Cα

(

see (1.9′)
)

implies
the relation [(Cα)M (N)] /K = (Cα)M/K(N/K). Therefore

⋂

α∈A

[(

(Cα)M (N)
)

/K
]

=

⋂

α∈A

[

(Cα)
M/K

(N/K)
]

, and so
[
⋂

α∈A

(

(Cα)
M

(N)
)]

/K =
⋂

α∈A

[

(Cα)
M/K

(N/K)
]

. Now

by the definition of the meet in CO it is clear that
[(

∧

α∈A

Cα

)

M
(N)

]

/K =
(

∧

α∈A

Cα

)

M/K
(N/K), i.e. the operator

∧

α∈A

Cα is maximal.

c) The product in CO

Proposition 3.7. If the closure operators C,D ∈ CO are maximal, then the

operator C · D is also maximal.

Proof. Let K ⊆ N ⊆ M . The maximality of C and D implies the relations
CM(N)/K = CM/K(N/K) and DM(N)/K = DM/K(N/K), which permit to obtain:

[

(C · D)M(N)
]

/K = [CM

(

DM(N)
)]

/K = CM/K

[

DM(N)/K
]

=

= CM/K

[

DM/K(N/K)
]

= (C · D)M/K(N/K).

This shows that the operator C · D is maximal.
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Proposition 3.8. If the closure operators C,D ∈ CO are minimal, then the

operator C · D is also minimal.

Proof. Let L ⊆ N ⊆ M . By the minimality of C and D we have CM(N) =
CM(L) + N and DM(N) = DM(L) + N . From the second relation we obtain
(C · D)M(N) = CM

(

DM(N)
)

= CM

(

DM(L) + N
)

, and from the first relation in the
situation DM(L) ⊆ DM(L) + N ⊆ N we have:

CM

(

DM(L) + N
)

= CM

(

DM(L) + (DM(L) + N)
)

=
[

CM

(

DM(L)
)]

+ N.

Since
[(

C ·D
)

M
(L)

]

+N =
[

CM

(

DM(L)
)]

+ N , now it is clear that
(

C ·D
)

M
(N) =

(

C · D
)

M
(L) + N , i.e. the operator C · D is minimal.

From Propositions 3.7 and 3.8 follows

Corollary 3.9. If the closure operators C,D ∈ CO are cohereditary, then the

operator C · D is also cohereditary. �

The preservation of some properties of closure operators under the application
of the operation of product can be obtained by some addititional conditions on the
operators. We show in continuation two examples of such situations.

Example 1. Let C,D ∈ CO and C · D = D · C. If the operators C and D are
idempotent, then the operator C · D is also idempotent.

Example 2. Let C ∈ CO preserves the intersection in the inferior term: CM(N1 ∩
N2) = CM(N1) ∩ CM(N2), where N1, N2 ∈ L(M). If the operators C,D ∈ CO

are hereditary, then the operator C · D is also hereditary. Indeed, if L ⊆ N ⊆ M ,
then by hypotheses CN(L) = CM(L) ∩ N and DN(L) = DM(L) ∩ N . Since C
preserves the intersections, we have CM

[

DM(L) ∩ N
]

=
[

CM

(

DM(L)
)]

∩ CM(N).
This relation together with the heredity of C and D implies:

(

C · D
)

N
(L) = CN

(

DN(L)
)

= CN

[

DM(L) ∩ N
]

=

=
[

CM

(

DM(L) ∩ N
)]

∩ N =
[(

CM(DM(L))
)

∩ CM(N)
]

∩ N =

=
[

CM

(

DM(L)
)

] ∩ N =
[(

C · D
)

M
(L)

]

∩ N,

i.e. C · D is hereditary.

d) The coproduct in CO

Proposition 3.10. If the closure operators C,D ∈ CO are hereditary, then the

operator C # D is also hereditary.
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Proof. Let L ⊆ N ⊆ M . By the definition of coproduct and heredity of C in the
situation L ⊆ DN(L) ⊆ M we obtain:

(C # D)N(L) = CD
N

(L)(L) = CM(L) ∩ DN(L).

On the other hand, by definition we have:
[

(C # D)M(L)
]

∩ N =
[

CD
M

(L)(L)
]

∩ N,

and applying the heredity of C in the situation L ⊆ DM(L) ⊆ M , we obtain
CD

M
(L)(L) = CM(L) ∩ DM(L). These facts together with the heredity of D

(

i.e. DM(L) ∩ N = DN(L)
)

show that
[(

C # D
)

M
(L)

]

∩ N =
[

CD
M

(L)(L)
]

∩ N =

=
[

CM(L) ∩ DM(L)
]

∩ N = CM(L) ∩ DN(L).

Comparing with the foregoing, we conclude that (C # D)N(L)=
[

(C # D)M(L)
]

∩ N ,
i.e. C # D is hereditary.

Proposition 3.11. If the operators C,D ∈ CO are maximal, then the operator

C # D is also maximal.

Proof. Let K ⊆ N ⊆ M . By the maximality of C and D we have CM(N)/K =
CM/K(N/K) and DM(N)/K = DM/K(N/K). These relations and the definition of
coproduct imply:

[

(C # D)M(N)
]

/K =
[

CD
M

(N)(N)
]

/K = CD
M

(N)/K(N/K) =

= CD
M/K

(N/K)(N/K) = (C # D)M/K(N/K),

therefore C # D is maximal.

Proposition 3.12. If the closure operators C,D ∈ CO are cohereditary, then the

operator C # D is also cohereditary.

Proof. Let K,N ∈ L(M). Since C and D are cohereditary we have:
[

CM(N) + K
]

/K = CM/K

[

(N + K)/K
]

;
[

DM(N) + K
]

/K = DM/K

[

(N + K)/K
]

.

From these relations and the definition of coproduct we obtain:
[(

(C # D)M(N)
)

+ K
]

/K =
[(

CD
M

(N)(N)
)

+ K
]

/K =

= C(D
M

(N)+K)/K

(

(N + K)/K
)

= CD
M/K

((N+K)/K)

(

(N + K)/K
)

=

= (C # D)M/K

(

(N + K)/K
)

,

hence the operator C # D is cohereditary.
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Similarly to the case of product (see Example 1) the commutativity C # D =
D # C implies the preservation of weak heredity, i.e. if C,D are weakly hereditary,
then the operator C # D is also weakly hereditary, which can be proved by the direct
verification.
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