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Estimation of the extreme survival probabilities

from censored data

Ion Grama, Jean-Marie Tricot and Jean-François Petiot

Abstract. The Kaplan-Meier nonparametric estimator has become a standard tool
for estimating a survival time distribution in a right censoring schema. However, if
the censoring rate is high, this estimator does not provide a reliable estimation of the
extreme survival probabilities. In this paper we propose to combine the nonparametric
Kaplan-Meier estimator and a parametric-based model into one construction. The
idea is to fit the tail of the survival function with a parametric model while for the
remaining to use the Kaplan-Meier estimator. A procedure for the automatic choice
of the location of the tail based on a goodness-of-fit test is proposed. This technique
allows us to improve the estimation of the survival probabilities in the mid and long
term. We perform numerical simulations which confirm the advantage of the proposed
method.

Mathematics subject classification: 62N01, 62N02, 62G32.
Keywords and phrases: Adaptive estimation, censored data, model selection,
prediction, survival analysis, survival probabilities.

1 Introduction

Let (Xi, Ci, Zi)
′ , i = 1, ..., n be i.i.d. replicates of the vector (X,C,Z)′ , where

X and C are the survival and right censoring times and Z is a categorical covariate.
It is supposed that Xi and Ci are conditionally independent given Zi, i = 1, ..., n.
We observe the sample (Ti,∆i, Zi)

′ , i = 1, ..., n, where Ti = min {Xi, Ci} is the
observation time and ∆i = 1{Xi≤Ci} is the failure indicator. Let F (x|z) , x ≥ x0 ≥ 0
and FC (x|z) , x ≥ x0 be the conditional distributions of X and C, given Z = z,
respectively. In this paper we address the problem of estimation of the survival
function SF (x|z) = 1−F (x|z) when x ≥ x0 is large. The function SF is traditionally
estimated using the Kaplan-Meier nonparametric estimator (Kaplan and Meier [14]).
Its properties have been extensively studied by numerous authors, including Fleming
and Harrington [7], Andersen, Borgan, Gill and Keiding [2], Kalbfleisch and Prentice
[13], Klein and Moeschberger [16]. However, in various practical applications, when
the time x is close or exceeds the largest observed data, the predictions based on
the Kaplan-Meier and related estimators are rather uninformative.

For illustration purposes we consider the well known PBC (primary biliary cir-
rhosis) data from a clinical trial analyzed in Fleming and Harrington [7]. In this
trial one observes the censored survival times of two groups of patients: the first
one (Z = 1) was given the DPCA (D-penicillamine drug) treatment and the second
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Figure 1. We compare two types of prediction of the survival probabilities in DPCA and placebo
groups: on the top picture the prediction is based on the Kaplan-Meier estimation and on the bottom
picture the prediction uses a semiparametric approach. The points on the curves correspond to the
largest observation time in each group.

one is the control group (Z = 0). The overall censoring rate is about 60%. Here we
consider only the group covariate and we are interested to compare the extreme sur-
vival probabilities of the patients under study in the two groups. In Figure 1 (top
picture) we display the Kaplan-Meier nonparametric curves of the treatment and
the control (placebo) groups. From these curves it seems difficult to infer whether
the DPCA treatment has an effect on the survival probability. For instance at time
x = 4745 (13 years) using the Kaplan-Meier nonparametric estimator (KM), one
gets an estimated survival probability ŜKM (x|z = 0) = 0.3604 for the control group
and ŜKM (x|z = 1) = 0.3186 for the DPCA treatment group. In this example and
in many other applications one has to face the following two drawbacks. First, the
estimated survival probabilities ŜKM (x|z) are constant for x beyond the largest
(non-censored) survival time, which is not quite helpful for prediction purposes.
Second, for this particular data set, the Kaplan-Meier estimation suggests that the
DPCA treatment group has an estimated long term survival probability slightly
lower than that of the control group, which can be explained by the high variability
of ŜKM (x|z) for large x. These two points clearly rise the problem of correcting the
behavior of the tail of the Kaplan-Meier estimator.

A largely accepted way to estimate the survival probabilities SF (x|z) for large
x, is the parametric-based model fitting the hole data starting from the origin. Its
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advantages are pointed out in Miller [18], however, it is well known that the bias
model can be high if it is misspecified. The more flexible nonparametric Kaplan-
Meier estimator would generally be preferred for estimating certain functionals of
the survival curve, as argued in Meier, Karrison, Chappell and Xie [17]. In this
paper we propose to combine the nonparametric Kaplan-Meier estimator and the
parametric-based model into one construction which we call semiparametric Kaplan-
Meier estimator (SKM). Our new estimator incorporates a threshold t in such a
way that SF (x|z) is estimated by the Kaplan-Meier estimator for x ≤ t and by a
parametric-based estimate for x > t. The main theoretical contribution of the paper
is to show that with an appropriate choice of the threshold t such an estimate is
consistent if the tail is correctly specified. In the case when the tail is misspecified we
show by simulations that the method is robust. Denote by Ŝt the resulting estimator
of SF , where the parametric-based model is the exponential distribution with mean
θ. By simulations we have found that Ŝt̂, endowed with a data driven threshold
t̂, outperforms the Kaplan-Meier estimator. As it is seen from Figure 1 (bottom
picture), we obtain at x = 4745 the estimated survival probability Ŝt̂0

(x|z = 0) =

0.2739 for the control group and Ŝt̂1
(x|z = 1) = 0.3150 for the DPCA treatment

group, where t̂0 and t̂1 are the corresponding data driven thresholds. Our predictions
are recorded in Table 2 and seem to be more adequate than those based on the
Kaplan-Meier estimation. We refer to Section 7, where this example is described in
more details.

In Figures 2 we display the root of the mean squared error of the predictions
of SF (x|z) based on the Kaplan-Meier and the proposed semiparametric Kaplan-
Meier estimators as functions of the observation time x. This is an example where
the exponential model for survival and censoring tails are misspecified. The errors
are computed within a Monte-Carlo simulation study of size M = 2000 with a
gamma distribution modeling the survival and censoring times which do not exhibit
exponential behavior in the tail (see Section 6 and Example 2 of Section 2 for details).
The advantage of the proposed semiparametric estimator over the Kaplan-Meier
estimator can be clearly seen by comparing the two MSE curves. The MSE of the
semiparametric estimator is much smaller than that of the Kaplan-Meier estimator
for large observation times x > q0.99 but also for mid range observation time values,
for example x ∈ [8, q0.99] , where q0.99 is the 0.99-quantile of the distribution F.
The proposed extensions of the nonparametric curves are particularly suited for
predicting the survival probabilities in the case when the proportion of the censored
times is large. This is the case of the mentioned simulated data where the mean
censoring rate is about 77%. Note also that we get an improvement over the Kaplan-
Meier estimator even for very low sample sizes like n = 20.

The proposed estimator Ŝt is sensible to the choice of the threshold t. The main
difficulty is to choose t small enough, so that the parametric-based part contains
enough observation times to ensure a reliable prediction in the tail. At the same
time one should choose t large enough in order to prevent from a large bias due to an
inadequate tail fitting. The very important problem of the automatic choice of the
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Figure 2. The lines 1, 3 (from the top) display simulated root MSE’s of the Kaplan-Meier and
semiparametric Kaplan-Meier estimators as functions of the time x. On the lines 2, 4 we show the
ratio of the two root MSE’s displayed on the lines 1, 3. The vertical dashed line is the 0.99 quantile
of the true distribution of the survival time. The sample sizes are either n = 20 or n = 500.
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threshold t̂ is treated in Section 5, where a procedure which we call testing-pursuit-
selection is performed in two stages: First we test sequentially the null hypothesis
that the proposed parametric-based model fits the data until we detect a chosen
alternative. Secondly we select the best model among the accepted ones by penalized
model selection. Therefore our testing-pursuit-selection procedure is actually also
a goodness-of-fit test for the proposed parametric-based model. The resulting data
driven estimator of the tail depends heavily on the testing procedure.

The approach developed here can be applied in conjunction with other techniques
of prediction such as accelerated life testing, see Wei [22], Tseng, Hsieh and Wang
[21], Escobar and Meeker [6] and extreme values estimation, see Hall [10], Hall and
Welsh [11, 12], Dress [5], Grama and Spokoiny [8]. We refer also to Grama, Tricot
and Petiot [9] for a related result concerning the approximation of the tail by the
Cox model [4].

The case of continuous multivariate covariate Z in the context of a Cox model
and the use of fitted tails other than the exponential can be treated by similar
methods. The models which take into account the cure effects can be reduced to
ours after removing the cure fraction. However, these problems are beyond the scope
of the paper.

The paper is organized as follows. In Section 2 we introduce the main nota-
tions and give the necessary background. The main results of the paper about the
consistency of the proposed estimators are stated in Sections 3 and 4. The auto-
matic threshold selection procedure is described in Section 5. In Section 6 we give
some simulation results and analyze the performance of the studied estimators. An
application to real data is done in Section 7 and a conclusion in Section 8.

2 The model and background definitions

Assume that the survival and right censoring times arise from variables X and
C which take their values in [x0,∞), where x0 ≥ 0. Consider that X and C may
depend on the categorical covariate Z with values in the set Z = {0, ...,m} . The
related conditional distributions F (x|z) and FC (x|z) , x ≥ x0, given Z = z, are
supposed to belong to the set F of distributions with strictly positive density on
[x0,∞). Let fF (·|z) and SF (·|z) = 1−F (·|z) be the conditional density and survival
functions of X, given Z = z. The corresponding conditional hazard function is
hF (·|z) = fF (·|z) /SF (·|z) , given Z = z. Similarly, C has the conditional density
fC (·|z) , survival function SC (·|z) and hazard function hC (·|z) = fC (·|z) /SC (·|z) ,
given Z = z. We also assume the independence between X and C, conditionally
with respect to Z. Let the observation time and the failure indicator be

T = min {X,C} and ∆ = 1{X≤C},

where 1B is the indicator function taking the value 1 on the event B and 0 otherwise.
Let PF,FC

(dx, dδ|z) , x ∈ [x0,∞), δ ∈ {0, 1} be the conditional distribution of the
vector Y = (T,∆)′ , given Z = z. The density of PF,FC

is

pF,FC
(x, δ|z) = fF (x|z)δ SF (x|z)1−δ fC (x|z)1−δ SC (x|z)δ , (2.1)
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where x ∈ [x0,∞), δ ∈ {0, 1} .
Let zi ∈ Z be the observed value of the covariate Zi, where Zi, i = 1, ..., n

are i.i.d. copies of Z, and let Yi = (Ti,∆i)
′ , i = 1, ..., n be a sample of n vectors,

where each vector Yi has the conditional distribution PF,FC
(·|zi) , given Zi = zi, for

i = 1, ..., n. It is clear that, given Z = z ∈ Z, the vectors Yi, i ∈ {j : zj = z} are
i.i.d. .

In this paper the problem is to improve the nonparametric Kaplan-Meier esti-
mators of the m + 1 survival probabilities SF (x|z) = 1 − F (x|z) , z ∈ Z, for large
values of x. To this end, we fit the tail of F (·|z) by the exponential distribution with
mean θ > 0. Consider the following conditional semiparametric quasi-model

Fθ,t (x|z) =

{
F (x|z) , x ∈ [x0, t],

1 − (1 − F (t|z)) exp
(
−x−t

θ

)
, x > t,

(2.2)

where t ≥ x0 is a nuisance parameter and F (·|z) ∈ F , z ∈ Z are functional param-
eters. The conditional density, survival and hazard functions of Fθ,t are denoted by
fFθ,t

, SFθ,t
and hFθ,t

, respectively. Note that hFθ,t
(x|z) = 1/θ, for x > t.

The χ2 entropy between two equivalent probability measures P and P0 is defined
by χ2 (P,P0) =

∫
dP/dP0dP − 1. By Jensen’s inequality χ2 (P,P0) ≥ 0.

Definition 2.1. Let F,FC ∈ F and z ∈ Z. The tail of the distribution F (·|z) belongs
to the domain of attraction of the exponential model under the right censoring schema
if there exists a constant θz > 0 such that

lim
t→∞

χ2
(
PF,FC

(·|z) , PFθz ,t,FC
(·|z)

)
= 0. (2.3)

Below we give two examples when (2.3) is verified.
Example 1 (asymptotically constant hazards). Consider asymptotically constant

survival and censoring hazard functions. This model can be related to the families of
distributions in Hall [10], Hall and Welsh [11], Dress [5] and Grama and Spokoiny [8]
for the extreme value models. Let A > 0, θmax > θmin > 0 be some constants.
Consider that the survival time X has a hazard function hF (·|z) such that for some
θz ∈ (θmin, θmax) and αz > 0,

|θzhF (θzx|z) − 1| ≤ A exp (−αzx) , x ≥ x0. (2.4)

Condition (2.4) means that hF (x|z) converges to θ−1
z exponentially fast as x→ ∞.

Substituting αz = α′
zθz, (2.4) gives

∣∣hF (x|z) − θ−1
z

∣∣ ≤ A′ exp (−α′
zx) , where A′ =

A/θmin.
Similarly, let M > 0, γmax > γmin > 0, µ > 1 be some constants. Assume

that the hazard function hC (·|z) of the censoring time C satisfies for some γz ∈
(γmin, γmax) ,

|θzhC (θzx|z) − γz| ≤M (1 + x)−µ , x ≥ x0. (2.5)

Condition (2.5) is equivalent to saying that hC (x|z) approaches γz/θz polynomially
fast as x → ∞. Substituting γz = γ′zθz, (2.5) gives |hC (x|z) − γ′z| ≤ M ′x−µ, where
M ′ = Mθµ

max/θmin.
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For example, conditions (2.4) and (2.5) are satisfied if F and FC coincide with
the re-scaled Cauchy distribution Kµ,θ defined below. Let ξ be a variable with the
positive Cauchy distribution K (x) = 2π−1 arctan (x) , x ≥ 0. We define the re-

scaled Cauchy distribution by Kµ,θ (x) = 1 − 1−K(exp((x−µ)/θ))
1−K(exp(−µ/θ)) , where µ and θ are

the location and scale parameters. The distribution Kµ,θ can be seen as the excess
distribution of the variable θ log ξ+ µ over the threshold 0. The plots of the density
fKµ,θ

related to Kµ,θ for various values of parameters are given in Figure 4 (lines 1,
3). We leave to the reader the verification that Kµ,θ fulfills (2.4) with θz = θ, αz = 2
and (2.5) with γz = 1. The distribution Kµ,θ will be used in Section 6 to simulate
survival and censoring times.

Example 2 (non-constant hazards). Now we consider the case when the hazard
functions are not asymptotically constant. For instance, this is the case when the
survival and censoring times have both gamma distributions. The numerical results
presented in Figure 2 and Table 1 and discussed in Section 6 show that the approach
of the paper works when conditions (2.4) and (2.5) are not satisfied.

The heuristic argument behind these experimental findings is as follows. Denote
by Q(t) (x) = P (ξ ≤ t+ x|ξ ≥ t) , x ≥ 0, the excess distribution of ξ over the thresh-
old t, where ξ is a random variable with distribution Q. Let Gθ be the exponential

distribution with mean θ. Obviously G
(t)
θ = Gθ. By simple re-normalization, the χ2

entropy in (2.3) can be rewritten as follows:

χ2
(
PF,FC

(·|z) , PFθz,t,FC
(·|z)

)
= SF (t|z)SC (t|z) × (2.6)

χ2(P
F (t),F

(t)
C

(·|z) , P
Gθz ,F

(t)
C

(·|z)).

Clearly from (2.6), Definition 2.1 is fulfilled if, as t→ ∞,

χ2(P
F (t),F

(t)
C

(·|z) , P
Gθz ,F

(t)
C

(·|z)) → 0, (2.7)

which means that beyond the threshold t, the excess distribution F (t) (·|z) is ”well”
approximated by an exponential distribution with parameter θz, for some t > 0.
However (2.3) can be satisfied even if (2.7) may not hold, more precisely when

χ2(P
F (t),F

(t)
C

(·|z) , P
Gθz ,F

(t)
C

(·|z)) = o

(
1

SF (t|z)

)
, (2.8)

where SF (t|z) → 0 as t→ ∞. This means that the tail probabilities can be estimated
by our approach even if the exponential model is misspecified for the tail.

3 Consistency of the estimator with fixed threshold

Define the quasi-log-likelihood by Lt (θ|z) =
∑n

i=1 log pFθ,t,FC
(Ti,∆i|zi) 1{zi=z},

where Fθ,t is defined by (2.2) with parameters θ > 0, t ≥ x0 and F (·|z) ∈ F ,
z ∈ Z. Taking into account (2.1) and dropping the terms related to the censoring,
the partial quasi-log-likelihood is

Lpart
t (θ|z) =

∑

Ti≤t, zi=z

∆i log hFθ,t
(Ti|z) −

∑

Ti>t, zi=z

∆i log θ (3.1)
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−
∑

Ti≤t, zi=z

∫ Ti

x0

hFθ,t
(v|z) dv −

∑

Ti>t, zi=z

(∫ t

x0

hFθ,t
(v) dv + θ−1 (Ti − t)

)
,

for fixed z ∈ Z and t ≥ x0.Maximizing Lpart
t (θ|z) in θ, obviously yields the estimator

θ̂z,t =

∑
Ti>t, zi=z (Ti − t)

n̂z,t
, (3.2)

where by convention 0/0 = ∞ and n̂z,t =
∑

Ti>t, zi=z ∆i is the number of observed
survival times beyond the threshold t.

The estimator of SF (x) , for x0 ≤ x ≤ t, is easily obtained by standard non-
parametric maximum likelihood approach due to Kiefer and Wolfowiz [15] (see also
Bickel, Klaassen, Ritov and Wellner [3], Section 7.5). We use the product Kaplan-
Meier (KM) estimator (with ties) defined by

ŜKM (x|z) =
∏

Ti≤x

(1 − di (z) /ri (z)) , x ≥ x0,

where ri (z) =
∑n

j=1 1{Tj≥Ti, zj=z} is the number of individuals at risk at Ti and
di (z) =

∑n
j=1 1{Tj=Ti,∆j=1, zj=z} is the number of individuals died at Ti (see Klein

and Moeschberger [16], Section 4.2 and Kalbfleisch and Prentice [13]). The semi-
parametric fixed-threshold Kaplan-Meier estimator (SFKM) of the survival function
takes the form

Ŝt (x|z) =

{
ŜKM (x|z) , x ∈ [x0, t],

ŜKM (t|z) exp
(
−x−t

θ̂z,t

)
, x > t,

(3.3)

where exp
(
− (x− t) /θ̂z,t

)
= 1 if θ̂z,t = ∞. Similarly, it is possible to use the

Nelson-Aalen nonparametric estimator (Nelson [19, 20], Aalen [1]) instead of the
Kaplan-Meier one.

Consider the Kullback-Leibler divergence K (θ′, θ) =
∫

log (dGθ′/dGθ) dGθ′ be-
tween two exponential distributions with means θ′ and θ. By convention, K (∞, θ) =
∞. It is easy to see that K (θ′, θ) = ψ (θ′/θ − 1) , with ψ (x) = x−log (x+ 1) , x > −1
and that there are two constants c1 and c2 such that (θ′/θ − 1)2 ≤ c1K (θ′, θ) ≤
c2 (θ′/θ − 1)2 , when |θ′/θ − 1| is small enough.

The following theorem provides a rate of convergence of the estimator θ̂z,t as
function of the χ2-entropy between PF,FC

and PFθ,t,FC
. Let P be the joint distribution

of the sample Yi, i = 1, ..., n and E be the expectation with respect to P. In the
sequel, the notation αn = OP (βn) means that there is a positive constant c such
that P (αn > cβn, βn <∞) → 0 as n→ ∞, for any two sequences of positive possibly
infinite variables αn and βn.

Theorem 3.1. Let z ∈ Z. For any θz > 0 (possibly depending on z) and t ≥ x0, it
holds

K
(
θ̂z,t, θz

)
= OP

(
n

n̂z,t
χ2
(
PF,FC

(·|z) , PFθz,t,FC
(·|z)

)
+

4 log n

n̂z,t

)
. (3.4)
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For any z ∈ Z and θz > 0 the optimal rate of convergence is obtained when the
terms in the right hand side of (3.4) are balanced, i.e. when t = tz,n is chosen such
that

χ2
(
PF,FC

(·|z) , PFθz ,tz,n ,FC
(·|z)

)
= O

(
log n

n

)
as n→ ∞, (3.5)

where tz,n may depend on z. It is easy to verify that, if the tail of the distribution
F (·|z) belongs to the domain of attraction of the exponential model under the right
censoring schema, a sequence tz,n ≥ x0 satisfying (3.5) always exists.

From Theorem 3.1 we deduce the following:

Theorem 3.2. Let z ∈ Z. Assume that the distribution F (·|z) belongs to the domain
of attraction of the exponential model under the right censoring schema and tz,n is
a sequence satisfying (3.5). Then

K
(
θ̂z,tz,n, θz

)
= OP

(
log n

n̂z,tz,n

)
. (3.6)

Using the two sided bound for the Kullback-leibler entropy between exponential
laws stated before, from Theorem 3.2 we conclude that θ̂z,tz,n converges to θz at the

usual
(
n̂z,tz,n

)−1/2
rate up to a log n factor:

(
θ̂z,tz,n − θz

)2
= OP

(
log n

n̂z,tz,n

)
, provided

that there are two constants θmin and θmax such that 0 < θmin ≤ θz ≤ θmax <∞.

Furthermore, the rate of convergence of the estimator θ̂z,tz,n can be expressed in
terms of SF (·|z) , SC (·|z) and the sample size n, by giving a lower bound for n̂z,tz,n .
To ensure such a bound we have to introduce two additional assumptions.

The first assumption involves the conditional censoring rate function

qF,FC
(t|z) =

∫ ∞

t
SF,t (x|z) fC,t (x|z) dx ≤ 1, t ≥ x0, z ∈ Z, (3.7)

where SF,t (x|z) = SF (x|z) /SF (t|z) , x ≥ t is the conditional survival function re-
lated to the survival time X, given X > t, and fC,t (x|z) = fC (x|z) /SC (t|z) , x ≥ t
is the conditional density function related to the censoring time C, given C > t. The
quantity qF,FC

(t|z) controls the proportion of the censored times among the obser-
vation times exceeding t. In particular if t = x0, then qF,FC

(x0|z) = Prob(X > C|z)
is simply the mean censoring rate (given Z = z).

We assume that the conditional censoring rate function qF,FC
(·|z) is separated

from 1, i.e. that there are constants r0 ≥ x0 and q0 < 1, such that, for any z ∈ Z
and any t ≥ r0,

qF,FC
(t|z) ≤ q0. (3.8)

Assumption (3.8) is verified, for instance, if F (·|z) and FC (·|z) are exponential with
intensities λX and λC respectively: in this case qF,FC

(t|z) = λC/ (λC + λX) , t ≥ 0.
It is also verified if distributions F and FC meet (2.4) and (2.5). The trajectory of
qF,FC

(·|z) with F and FC satisfying the two last conditions is plotted in Figure 4
(lines 2, 4).
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The second assumption involves the number of individuals with profile z ∈ Z :
nz =

∑n
i=1 1 (zi = z) . We assume that there is a constant κ ∈ (0, 1] such that, for

any z ∈ Z,

nz ≥ κn. (3.9)

Lemma 3.3. Assume that conditions (3.8) and (3.9) are satisfied. Then for ev-
ery t ≥ r0, it holds En̂z,t ≥ κ n (1 − q0)SC (t|z)SF (t|z) and P (n̂z,t < En̂z,t/2) ≤
exp (−En̂z,t/8) . Moreover, if the sequence tz,n is such that En̂z,tz,n → ∞ as n→ ∞,
then it holds P

(
n̂z,tz,n ≥ En̂z,tz,n/2

)
→ 1 as n→ ∞.

As a simple consequence of Theorem 3.2 and Lemma 3.3 we have:

Theorem 3.4. Assume conditions (3.8) and (3.9). Assume that the distribution
F (·|z) belongs to the domain of attraction of the exponential model under the right
censoring schema, tz,n is a sequence satisfying (3.5) and

nSC (tz,n|z)SF (tz,n|z) → ∞ as n→ ∞. (3.10)

Then

K
(
θ̂z,tz,n , θz

)
= OP

(
log n

nSC (tz,n|z)SF (tz,n|z)

)
.

4 Explicit computation of the rate of convergence

The results of the previous section show that the rate of convergence of the
estimator θ̂z,tz,n depends on the survival functions SF (·|z) and SC (·|z) and on the
sequences tz,n. In order to derive a rate of convergence expressed only in terms of the
sample size n we have to make additional assumptions on F and FC . Moreover, we
find minimal (up to one term expansion) threshold tz,n for which (3.5) holds true.

Our first result concerns the case when hC (·|z) is separated from 0.

Theorem 4.1. Assume conditions (3.8) and (3.9). Assume that hF (·|z) satisfies
(2.4), that there are positive constants tmin and cmin such that hC (x|z) ≥ cmin for
any x ≥ tmin and that

SC (tz,n|z)n
2αz

1+2αz log
1

1+2αz n→ ∞ as n→ ∞. (4.1)

Then,

K
(
θ̂z,tz,n, θz

)
= OP



(
n−1 log n

) 2αz
1+2αz

SC (tz,n|z)


 , (4.2)

where

tz,n =
θz

1 + 2αz
log n+ o (log n) .
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Assume additionally that SC (tz,n|z) ≥ c0 > 0, which means that with positive
probability there are large censoring times. Then the rate of convergence in (4.2)

becomes
(
n−1 log n

) 2αz
1+2αz for any z ∈ Z.

Under the additional condition that hC (·|z) satisfies (2.5) we have the following
result:

Theorem 4.2. Assume condition (3.9). Assume that hF (·|z) satisfies (2.4) and
hC (·|z) satisfies (2.5). Then,

K
(
θ̂z,tz,n , θz

)
= OP

((
log n

n

) 2αz
1+γz+2αz

)
, (4.3)

where

tz,n =
θz

1 + γz + 2αz
log n+ o (log n) .

We give some hints about the optimality of the rate in (4.3). Assume that the
survival time X is exponential, i.e. hF (x|z) = θ−1

z for all x ≥ x0 and z ∈ Z.
This ensures that condition (2.4) is satisfied with any α > 0. Assume conditions
(2.5) and (3.9). If there are two constants θmin and θmax such that 0 < θmin ≤

θz ≤ θmax < ∞, (4.3) implies
∣∣∣θ̂z,tz,n − θz

∣∣∣ = OP

((
n−1 log n

) α
1+γz+2α

)
, for any

α > 0. This rate becomes arbitrarily close to the n−1/2 rate as α → ∞, since
limα→∞ α/ (1 + γz + 2α) → 1/2. Thus the estimator θ̂z,tz,n almost recovers the usual
parametric rate of convergence as α becomes large whatever is γz > 0.

In the case when there are no censoring (γz = 0), after an exponential rescaling
our problem can be reduced to that of the estimation of extreme index. If γz → 0

our rate becomes close to n−
2αz

1+2αz , which is known to be optimal in the context of
the extreme value estimation, see Dress [5] and Grama and Spokoiny [8]. So our
result nearly recovers the best possible rate of convergence in this setting.

5 Testing and automatic selection of the threshold

In this section a procedure of selecting the adaptive estimator θ̂z = θ̂z,t̂z,n
from

the family of fixed threshold estimators θ̂z,t, t ≥ x0 is proposed. Here the adaptive
threshold t̂z,n is obtained by a sequential testing procedure followed by a selection
using a penalized maximum likelihood. This motivates our condensed terminology
testing-pursuit-selection used in the sequel. The testing part is actually a multiple
goodness-of-fit testing for the proposed parametric-based models, while the threshold
t̂z,n can be seen as a data driven substitute for the theoretical threshold tz,n defined
in Theorems 4.1 and 4.2 and in more general Theorems 3.2 and 3.4. For a discussion
on the proposed approach we refer the reader to Section 3 of Grama and Spokoiny [8].
In the sequel, for simplicity of notations, we abbreviate t̂z = t̂z,n.
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Define a semiparametric change-point distribution by

Fµ,s,θ,t (x|z) =





F (x|z) , x ∈ [x0, s],

1 − (1 − F (s|z)) exp
(
−x−s

µ

)
, x ∈ (s, t],

1 − (1 − F (s|z)) exp
(
− t−s

µ

)
exp

(
−x−t

θ

)
, x > t,

for µ, θ > 0, x0 ≤ s < t and F (·|z) ∈ F . As in Section 3 we find the maximum
quasi-likelihood estimators θ̂z,t of θ and µ̂z,s,t of µ for fixed z ∈ Z and x0 ≤ s < t,
which are given by (3.2) and

µ̂z,s,t =
n̂z,sθ̂z,s − n̂z,tθ̂z,t

n̂z,s,t
,

where n̂z,s,t =
∑

s<Ti≤t, zi=z ∆i and by convention 0 · ∞ = 0 and 0/0 = ∞.
Consider a constant D > 0, which will be the critical value in the testing pro-

cedure below. Let k0 ≥ 3 be a starting index and kstep be an increment for k. Let
δ′, δ′′ be two positive constants such that 0 < δ′, δ′′ < 0.5. The values k0, kstep, δ

′, δ′′

and D are the parameters of the procedure to be calibrated empirically. Without
loss of generality, we consider that the Ti’s are arranged in the decreasing order:
T1 ≥ ... ≥ Tn. The threshold t will be chosen in the set {T1, ..., Tn} .

The testing-pursuit-selection procedure which we propose is performed in two
stages. First we test the null hypothesis HTk

(z) : F = Fθ,Tk
(·|z) against the al-

ternative H̃Tk
(z) : F = Fµ,Tk ,θ,Tl

(·|z) for some δ′k ≤ l ≤ (1 − δ′′) k, sequentially

in k = k0 + ikstep, i = 0, ..., [n/kstep], until HTk
(z) is rejected. Denote by k̂z the

obtained break index and define the break time ŝz = T
k̂z
. Second, using k̂z and ŝz

define the adaptive threshold by t̂z = T
l̂z

with the adaptive index

l̂z = argmax
δ′k̂z≤l≤(1−δ′′)k̂z

{
LTl

(
θ̂z,Tl

|z
)
− LTl

(
θ̂z,ŝz

|z
)}

, (5.1)

where the term LTl

(
θ̂z,ŝz

|z
)

is a penalty for getting close to the break time ŝz. The

resulting adaptive estimator of θz is defined by θ̂z = θ̂z,t̂z
and the semiparamet-

ric adaptive-threshold Kaplan-Meier estimator (SAKM) of the survival function is
defined by Ŝt̂z

(·|z) .

For testing HTk
(z) against H̃Tk

(z) we use the statistic

LRmax (Tk|z) = max
δ′k≤l≤(1−δ′′)k

LR (Tk, Tl|z) , (5.2)

where LR (s, t|z) is the quasi-likelihood ratio test statistic for testing Hs (z) : F =
Fθ,s (·|z) against the alternative H̃s,t (z) : F = Fµ,s,θ,t (·|z) . To compute (5.2), note
that by simple calculations, using (3.1) and (3.2),

Lt

(
θ̂z,t|z

)
− Lt (θ|z) = n̂z,tK

(
θ̂z,t, θ

)
, (5.3)
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where by convention 0 · ∞ = 0. Similarly to (5.3), the quasi-likelihood ratio test
statistic LR (s, t|z) is given by

LR (s, t|z) = n̂z,s,tK
(
µ̂z,s,t, θ̂z,s

)
+ n̂z,tK

(
θ̂z,t, θ̂z,s

)
(5.4)

with the same convention. Note that, by (5.3), the second term in (5.4) can be
viewed as the penalized quasi-log-likelihood

LRpen (s, t|z) = Lt

(
θ̂z,t|z

)
− Lt

(
θ̂z,s|z

)

= n̂z,tK
(
θ̂z,t, θ̂z,s

)
.

Our testing-pursuit-selection procedure reads as follows:

Step 1. Set the starting index k = k0.

Step 2. Compute the test statistic for testing HTk
(z) against H̃Tk

(z) :

LRmax (Tk|z) = max
δ′k≤l≤(1−δ′′)k

LR (Tk, Tl|z)

Step 3. If k ≤ n − kstep and LRmax (Tk|z) ≤ D, increase k by kstep and go to

Step 2. If k > n− kstep or LRmax (Tk|z) > D, let k̂z = k,

l̂z = argmax
δ′k̂z≤l≤(1−δ′′)k̂z

LRpen

(
T

k̂z
, Tl|z

)
,

take the adaptive threshold as t̂z = T
l̂z

and exit.

It may happen that with k = k0 it holds LRmax (Tk0 |z) > D, which means
that the hypothesis that the tail is fitted by the exponential model, starting from
Tk0, is rejected. In this case we resume the procedure with a new augmented k0,
say with k0 replaced by [ν0k0], where ν0 > 1. Finally, if for each such k0 it holds
LRmax (Tk0|z) > D, we conclude that the tail of the model cannot be fitted with the
proposed parametric tail and we estimate the tail by the Kaplan-Meier estimator.
Therefore our testing-pursuit-procedure can be seen as well as a goodness-of-fit test
for the tail.

Note that the Kullback-Leibler entropy K (θ′, θ) is scale invariant, i.e. satisfies
the identity K (θ′, θ) = K (αθ′, αθ) , for any α > 0 and θ′, θ > 0. Therefore the
critical value D can be determined by Monte Carlo simulations from standard expo-
nential observations. The choice of parameters of the proposed selection procedure
is discussed in Section 6.

6 Simulation results

We illustrate the performance of the semiparametric estimator (3.3) with fixed
and adaptive thresholds in a simulation study. The survival probabilities SF (x|z) ,
for large values of x, are of interest.



46 I. GRAMA, J.M. TRICOT, J.F. PETIOT

0 2 4 6 8

0.
00

0.
01

0.
02

0.
03

0.
04

Time (x)

R
oo

t M
SE

Exponential observations: root MSE ( D = 1,2,3,4,5 )

MSE(KM)
MSE(SFKM)
MSE(SAKM): D = 1,...,5
fixed threshold = 0
0.99−quantile

n=200,  M=2000,  Mean censoring rate=33.3%

0 2 4 6 8

0.
00

0.
01

0.
02

0.
03

0.
04

Time (x)

R
oo

t M
SE

Exponential observations: root MSE ( D = 5,6,7,8,9,10,11,12 )

MSE(KM)
MSE(SFKM)
MSE(SAKM): D = 5,...,12
fixed threshold = 0
0.99−quantile

n=200,  M=2000,  Mean censoring rate=33.3%

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

Time (x)

R
oo

t M
SE

Exponential observations: root MSE ( D = 1,2,3,4,5 )

MSE(KM)
MSE(SFKM)
MSE(SAKM): D = 1,...,5
fixed threshold = 0
0.99−quantile

n=200,  M=2000,  Mean censoring rate=77.8%

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

Time (x)

R
oo

t M
SE

Exponential observations: root MSE ( D = 5,6,7,8,9,10,11,12 )

MSE(KM)
MSE(SFKM)
MSE(SAKM): D = 5,...,12
fixed threshold = 0
0.99−quantile

n=200,  M=2000,  Mean censoring rate=77.8%

Figure 3. The lines 1, 3 (from the top) display the root type I MSE’s of the Kaplan-Meier estimator
(KM), of the semiparametric fixed-threshold Kaplan-Meier estimator (SFKM) with threshold fixed
at 0 (which coincides with the exponential model) and of the semiparametric adaptive-threshold
Kaplan-Meier estimator (SAKM) with D = 1, 2, 3, 4, 5. The lines 2, 4 display the same but with
D = 5, 6, 7, 8, 9, 10, 11, 12. The mean censoring rate is either 33.3% or 77.8%.
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The mean squared error (MSE) of an estimator Ŝ (·|z) of the true survival func-

tion SF (·|z) is defined byMSE
Ŝ

(x|z) = E

(
Ŝ (x|z) − SF (x|z)

)2
. The quality of the

estimator Ŝ (·|z) with respect to the Kaplan-Meier estimator ŜKM (·|z) is measured
by the ratio R

Ŝ
(x|z) = MSE

Ŝ
(x|z) /MSE

ŜKM
(x|z) .

Without loss of generality, we can assume that the covariate Z takes a fixed
value z. In each study developed below, we perform M = 2000 Monte-Carlo simu-
lations.

We start by giving some hints on the choice of the parameters k0, kstep, δ
′, δ′′

of the testing-pursuit-selection procedure in Section 5. The initial value k0 controls
the variability of the test statistic LRmax (Tk|z) , k ≥ k0. We have fixed k0 as a
proportion of the initial sample size: k0 = n/10. The choice kstep = 5 is made to
speed up the computations. The parameters δ′ and δ′′ restrict the high variability
of the test statistic LR (Tk, Tl|z) when the change point Tl ∈ [Tk, Tk0 ] is close to the
ends of the interval. The values δ′ = 0.3 and δ′′ = 0.1 are retained experimentally.
Our simulations show that the adaptive procedure does not depend much on the
choice of the parameters k0, kstep, δ

′, δ′′.

To choose the critical value D we analyze the type I MSE of the SAKM esti-
mator, i.e. the MSE under the null hypothesis that the survival times X1, ...,Xn

are i.i.d. standard exponential. We perform two simulations using i.i.d. exponential
censoring times C1, ..., Cn with rates 0.5 and 3.5. The size is fixed at n = 200, but
the results are quite similar for other sizes. The root MSE’s as functions of the time
x are given in Figure 3. For comparison, in Figure 3 we also included the MSE’s
corresponding to the parametric-based exponential modeling which coincides with
the SFKM estimator having the threshold fixed at 0. Note that the MSE’s calculated
when the critical values are D = 1, 2, 3, 4, 5, decrease as D increases (see the lines 1,
3), while for D = 5, 6, 7, 8, 9, 10, 11, 12 the MSE’s almost do not depend on D (see
the lines 2, 4). The simulations show that the type I MSE decreases as D increases
and stabilizes for D ≥ 5. From these plots we conclude that the limits for the critical
value D can be set between D0 = 5 and D1 = 7 without important loss in the type
I MSE.

It is interesting to note that the adaptive threshold t̂z is relatively stable to
changes of D. A typical trajectory of the test statistic LRmax (Tk|z) as function
of Tk is drawn in Figure 7 (top). Despite the fact that the break time ŝz = T

k̂z

strongly depends on the critical value D (in this picture D = 5.8), we found that
the adaptive threshold t̂z = T

l̂z
, which maximizes the penalized quasi-log-likelihood

LRpen

(
T

k̂z
, Tl|z

)
in Figure 7 (bottom), is stable to the local changes of the break

time ŝz = T
k̂z

and thus is also quasi-stable to relatively small changes of D.

For our simulations we fix the value D = 6. Below we give some evidence that
the SAKM estimator with this critical value has a reasonable type II MSE, under
the hypothesis that the Xi’s have a distribution F alternative to the standard expo-
nential. Our simulations show that the type II MSE’s are quite similar for several
families we have tested. We have chosen the following two typical cases which are
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representative for all these families.

Study case 1 (low tail censoring rate). We generate a sequence of n = 200
i.i.d. survival times Xi, i = 1, ..., n from the re-scaled Cauchy distribution KµX ,θX

with location parameter µX = 40 and scale parameter θX = 5 (see Section 2).
The censoring times Ci, i = 1, ..., n are i.i.d. from the re-scaled Cauchy distribution
KµC ,θC

with location parameter µC = µX−20 = 20 and scale parameter θC = 2θX =
10. To give an overview of the variation of the censoring rate along the magnitude of
Xi, we display the density functions of the survival and censoring times Xi and Ci in
Figure 4. We also display the conditional censoring rate curve qF,FC

(t|z) as function
of t. The (overall) mean censoring rate in this example corresponds to the starting
point of the curve and is about 88% (horizontal dashed line in Figure 4, line 2). As
t → ∞ this curve decreases to the limit limt→∞ qF,FC

(t|z) = θX/ (θC + θX) = 1/3,
which means that the censoring rate for high observation times is about 33% (the
right limit of the curve in Figure 4, line 2).

Study case 2 (high tail censoring rate). We take the same sample size
n = 200. The Xi’s, i = 1, ..., n are i.i.d. from KµX ,θX

with µX = 30 and θX = 20.
The Ci’s, i = 1, ..., n are i.i.d. from KµC ,θC

with µC = µX + 10 = 40 and θC =
θX/10 = 2. In this case the (overall) mean censoring rate is about 40% (horizontal
dashed line), however the conditional censoring rate in the tail is nearly equal to the
limit limt→∞ qF,FC

(t|z) = θX/ (θC + θX) = 10/11, i.e. is about 91% (see Figure 4,
line 4).

We evaluate the performance of the SFKM and SAKM estimators Ŝt (x|z) and
Ŝt̂z

(x|z) with respect to the KM estimator ŜKM (x|z). In Figure 5 we display
the root MSEŜ (x|z) (lines 1, 3) and the ratio RŜ (x|z) (lines 2, 4) for the three
estimators as functions of the time x. From these plots we can see that both root
MSE

Ŝt
(x|z) and root MSE

Ŝt̂z

(x|z) are equal to the root MSE
ŜKM

(x|z) for small

values of x and become smaller for large values of x, which shows that the SFKM
and SAKM estimators improve the KM estimator.

In Figure 6 (lines 1, 3), for each fixed x, we show the confidence bands containing
90% of the values of ŜKM (x|z) and Ŝt̂z

(x|z). From these plots we see the ability
of the model to fit the data and at the same time to give satisfactory predictions.
Compared to those provided by the KM estimator which predicts a constant survival
probability for large x, our predictions are more realistic.

In Figure 6 (lines 2, 4) we show the bias square and the variance of ŜKM (·|z)
and Ŝt̂z

(·|z) . From these plots we see that the variance of Ŝt̂z
(·|z) is smaller than

that of ŜKM (·|z) in the two study cases. We conclude the same for their biases.
However, the bias of ŜKM (·|z) is large in the study case 2 (Figure 6, Line 4) because
of a high conditional censoring rate in the tail (see Figure 4, line 4).

The case of non-constant hazards (see Example 2 of Section 2). The
previous study is performed for models satisfying conditions (2.4) and (2.5). Now we
consider the case when these conditions are not satisfied. Let X and C be generated
from gamma distributions whose hazard rate function can be easily verified not to be
asymptotically constant (in fact it is slowly varying at infinity). The survival time
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Figure 4. The lines 1, 3 (from the top) display the density functions of the survival and censoring
times for study cases 1 and 2 (low and high tail censoring rates respectively). The lines 2, 4 display
the conditional censoring rate qF,FC

(t|z) as function of the threshold t, for the two cases.
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Figure 5. The lines 1, 3 (from the top) display the root type II MSE’s of three estimators: ŜKM

(KM), Ŝt (SFKM) and Ŝt̂z
(SAKM). The lines 2, 4 display the corresponding ratios of the root

type II MSE’s on the lines 1, 3. The critical value D in the SAKM is set to 6.
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Figure 6. The lines 1, 3 (from the top) display the true survival SF and the estimated means of

ŜKM (KM) and Ŝt̂z
(SAKM). We give confidence bands containing 90% of the trajectories for each

fixed time x. The lines 2, 4 display the corresponding biases square and variances.
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Table 1. Simulations with gamma distributions for survival and censoring times

x 5 6 7 8 9 10 11 12 13
SF (x|z) 0.9682 0.9161 0.8305 0.7166 0.5874 0.4579 0.3405 0.2424 0.1658

Mean of Ŝ
t̂z

(x|z) 0.9679 0.9159 0.8318 0.7107 0.5686 0.4504 0.3575 0.2853 0.2287

Mean of ŜKM (x|z) 0.9679 0.9159 0.8306 0.7160 0.5875 0.4581 0.3399 0.2472 0.1888
Root MSE

Ŝ
t̂z

(x|z) 0.0135 0.0225 0.0336 0.0461 0.0552 0.0606 0.0702 0.0831 0.0940

Root MSE
ŜKM

(x|z) 0.0135 0.0225 0.0345 0.0466 0.0604 0.0758 0.0933 0.1144 0.1284

x 14 15 16 17 18 19 20 21 22
SF (x|z) 0.1094 0.0699 0.0433 0.0261 0.0154 0.0089 0.0050 0.0028 0.0015

Mean of Ŝ
t̂z

(x|z) 0.1841 0.1487 0.1205 0.0979 0.0798 0.0652 0.0534 0.0439 0.0361

Mean of ŜKM (x|z) 0.1586 0.1453 0.1411 0.1403 0.1402 0.1402 0.1402 0.1402 0.1402
Root MSE

Ŝ
t̂z

(x|z) 0.0997 0.0998 0.0952 0.0876 0.0785 0.0690 0.0599 0.0515 0.0441

Root MSE
ŜKM

(x|z) 0.1384 0.1503 0.1627 0.1731 0.1804 0.1850 0.1877 0.1893 0.1902

X is gamma with shape parameter 10 and rate parameter 1 and the censoring time
C is gamma with shape parameter 8.5 and rate parameter 1.2. The mean censoring
rate in this example is about 77%. The results of the simulations are given in Figure
2 (n = 20 and n = 500) and Table 1 (n = 500) for ŜKM (·|z) and Ŝt̂z

(·|z) . They
show that for these distributions the SAKM estimator gives a smaller root MSE
than the KM estimator even when the sample size is low (n = 20) and x is in the
range of the data.

7 Application to real data

As an illustration we deal with the well known randomized trial in primary
biliary cirrhosis (PBC) from Fleming and Harrington [7] (see Appendix D.1). PBC
is a rare but fatal chronic liver disease and the analyzed event is the patient’s death.
The trial was open for patient registration between January 1974 and May 1984.
The observations lasted until July 1986, when the disease and survival status of the
patients where recorded. There where n = 312 patients registered for the clinical
trial, including 125 patients who died. The censored times where recorded either
for patients which had been lost to follow up or had undergone liver transplantation
or was still alive at the study analysis time (July 1986). The number of censored
times is 187 and the censoring rate is about 59.9%. The last observed time is 4556
which is a censored time. Ties occur for the following three times: 264, 1191 and
1690. So there are 122 separate times for which we can observe at least one event.
Two treatment groups of patients where compared: the first one (Z = 1) of size
n1 = 158 was given the DPCA (D-penicillamine drug). The second group (Z = 0)
of size n0 = 154 was the control (placebo) group. In this example we consider only
the group covariate. We are interested to predict the survival probabilities of the
patients under study in both groups.

The survival curves based on the KM and SAKM estimators for each group are
displayed in Figure 1 (top and bottom pictures respectively). The numerical results
on the predictions appear in Table 2. In this table, the time is running from 3 years
(x = 1095 days) up to 20 years (x = 7300) with the step 1 year equivalent to 365
days for convenience.
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Figure 7. For the placebo group of PBC data we display the test statistics LRmax(Tk|z) as function
of Tk (top) and LRpen(Tk̂, Tl|z) as function of Tl (bottom). The tested interval and the testing
window are given by [Tk̂, Tk0

] and [T(1−δ′′)k̂, Tδ′k̂] respectively. The critical value D is fixed to 5.8.

Based on the usual KM estimator, the following two conclusions can be made:
A1) The constant predictions for extreme survival probabilities in both groups ap-
pear to be too optimistic after the largest (non-censored) survival time. B1) The
DPCA treatment appears to be less efficient than placebo in the long term. The
statistical analysis with the SAKM estimator leads to more realistic conclusions:
A2) The survival probabilities of each group extrapolate the tendency of the KM
estimator as the time is increasing, and B2) the DPCA treatment is more efficient
than placebo. For example, from the results in Table 2 we obtain that the survival
probability in 20 years is about 2 times higher for the DPCA group than for the

Table 2. Predicted survival probabilities for PBC data

x : years 3 4 5 6 7 8 9 10 11
x : days 1095 1460 1825 2190 2555 2920 3285 3650 4015
DPCA: KM 0.8256 0.7635 0.7077 0.6613 0.5842 0.5417 0.4778 0.4247 0.4247
DPCA: SAKM 0.8256 0.7635 0.7077 0.6595 0.5934 0.5340 0.4805 0.4323 0.3890
Placebo: KM 0.7911 0.7398 0.7146 0.6950 0.6566 0.6055 0.5461 0.4563 0.3604
Placebo: SAKM 0.7911 0.7398 0.7146 0.6950 0.6566 0.6055 0.5497 0.4619 0.3881
x : years 12 13 14 15 16 17 18 19 20
x : days 4380 4745 5110 5475 5840 6205 6570 6935 7300
DPCA: KM 0.3186 0.3186 0.3186 0.3186 0.3186 0.3186 0.3186 0.3186 0.3186
DPCA: SAKM 0.3501 0.3150 0.2834 0.2550 0.2295 0.2065 0.1858 0.1672 0.1505
Placebo: KM 0.3604 0.3604 0.3604 0.3604 0.3604 0.3604 0.3604 0.3604 0.3604
Placebo: SAKM 0.3260 0.2739 0.2302 0.1934 0.1625 0.1365 0.1147 0.0964 0.0810
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Figure 8. For PBC data, we display the pointwise bootstrap 90% confidence intervals for predicted
probabilities: DPCA group (on top) and placebo (control) group (on bottom). We also display 100
bootstrap trajectories of the predicted probabilities for each group.

control group.

From the top picture of Figure 7 we see that the test statistic LRmax (Tk|0) for the
control group (Z = 0) reaches the critical value D = 5.8 ∈ [D0,D1] for k = k̂0 = 90.
Thus the hypotheses Hs0 (0) was rejected for the break time ŝ0 = T

k̂0
= 1542. The

adaptive threshold t̂0 is chosen via the maximization of the penalized quasi-log-
likelihood (5.1). In the bottom picture of Figure 7 we see that the maximum is
attained for the adaptive index l̂0 = 30 and threshold t̂0 = T

l̂0
= 3149. Thus, our

testing-pursuit-selection procedure has captured the ”convex bump” on the control
Kaplan-Meier curve (for Z = 0) between the times 2000 and 3500, which is easily
seen in the bottom picture of Figure 1.

The pointwise (in x) 0.9-confidence bootstrap intervals for the predicted prob-
abilities Ŝt̂1

(x|1) and Ŝt̂0
(x|0) are displayed in Figure 8 (top for DPCA treatment

group Z = 1 and bottom for control group Z = 0). Here t̂1 = 2033 and t̂0 = 3149
are the adaptive thresholds computed from the original sample. The adaptive es-
timators of the mean parameters θ1 and θ0 are respectively θ̂1,t̂1

= 3457.85 and

θ̂0,t̂0
= 2096.22. We generated M = 2000 bootstrap samples of size n = 312 taken

at random from the general sample gathering the data coming from the two groups.

For the m-th bootstrap sample the SAKM estimators Ŝ
(m)

t̂
(m)
1

(x|1) and Ŝ
(m)

t̂
(m)
0

(x|0) are
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computed as functions of x with their own adaptive thresholds t̂
(m)
1 and t̂

(m)
0 .

8 Conclusion

This article deals with estimation of the survival probability in the framework
of censored survival data. While the Kaplan-Meier estimator provides a flexible
estimate of the survival function in the range of the data it can be improved for
prediction of the extreme values, especially when the censoring rate is high. We
propose a new approach based on the Kaplan-Meier estimator by adjusting a para-
metric correction to the tail beyond a given threshold t.

First we determine the rate of convergence of the corresponding estimators of the
parameters in the adjusted model for a sequence of deterministic thresholds t = tz,n

for each category z of the model covariate. This is done under the assumption that
the hazard function is fitted by a constant in the sense that conditions (2.4) and
(2.5) are satisfied. It is interesting to note that the rate of convergence depends not
only on the class of survival time distributions but also on the class of censoring time
distributions. By simulations we show that our approach is robust if the (survival
and censoring) fitted tails are misspecified.

In applications the threshold t usually is not known. To overcome this we propose
a testing-pursuit-selection procedure which yields an adaptive threshold t = t̂z,n in
two stages: a sequential hypothesis testing and an adaptive choice of the threshold
based on the maximization of a penalized quasi-log-likelihood. This testing-pursuit-
selection procedure provides also a goodness-of-fit test for the parametric-based part
of the model.

We perform numerical simulations with both the fixed and adaptive threshold
estimators. Our simulations show that both estimators improve the Kaplan-Meier
estimator not only in the long term, but also in a mid range inside the data. Com-
paring the fixed threshold and adaptive threshold estimators, we found that the
adaptive choice of the threshold significantly improves on the quality of the predic-
tions of the survival function.

We have seen that the quality of estimation of the extreme survival probabilities
depends on the conditional censoring rate function, which describes the variations
of the censoring rate as the time increases. The improvement over the Kaplan-Meier
estimator is especially effective when the conditional censoring rate is high in the
tail.

A Appendix: Proofs of the results

A.1 Auxiliary assertions

The following lemma plays the crucial role in the proof of our main results.
Assume that Y1, ...,Yn are i.i.d. with common distribution Q. Let Q be the joint
distribution of Y = (Y1, ...,Yn) . Let Q1, Q0 be two probability measures on R such



56 I. GRAMA, J.M. TRICOT, J.F. PETIOT

that Q, Q0 and Q1 are equivalent. Define the quasi-log-likelihood ratio by

L (Q1, Q0) =

n∑

i=1

log
dQ1

dQ0
(Yi) .

Lemma A.1. For any x ≥ 0, n ≥ 1, we have

Q
(
L (Q1, Q0) > x+ nχ2 (Q,Q0)

)
≤ exp

[
−
x

2

]
.

Proof. By exponential Chebyshev’s inequality, for any y > 0,

Q (L (Q1, Q0) > y) ≤ exp

[
−y/2 + log Q exp

(
1

2
L (Q1, Q0)

)]
. (A.1)

Since Y1, ...,Yn are i.i.d. with common distribution Q, we get

log Q exp

(
1

2
L (Q1, Q0)

)
= n logQ

√
dQ1

dQ0
. (A.2)

By Holder’s inequality Q
(√

dQ1/dQ0

)
≤
√
Q (dQ/dQ0) =

√
1 + χ2 (Q,Q0). Using

the last bound and (A.1), (A.2), it follows

Q (L (Q1, Q0) > y) ≤ exp
{
−
y

2
+
n

2
log
(
1 + χ2 (Q,Q0)

)}

≤ exp
{
−
y

2
+
n

2
χ2 (Q,Q0)

}
.

Letting y = x+ nχ2 (Q,Q0) completes the proof.

Now we produce an exponential bound for the quasi-log-likelihood ratio

Lt

(
θ′|z
)
− Lt (θ|z) =

∑

zi=z

log
pFθ′,t,FC

pFθ,t,FC

(Yi|z) .

Lemma A.2. For any θ, θ′ ∈ R, z ∈ Z and any x ≥ 0 it holds

P
(
Lt

(
θ′|z
)
− Lt (θ|z) > x+ nχ2

(
PF,FC

(·|z) , PFθ,t,FC
(·|z)

))
≤ exp

(
−
x

2

)
.

Proof. Let Iz = {i : zi = z} . Note that Yi = (Ti,∆i)
′ , i ∈ Iz, are i.i.d. variables. We

apply Lemma A.1 with Y = {Yi : i ∈ Iz} and Q = PF,FC
(·|z) , Q0 = PFθ,t,FC

(·|z) ,
Q1 = PFθ′,t,FC

(·|z) , which ends the proof.

Next, we give an exponential bound for the maximum quasi-log-likelihood ratio
which permits to obtain a rate of convergence of θ̂z,t.

Lemma A.3. For any θ > 0, t ≥ x0 and any x ≥ 0 it holds

P

(
n̂z,tK

(
θ̂z,t, θ

)
> x+ nχ2

(
PF,FC

(·|z) , PFθ,t,FC
(·|z)

)
+ 2 log n

)
≤ 2 exp

(
−
x

2

)
,

where z ∈ Z and by convention 0 · ∞ = 0.
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Proof. We prove that

P

(
n̂z,tK

(
θ̂z,t, θ

)
> y

)
≤ 2n exp (−x/2) = 2 exp (−x/2 + log n) , (A.3)

where y = x+ nχ2
(
PF,FC

(·|z) , PFθ,t,FC
(·|z)

)
≥ 0.

Since n̂z,tθ̂z,t =
∑

Ti>t, zi=z (Ti − t) , by direct calculations, we have Lt (θ′|z) −

Lt (θ|z) = n̂z,tΛz (θ′) , where Λz (u) = log (θ/u) −
(
u−1 − θ−1

)
θ̂z,t. Using that

K (θ′, θ) = θ′/θ − 1 − log (θ′/θ) , we deduce K
(
θ̂z,t, θ

)
= Λz

(
θ̂z,t

)
. Denote for

brevity g (u, k) = (log (θ/u) − y/k) /
(
u−1 − θ−1

)
, u 6= θ. Note that, for 0 < u < θ

the inequality kΛz (u) > y is equivalent to g (u, k) > θ̂z,t and for u > θ the inequal-

ity kΛz (u) > y is equivalent to g (u, k) < θ̂z,t. Moreover the function g (u, k) has a
maximum for 0 < u < θ and a minimum for u > θ.

Let θ+ (k) = arg max0≤u<θ g (u, k) and θ− (k) = arg minu>θ g (u, k) . Then

{
n̂z,tΛz

(
θ̂z,t

)
> y, θ̂z,t < θ

}
=

{
g
(
θ̂z,t, n̂z,t

)
> θ̂z,t, θ̂z,t < θ

}

⊂
{
g
(
θ+ (n̂z,t) , n̂z,t

)
> θ̂z,t, θ̂z,t < θ

}

=
{
n̂z,tΛz

(
θ+ (n̂z,t)

)
> y, θ̂z,t < θ

}

⊂
{
n̂z,tΛz

(
θ+ (n̂z,t)

)
> y

}
.

In the same way, we get
{
n̂z,tΛz

(
θ̂z,t

)
> y, θ̂z,t > θ

}
⊂ {n̂z,tΛz (θ− (n̂z,t)) > y} .

Since Λz

(
θ̂z,t

)
= K

(
θ̂z,t, θ

)
and K

(
θ̂z,t, θ

)
= 0 if θ̂z,t = θ, these inclusions imply

{
n̂z,tK

(
θ̂z,t, θ

)
> y

}
⊂

{
n̂z,tΛz

(
θ+ (n̂z,t)

)
> y

}

∪
{
n̂z,tΛz

(
θ− (n̂z,t)

)
> y

}
. (A.4)

From (A.4), we get

P

(
n̂z,tK

(
θ̂z,t, θ

)
> y

)

≤ P
(
n̂z,tΛz

(
θ+ (n̂z,t)

)
> y

)
+ P

(
n̂z,tΛz

(
θ− (n̂z,t)

)
> y

)

≤
n∑

k=1

P
(
n̂z,tΛz

(
θ+ (k)

)
> y

)
+

n∑

k=1

P
(
n̂z,tΛz

(
θ− (k)

)
> y

)
. (A.5)

By Lemma A.2, it follows, for k = 1, ..., n, P (n̂z,tΛz (θ± (k)) > y) ≤ exp (−x/2) .
Then, by (A.5), we get (A.3), which ends the proof.

A.2 Proof of Theorems 3.1 and 3.2

Theorem 3.1 follows immediately from Lemma A.3 if we set x = 2 log n. Theorem
3.2 is a consequence of Theorem 3.1 and (3.5).
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A.3 Proof of Lemma 3.3

By (2.1) it follows that En̂z,t =
∑

zi=z

∫∞
t fF (x|z)SC (x|z) dx. Therefore, inte-

grating by parts, we have En̂z,t = nzSF (t|z)SC (t|z) (1 − qF,FC
(t|z)) . Using (3.8)

proves the first assertion.

Denote, for brevity, ξi = 1{Ti>t,∆i=1} and p = P (Ti > t,∆i = 1) 1{zi=z}. Then
n̂z,t =

∑
zi=z ξi and En̂z,t = nzp. Using exponential Chebyshev’s inequality, for any

x > 0 and any u > 0, we obtain

P (n̂z,t ≤ En̂z,t − x) ≤ exp

(
−ux+ nzp

u2

2

)
.

Choosing u = 1/2 and x = En̂z,t/2, we get P (n̂z,t ≤ En̂z,t/2) ≤ exp (−nzp/8) , which
proves the second assertion.

A.4 Proof of Theorem 4.1

Lemma A.4. Assume that Q and Q0 are two equivalent probability measures on a
measurable space. Then

χ2 (Q,Q0) ≤

∫ (
log

dQ0

dQ

)2

exp

(∣∣∣∣log
dQ0

dQ

∣∣∣∣
)
dQ.

Proof. Consider the convex function g (x) = (x − 1)2/x. Then χ2 (Q,Q0) =∫
g (dQ0/dQ) dQ. Since (x− 1)2 ≤ x2 log2 x = exp (2 log x) log2 x for x ≥ 1, and

(x− 1)2 ≤ log2 x for x ∈ (0, 1) , we get g (x) ≤ log2 x exp (|log x|) for x > 0.

We deduce Theorem 4.1 from Theorem 3.4. Let z ∈ Z and t ≥ x0. Consider
the distance ρt (h1, h2) = supx>t |h1 (x) − h2 (x)| , where h1, h2 are two non-negative
functions. First we prove the following bound:

χ2
(
PF,FC

(·|z) , PFθz ,t,FC
(·|z)

)
= O

(
SC (t|z)SF (t|z) ρ2

t

)
as t→ ∞. (A.6)

By Lemma A.4,

χ2
(
PF,FC

(·|z) , PFθz ,t,FC
(·|z)

)
≤

∫ ∞

x0

(
log

dPF,FC

dPFθz ,t,FC

(x, δ|z)

)2

(A.7)

× exp

(∣∣∣∣log
dPF,FC

dPFθz ,t,FC

(x, δ|z)

∣∣∣∣
)
PF,FC

(dx, dδ|z) .

According to (2.1), for any x > t,

log
dPF,FC

dPFθz ,t,FC

(x, δ|z) = log
hF (x|z)δ SF (x|z)

hFθz,t
(x|z)δ SFθz,t

(x|z)

= δ log
hF (x|z)

θ−1
z

−

∫ x

t

(
hF (v|z) − θ−1

z

)
dv.
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For brevity, we denote ρt = ρt

(
hF (·|z) , θ−1

z

)
. Since log (1 + u) ≤ 2 |u| , for u >

−1/2, it follows that

∣∣∣∣log
dPF,FC

dPFθz ,t,FC

(x, δ|z)

∣∣∣∣ ≤ cρt (1 + (x− t)) , (A.8)

whenever ρt ≤ 1/ (2θmin) , where c = max {2θmax, 1} .
Denoting gρt (x) = (1 + x)2 exp (cρt (1 + x)) , from (A.7) and (A.8), we get

χ2
(
PF,FC

(·|z) , PFθz ,t,FC
(·|z)

)

≤ c2ρ2
t

∫

(t,∞)×{0,1}
gρt (x− t) pF,FC

(x, δ|z) ν (dx, dδ)

= c2ρ2
t

∫ ∞

t

∑

δ∈{0,1}

gρt (x− t) fF (x|z)δ SF (x|z)1−δ fC (x|z)1−δ SC (x|z)δ dx.

Since SC (x) ≤ SC (t) and SF (x) ≤ SF (t) , for x ≥ t, we obtain

χ2
(
PF,FC

(·|z) , PFθz ,t,FC
(·|z)

)

≤ c2ρ2
tSF (t|z)SC (t|z)

∫ ∞

t
gρt (x− t)

(
fF (x|z)

SF (t|z)
+
fC (x|z)

SC (t|z)

)
dx.

From (2.4), hF (x|z) is bounded from below for x large enough:

hF (x|z) ≥ θ−1
z (1 − |θzhF (x|z) − 1|)

≥ θ−1
max

(
1 −A exp

(
−αmin

x

θz

))

≥ 1/ (2θmax) ,

whenever x ≥ tmin = θmax log (2A) /αmin, where αmin = minz∈Z αz. This implies

SF (x|z)

SF (t|z)
= exp

(
−

∫ x

t
hF (v|z) dv

)
≤ exp (−c0 (x− t)) ,

where c0 = 1/ (2θmax) . Integrating by parts, for any t ≥ tmin,

∫ ∞

t
gρt (x− t)

fF (x|z)

SF (t|z)
dx

=

[
−gρt (x− t)

SF (x|z)

SF (t|z)

]∞

t

+

∫ ∞

t

SF (x|z)

SF (t|z)
g′ρt

(x− t) dx.

If ρt ≤ c0/ (2c) , we have

∫ ∞

t
gρt (x− t)

fF (x|z)

SF (t|z)
dx

≤ exp (cρt) +

∫ ∞

0
(1 + x) (2 + cρt (1 + x)) exp (cρt (1 + x) − c0x) dx
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≤ exp
(c2

2

)(
2 +

8

c0
+

16

c20

)
= O (1) .

In the same way, conditions hC (x|z) ≥ cmin, for x ≥ tmin and ρt ≤ cmin/ (2c) imply,
for t ≥ tmin, ∫ ∞

tz,n

gρtz,n
(x− t)

fC (x|z)

SC (t|z)
dx = O (1) .

Putting together these bounds, yields (A.6).

Next, we find a sequence tz,n which verifies (3.5) and (3.10).

Since SC (t|z) ≤ 1, for verifying (3.5), it remains to find t = tz,n such that

SF (tz,n|z) ρ
2
tz,n

= O

(
log n

n

)
. (A.9)

Recall that α′
z = αz/θz and γ′z = γz/θz (see Example in Section 2). To prove (A.9),

we note that, by (2.4),

SF (tz,n) = exp

(
−

∫ tz,n

x0

hF (v|z) dv

)

≤ exp

(
−

∫ tz,n

x0

(
θ−1
z − θ−1

z Ae−α′
zv
)
dv

)

= O
(
exp

(
−θ−1

z (tz,n − x0)
))

(A.10)

and, again by condition (2.4),

ρ2
tz,n

= O
(
exp

(
−2α′

ztz,n

))
. (A.11)

Using (A.9), (A.10) and (A.11) we find tz,n from the following equation

exp
(
−
(
θ−1
z + 2α′

z

)
tz,n

)
= O

(
log n

n

)
.

The solution has the following expansion:

tz,n =
1

θ−1
z + 2α′

z

log n+ o (log n) . (A.12)

Thus (A.9) and consequently (3.5) are verified.

Now we prove (3.10). In the same way as in (A.10), we get

SF (tz,n) ≥ exp

(
−θ−1

z (tz,n − x0) −
A

αz
exp

(
−α′

zx0

))
. (A.13)

From (A.13) and (A.12), we get the following lower bound

nSF (tz,n|z) ≥ n exp
(
−θ−1

z tz,n − c1
)
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≥ n exp

(
−

log n− log log n

1 + 2αz
− c1

)

≥ c2n
1− 1

1+2αz log
1

1+2αz n

= c2n
2αz

1+2αz log
1

1+2αz n, (A.14)

where c1, c2 are some positive constants and n is large enough. Now condition (3.10)
follows from (A.14) and from (4.1).

Assertion (4.2) follows from Theorem 3.4 using (A.14).

A.5 Proof of Theorem 4.2

As in the proof of Theorem 4.1 we verify (3.5) and (3.10). From (2.5) it follows

SC (tz,n|z) ≤ exp

(
−γ′z (tz,n − x0) +

M

µ− 1
(1 + x0)

−µ+1

)
. (A.15)

From (A.6), (A.10), (A.11) and (A.15), we have

χ2
(
PF,FC

(·|z) , PFθz,tz,n ,FC
(·|z)

)
= O

(
SC (tz,n|z)SF (tz,n|z) ρ

2
tz,n

)

= O
(
exp

(
−
(
γ′z + θ−1

z + 2α′
z

)
tz,n

))
.

We find tz,n as the solution of the equation

exp
(
−
(
γ′z + θ−1

z + 2α′
z

)
tz,n

)
= O

(
log n

n

)
,

which gives tz,n =
(
θ−1
z + γ′z + 2α′

z

)−1
log n + o (log n) . Thus (3.5) is verified. Con-

dition (3.10) follows from

nSC (tz,n|z)SF (tz,n|z) ≥ n exp
(
−γ′z − θ−1

z tz,n − c1
)

≥ n exp

(
−
(
θ−1
z + γ′z

) log n− log log n

θ−1
z + γ′z + 2α′

z

− c1

)

≥ c2n
1− 1+γz

1+γz+2αz log
1+γz

1+γz+2αz n

= c2n
2αz

1+γz+2αz log
1+γz

1+γz+2αz n, (A.16)

where c1, c2 are some positive constants and n is large enough.
The proof of (3.8) is based on similar arguments as in Section A.4.
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