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On stability of multicriteria investment Boolean

problem with Wald’s efficiency criteria

Vladimir Emelichev, Vladimir Korotkov

Abstract. Based on Markowitz’s portfolio theory we construct the multicriteria
Boolean problem with Wald’s maximin efficiency criteria and the Pareto-optimality
principle. We obtained lower and upper attainable bounds for the stability radius
of the problem in the cases of linear metric l1 in the portfolio and the market state
spaces and of the Chebyshev metric l∞ in the criteria space.
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Back in the early XX century J.Hadamard included the stability in the concept
of the correct mathematical problem as a necessary condition that reflects some
physical reality. Subsequently it was found that many mathematical problems are
unstable to small changes in input data (parameters). In 1960 this led to the creation
of the theory of ill-posed problems, basics of which were laid by A. N.Tikhonov,
M. M.Lavrentiev, V.K. Ivanov and others (see e. g. [1–3]).

Usually, the stability of the optimization problem (both scalar and vector) is
understood as one of the classical properties of continuity or semi-continuity optimal
mapping [4–7]. In the case of the discrete problem the definition of the stability
rephrases easily in terms of the existence of ’the stability ball’, i. e. a surroundings
of the initial data in the problem parameter space, that any ’perturbed’ problem
with the parameters from this surroundings has some property of invariance to the
original problem.

The widespread occurrence of discrete optimization models has given a start to
the interest of many experts to studying various types of stability aspects, paramet-
ric and post-optimal analysis of both scalar (single criterion) and vector (multicri-
teria) discrete optimization problems (e. g. monographs [7–9], surveys [10–12], and
annotated bibliographies [13,14]).

One of the well-known approaches to the stability analysis of multicriteria dis-
crete optimization problems is focused on obtaining quantitative characteristics of
the stability and consists in finding an ultimate level of perturbations of the initial
data of the problem that do not result in new Pareto-optimal solutions. The ma-
jority of the results in this field is related to deriving formulas or estimates for the
stability radius of multicriteria problems of Boolean and integer programming with
linear criteria [12,15–18].
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In the present paper we continue the started in [19–25] research of varies types of
the stability of multicriteria non-linear investment problems, formulation of which is
based on Markowitz’s classical portfolio theory. Here we obtained lower and upper
attainable bounds for the stability radius of the multicriteria investment problem
with Wald’s maximin economic efficiency criteria and the Pareto-optimal principle
in the case of the linear metric l1 in the portfolio and the market state spaces, and
the Chebyshev metric l∞ in the efficiency criteria space. We notice that in [26]
with such combination of metrics l1 and l∞ i the similar lower and upper bounds
of the stability radius of the multicriteria investment problem with Wald’s ordered
minimax criteria were announced.

1 Problem statement and basic definitions

We consider the multicriteria discrete variant of Markowitz’s investment man-
aging problem [27]. To this end, we introduce the following notations. Let
Nn = {1, 2, . . . , n} be the set of alternative investment projects (assets); Nm be
the set of possible market states (situation); x = (x1, x2, . . . , xn)T ∈ X ⊆ En be
the investment portfolio with components xj = 1 if investment project j ∈ Nn is
implemented, and xj = 0 otherwise. Here E = {0, 1}.

There are several approaches to evaluate the efficiency of investment projects
(NPV, NFV, PI et al.), which take into account risk and uncertainty in different ways
(see e. g. [28–31]). Let Ns be the set of project efficiency indicator. An investment
portfolio x is evaluated by

∑

j∈Nn

eijkxj , where eijk is the predicted economic efficiency

of the indicator k ∈ Ns of the investment project j ∈ Nn in the case when the
market is in the state i ∈ Nm. In this context the initial data of the problem is a
3-dimensional matrix of the project efficiency E of the size m×n× s with elements
eijk from R.

Let the following vector objective function

f(x,E) = (f1(x,E1), f2(x,E2), . . . , fs(x,Es)),

be given on a set of investment portfolios X whose components are Wald’s maximin
criteria (extreme pessimism) [32]

fk(x,Ek) = min
i∈Nm

Eikx = min
i∈Nm

∑

j∈Nn

eijkxj → max
x∈X

, k ∈ Ns,

where Ek ∈ Rm×n is the k-th cut of the 3-dimension matrix E = [eijk] ∈ Rm×n×s,
Eik = (ei1k, ei2k, ..., eink) is the i-th row of that cut. Thus, the investor in the unsta-
ble economic state, following Wald’s criteria, takes extreme caution and optimizes
portfolio efficiency Eikx assuming that the market is in the worst state. Such cau-
tion is appropriate, because the investment is the exchange of a certain value today
for an uncertain value in the future.

A multicriteria investment Boolean problem Zs(E), s ≥ 1, means the problem
of searching the Pareto set P s(E), i. e. the Pareto-optimal investment portfolios,
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where

P s(E) = {x ∈ X : P s(x,E) = ∅},

P s(x,E) = {x′ ∈ X : x′ ≻
E

x},

x′ ≻
E

x ⇔ g(x′, x,E) ≥ 0(s) & g(x′, x,E) 6= 0(s),

g(x′, x,E) = (g1(x
′, x,E1), g2(x

′, x,E2), . . . , gs(x
′, x,Es)),

gk(x
′, x,Ek) = fk(x

′, Ek) − fk(x,Ek) = max
i∈Nm

min
i′∈Nm

(Ei′kx
′ − Eikx), k ∈ Ns,

0(s) = (0, 0, . . . , 0)T ∈ Rs.

In the portfolio space Rn and the market state space Rm we define the linear
metric l1, and in the efficiency criteria space Rs we define the Chebyshev metric l∞,
i. e. for any matrix E ∈ Rm×n×s

‖Eik‖1 =
∑

j∈Nn

|eijk|, i ∈ Nm, k ∈ Ns,

‖Ek‖11 =
∑

i∈Nm

‖Eik‖1 =
∑

i∈Nm

∑

j∈Nn

|eijk|, k ∈ Ns,

‖E‖11∞ = max
k∈Ns

‖Ek‖11 = max
k∈Ns

∑

i∈Nm

‖Eik‖1 = max
k∈Ns

∑

i∈Nm

∑

j∈Nn

|eijk|.

Thus, for any indexes i ∈ Nm and k ∈ Ns ,the following inequalities are true:

‖Eik‖1 ≤ ‖Ek‖11 ≤ ‖E‖11∞.

Apart from that, using the evident relation Eikx ≥ −‖Eik‖1, x ∈ En, it is easy to
see that for any portfolios x, x′ the following inequalities hold:

Eikx − Ei′kx
′ ≥ −‖Ek‖11, i, i′ ∈ Nm, k ∈ Ns. (1)

As usually [12,15,17], the stability radius of the problem Zs(E), s ≥ 1, is defined
as the number

ρ = ρ(m,n, s) =

{

sup Ξ, if Ξ 6= ∅,
0, if Ξ = ∅,

where
Ξ = {ε > 0 : ∀E′ ∈ Ω(ε) (P s(E + E′) ⊆ P s(E))},

Ω(ε) = {E′ ∈ Rm×n×s : 0 < ‖E′‖11∞ < ε} is the set of perturbing matrices,
P s(E + E′) is the Pareto set of the perturbed problem Zs(E + E′). Thus, the
stability radius defines an extreme level of perturbations of the elements of the
matrix E such that new Pareto-optimal portfolios do not appear. In this context
the stability of the problem Zs(E) is when the set Ξ is not empty, i. e. ρ(m,n, s) > 0.

Thus, the problem stability Zs(E) can be considered as the discrete analogue of
the upper Hausdorff semicontinuity problem [5–7] at point E of the optimal mapping

P s : Rm×n×s → 2E
n

,
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i.e. the point-set mapping which puts in correspondence the set of Pareto-optimal
portfolios to each point of the space of problem parameters.

Obviously, if the equality P s(E) = X holds, the stability radius of the problem
Zs(E) equals infinity. Therefore, in what follows, we will not consider this case and
will call the problem Zs(E) for which the set X \P s(E) is nonempty nontrivial one.

2 Stability radius bounds

For a nontrivial problem Zs(E) denote

ϕ = ϕ(m,n, s) = min
x 6∈P s(E)

max
x′∈P s(x,E)

min
k∈Ns

max
i∈Nm

min
i′∈Nm

(Ei′kx
′ − Eikx).

Whereas for any portfolio x 6∈ P s(E) the set P s(x,E) is not empty, then we have
the formula

∀x 6∈ P s(E) ∀x′ ∈ P s(x,E) (x′ ≻
E

x).

Therefore, ϕ ≥ 0.

Theorem 1. Given Zs(E). The stability radius ρ(m,n, s) of the multicriteria non-

trivial investment problem Zs(E), s ≥ 1, has the following lower and upper bounds:

ϕ(m,n, s) ≤ ρ(m,n, s) ≤ mnϕ(m,n, s).

Proof. To prove Theorem 1, we will first prove the inequality ρ ≥ ϕ. This inequality
is obvious if ϕ = 0. Let ϕ > 0. According to the definition of ϕ for any portfolio
x 6∈ P s(E) there exists a Pareto-optimal portfolio x0 ∈ P s(x,E) such that

max
i∈Nm

min
i′∈Nm

(Ei′kx
0 − Eikx) ≥ ϕ, k ∈ Ns.

Hence, considering inequality (1), for any matrix E′ ∈ Rm×n×s and any index k ∈ Ns

we have

gk(x
0, x,Ek + E′

k) = max
i∈Nm

min
i′∈Nm

(Ei′kx
0 − Eikx + E′

i′kx
0 − E′

ikx)

≥ max
i∈Nm

min
i′∈Nm

(Ei′kx
0 − Eikx) − ‖E′

k‖11 ≥ ϕ − ‖E′
k‖11.

Therefore, assuming that E′ ∈ Ω(ϕ), we obtain gk(x0, x,Ek +E′
k) > 0, k ∈ Ns. This

means that x0 ≻
E+E′

x, i. e. x is not the Pareto-optimal portfolio of the perturbed

problem Zs(E +E′). Summarizing and taking into account x 6∈ P s(E), we conclude
that

∀E′ ∈ Ω(ϕ) (P s(E + E′) ⊆ P s(E)).

Hence, the inequality ρ(m,n, s) ≥ ϕ(m,n, s) is true.
Then let us prove the inequality ρ ≤ mnϕ. According to the definition of the

number ϕ there exists a portfolio x∗ 6∈ P s(E) such that for any portfolio x ∈
P s(x∗, E) there exists an index l = l(x) ∈ Ns such that

max
i∈Nm

min
i′∈Nm

(Ei′lx − Eilx
∗) ≤ ϕ. (2)
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Then we assume ε > mnϕ and consider the perturbing matrix E0 = [e0
ijk] ∈

Rm×n×s, elements of which we define as follows:

e0
ijk =

{

δ, if i ∈ Nm, x∗
j = 1, k ∈ Ns,

−δ otherwith,

where ϕ < δ < ε/mn. We note that the elements of the matrix E0 do not depend on
a portfolio x, and therefore they do not depend on an index l. Taking into account
the structure of the matrix E0, we obtain

‖E0
ik‖1 = nδ, i ∈ Nm, k ∈ Ns,

‖E0‖11∞ = ‖E0
k‖11 = mnδ, k ∈ Ns.

Therefore, E0 ∈ Ω(ε). Moreover, all the rows E0
ik, i ∈ Nm of any cuts E0

k , k ∈ Ns,
are the same and consist of the components δ and −δ. We denote the same row by
A and obtain

A(x − x∗) = −δ‖x − x∗‖1 ≤ −δ < −ϕ ≤ 0. (3)

Hence, considering (2) and the structure of the perturbing matrix E0, we conclude
that for any portfolio x ∈ P s(x∗, E) the following relations are true:

gl(x, x∗, El + E0
l ) = min

i∈Nm

(Eil + A)x − min
i∈Nm

(Eil + A)x∗

= max
i∈Nm

min
i′∈Nm

(Ei′lx − Eilx
∗) + A(x − x∗) < 0.

Therefore, we obtain

∀x ∈ P s(x∗, E) (x 6∈ P s(x∗, E + E0)). (4)

Let now the portfolio x 6∈ P s(x∗, E). Then the following two cases are possible.

Case 1. g(x, x∗, E) = 0(s). Then according to relations (3) for any index k ∈ Ns

we have

gk(x, x∗, Ek + E0
k) = min

i∈Nm

(Eik + A)x − min
i∈Nm

(Eik + A)x∗

= gk(x, x∗, Ek) + A(x − x∗) < 0.

Case 2. There exists an index p ∈ Ns such that gp(x, x∗, Ep) < 0. Then using
again (3) we obtain gp(x, x∗, Ep + E0

p) < 0.
Thus, x 6∈ P s(x∗, E+E0) if x 6∈ P s(x∗, E). Considering (4), as a result we obtain

P s(x∗, E + E0) = ∅, i.e. x∗ is a Pareto-optimal portfolio of the perturbed problem
Zs(E + E0). Since x∗ 6∈ P s(E) we may conclude that

∀ε > mnϕ ∃E0 ∈ Ω(ε) (P s(E + E0) 6⊆ P s(E)).

Hence, the inequality ρ(m,n, s) ≤ mnϕ(m,n, s) is true.

Corollary 1. The stability radius ρ(m,n, s) equals zero if and only if ϕ(m,n, s)
equals zero.
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3 Attainability of the lower bound

Let us show that the lower bound for the problem stability radius, indicated in
Theorem 1, is attainable.

Theorem 2. There exists a class of multicriteria investment problems Zs(E), s ≥ 1
such that for the stability radius of every problem of this class the following formula

is true:

ρ(m,n, s) = ϕ(m,n, s). (5)

Proof. We will consider the class of problems Zs(E) such that the following terms
are right:

X = {x0, x∗}, P s(x∗, E) = {x0},

i.e. x0 ≻
E

x∗, x∗ 6∈ P s(E), x0 ∈ P s(E). Then there exists an index l ∈ Ns such that

gl(x
0, x∗, El) = ϕ. (6)

We also suppose that there exists an index p ∈ Nn such that x0
p = 1 and x∗

p = 0.
Further we introduce the notation

i(x0) = argmin{Eilx
0 : i ∈ Nm},

i(x∗) = argmin{Eilx
∗ : i ∈ Nm}.

The numbers i(x0) and i(x∗) can be either the same or different. The further
proof does not depend on it.

For any number ε > ϕ we define the elements of the perturbing matrix E0 =
[e0

ijk] ∈ Rm×n×s by the rule

e0
ijk =

{

−δ, if i = i(x0), j = p, k = l,
0 otherwise,

(7)

where
ϕ < δ < ε. (8)

Then the next equalities are obvious:

E0
i(x0)lx

0 = −δ, (9)

E0
ilx

0 = 0, i ∈ Nm \ {i(x0)}, (10)

E0
ilx

∗ = 0, i ∈ Nm, (11)

‖E0‖11∞ = ‖E0
l ‖11 = ‖E0

il‖1 = δ, i ∈ Nm.

Therefore, E0 ∈ Ω(ε).
Using (9) and (10), we obtain

fl(x
0, El + E0

l ) = min
{

(Ei(x0)l + E0
i(x0)l)x

0, min
i6=i(x0)

(Eil + E0
il)x

0
}

=
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= min
{

fl(x
0, El) − δ, min

i6=i(x0)
Eilx

0
}

= fl(x
0, El) − δ. (12)

And from (11) the following relations are true:

fl(x
∗, El + E0

l ) = min
{

(Ei(x∗)l + E0
i(x∗)l)x

∗, min
i6=i(x∗)

(Eil + E0
il)x

∗
}

=

= min
{

fl(x
∗, El), min

i6=i(x∗)
Eilx

∗
}

= fl(x
∗, El).

Hence, consistently applying (12), (6) and (8), we have

gl(x
0, x∗, El + E0

l ) = gl(x
0, x∗, El) − δ = ϕ − δ < 0.

Therefore, x0 6∈ P s(x∗, E + E0), i. e. P s(x∗, E + E0) = ∅. It proves that x∗ is a
Pareto-optimal investment portfolio of the perturbed problem Zs(E +E0). Thence,
because of x∗ 6∈ P s(E) we derive

∀ε > ϕ ∃E0 ∈ Ω(ε) (P s(E + E0) 6⊆ P s(E)).

Thus, ρ(m,n, s) ≤ ϕ(m,n, s). Hence, by Theorem 1 the formula (5) is true.

Remark 1. If m = 1 then i(x0) = i(x∗). Therefore, as we noted earlier, the proof
of Theorem 2 given above is true in this case. Hence, there exists a class of multi-
criteria linear Boolean programming problems Zs

B(E) whose stability radius equals
ϕ(1, n, s).

We give a numerical example that illustrates the statement of Theorem 2.

Example. Let m = 2, n = 3, s = 2; X = {x0, x∗}, x0 = (0, 1, 1)T , x∗ = (1, 1, 0)T ;
E ∈ R2×3×2 is the matrix with cuts

E1 =

(

5 1 2
2 0 4

)

, E2 =

(

6 2 3
2 1 5

)

.

Then p = 3, f(x0, E) = (E1x
0, E2x

0) = (3, 5), f(x∗, E) = (E1x
∗, E2x

∗) = (2, 3),
g(x0, x∗, E) = (1, 2). Hence, x∗ 6∈ P 2(E), {x0} = P 2(x∗, E), l = 1, i(x0) = 1,
i(x∗) = 2. Therefore, ϕ = ϕ(2, 3, 2) = min{1, 2} = 1. Further we will show that
ρ(2, 3, 2) ≤ ϕ = 1.

Since e0
i(x0)pl

= e0
131 then defining the cuts E0

1 and E0
2 of the perturbing matrix

E0 according to the rule (7), we obtain

E0
1 =

(

0 0 −δ
0 0 0

)

, E0
2 =

(

0 0 0
0 0 0

)

,

where δ > ϕ = 1. Then it is easy to see in view of l = 1 that

g1(x
0, x∗, E1 + E0

1) = g1(x
0, x∗, E1) − δ = 1 − δ < 0.

Hence, x∗ ∈ P 2(E + E0). This inclusion and ‖E0‖11∞ = δ > 1, x∗ 6∈ P 2(E) gives
ρ(2, 3, 2) ≤ 1. Therefore, considering Theorem 1, we conclude that ρ(2, 3, 2) =
ϕ(2, 3, 2) = 1.
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4 Attainability of the upper bound

Let us show that the upper bound of the stability radius of the problem Zs(E) is
attainable for m = s = 1. It is easy to see that in the particular case for m = 1 our
problem Zs(E) transforms into a multicriteria linear Boolean programming problem,
which we will write in the convenient form

Zs
B(E) : fk(x,Ek) = Ekx → max

x∈X
, k ∈ Ns,

where X ⊆ En, Ek is the k-th row of the matrix E = [ekj] ∈ Rs×n. Such case can
be interpreted as the situation when the investor has not another alternative market
state. As earlier, the metric l∞ is in the criteria space Rs, and the metric l1 is in
the solution space Rn.

Theorem 3. For m = s = 1 there exists a class of scalar linear Boolean programin

problems Z1
B(E), E ∈ R1×n such that for the stability radius of every problem of

this class the following formula is true:

ρ(1, n, 1) = nϕ(1, n, 1). (13)

Proof. Let us show that there exists a class with X = {x∗, x1, x2, . . . , xn} ⊂ En,
n ≥ 2, where x∗ = 0(n), xj = ej , j ∈ Nn. Here ej is the j-th column of an identity
matrix of size n × n. Let E = (a, a, . . . , a) ∈ Rn in view of m = s = 1, where
a > 0. Therefore, we have f(x∗, E) = Ex∗ = 0, f(xj, E) = Exj = a, j ∈ Nn, i. e.
x∗ 6∈ P 1(E), xj ∈ P 1(E) = P 1(x∗, E), j ∈ Nn. Hence according to the definition of
ϕ(1, n, 1) the inequality ϕ = ϕ(1, n, 1) = a is valid.

Let now E′ = (e′1, e
′
2, . . . , e

′
n) be a perturbing row vector from the row set Ω(na),

i.e. ‖E′‖1 =
∑

j∈Nn

|e′j | < na. It is easy to prove by contrary that there exists an index

p such that |e′p| < a. Therefore, we derive

g(xp, x∗, E + E′) = (E + E′)(xp − x∗) = a + e′p > 0.

Hence we see that for any perturbing row E′ ∈ Ω(nϕ) the portfolio x∗ is not a
Pareto-optimal portfolio of the perturbed problem Z1(E + E′). Thus, in view of
x∗ 6∈ P 1(E) we get ρ(1, n, 1) ≥ nϕ(1, n, 1). Therefore, according to Theorem 1 the
equality (13) is true.

From Theorems 1–3 following Remark 1 the well-known result followws.
Corollary 2 [33]. The stability radius ρ(1, n, s), s ≥ 1, of the multicriteria non-

trivial linear Boolean programing problem Zs
B(E) has the following lower and upper

bounds:

ϕ(1, n, s) ≤ ρ(1, n, s) ≤ nϕ(1, n, s).

Remark 2. We note that in [18] lower and upper bounds of the stability radius of
the multicriteria linear Boolean programing problem Zs

B(E), which is searching the
Pareto set, were obtained when X = {x ∈ En : Ax ≤ b}, every problem parameter
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is under perturbation, i.e. both the elements of the matrix E ∈ Rs×n and the
elements of the matrix A ∈ Rq×n and the vector b ∈ Rq are perturbed, while the
same Chebyshev metric l∞ is in every space of problem parameters Rn, Rs and Rq.

5 Stability conditions

Let us introduce the Slater set [34] of the problem Zs(E):

Sls(E) = {x ∈ X : Sls(x,E) = ∅},

where Sls(x,E) = {x′ ∈ X : ∀k ∈ Ns (gk(x′, x,Ek) > 0)}. It is obvious that
P s(E) ⊆ Sls(E) and P s(x,E) ⊇ Sls(x,E) for any E ∈ Rm×n×s and x ∈ X.

Theorem 4. For a multicriteria nontrivial investment problem Zs(E), s ≥ 1, the

statements below are equivalent:

(i) problem Zs(E) is stable,

(ii) P s(E) = Sls(E),

(iii) ϕ(m,n, s) > 0.

Proof. (i) ⇒ (ii). Assume that problem Zs(E) is stable but P s(E) 6= Sls(E). Then
there exists an investment portfolio x∗ ∈ Sls(E) \ P s(E). Therefore, Sls(x∗, E) = ∅
and P s(x∗, E) 6= ∅. This means that

∀x ∈ P s(x∗, E) ∃l ∈ Ns (gl(x, x∗, El) = 0).

Hence, ϕ(m,n, s) = 0 and according to Corollary 1 ρ(m,n, s) = 0, which contradicts
the stability of the problem Zs(E).

(ii) ⇒ (iii). If P s(E) = Sls(E), then for any portfolio x 6∈ P s(E) the set
Sls(x,E) is empty. Therefore, there exists a portfolio x0 ∈ X such that the inequal-
ities gk(x

0, x,Ek) > 0, k ∈ Ns, are true, i.e. x0 ∈ P s(x,E). Thus,

∀x 6∈ P s(E) ∃x0 ∈ P s(x,E) ∀k ∈ Ns (gk(x0, x,Ek) > 0).

Hence, ϕ(m,n, s) > 0.

(iii) ⇒ (i). According to Theorem 1, this implication is obvious.

Since P 1(E) = Sl1(E), from Theorem 4 follows

Corollary 3. A scalar investment problem Z1(E) is stable for any matrix E ∈
Rm×n.

Remark 3. Since any two norms are equivalent in finite-dimensional linear spaces
[35], the result of Theorem 4 is true for any norms in the space Rm×n×s of problem
parameters.

This work was supported by the Republican Foundation of Fundamental Re-
search of Belarus (project F11K-095).
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