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Determining the Optimal Paths in Networks

with Rated Transition Time Costs

Dmitrii Lozovanu

Abstract. We formulate and study the problem of determining the optimal paths
in networks with rated transition time costs on edges. Polynomial time algorithms
for determining the optimal solution of this problem are proposed and grounded. The
proposed algorithms generalize algorithms for determining the optimal paths in the
weighted directed graphs.
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1 Introduction and Problem Formulation

In this paper we formulate and study an optimal path problem on networks that
extends the minimum cost path problem in the weighted directed graphs.

Let G = (X,E) be a finite directed graph with vertex set X, |X| = n and
edge set E where to each directed edge e = (u, v) ∈ E a cost ce is associated.
Assume that for two given vertices x, y there exists a directed path P (x, y) = {x =
x0, e0, x1, e1, x2, e2, . . . , xk = y} from x to y. For this directed path we define the
total rated cost

C(x0, xk) =
k−1
∑

t=0

λtcet ,

where λ is a positive value. So, in this path the costs cet of directed edges et are
rated by λtcte when we pass from x to y. We consider the problem of determining
a path from x to y with minimal total rated cost in the case with fixed number
of transitions on the edges and in the case with free number of transitions on the
edges. If λ = 1 then the formulated problem becomes the well known problem of
determining the shortest path from x to y. The considered problem can be regarded
as the problem of determining the optimal paths in a dynamic network determined
by the graph G = (X,E) with cost functions ce(t) = λtce on edges e ∈ E that
depend on time. Therefore if the number k of edges for the optimal path is fixed
then we can apply the dynamic programming algorithm or time-expanded network
method from [1, 3–5] which determines the solution of the problem using O(|x|3k)
elementary operations. In this paper we show that for the considered problem the
linear programming approach can be applied which allows us to ground more efficient
polynomial time algorithms for determining the optimal paths.
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2 Algorithms for Solving the Problem with Free Number

of Transitions on Edges

In this section we consider the optimal path problem without restrictions on the
number of transitions on edges and show that it can be efficiently solved using the
linear programming approach. The basic linear programming model we shall use for
this problem is the following:
Minimize

φ(α) =
∑

e∈E

ceαe (1)

subject to






















∑

e∈E−(u)

αe − λ
∑

e∈E+(u)

αe = 1, u = x;

∑

e∈E−(u)

αe − λ
∑

e∈E+(u)

αe = 0, ∀u ∈ X \ {x, y};

αe ≥ 0, ∀e ∈ E,

(2)

where E−(u) is the set of directed edges that originate in the vertex u ∈ X and
E+(u) is the set of directed edges that enter u.

The following theorem holds.

Theorem 1. If λ ≥ 1 and in G there exists a directed path P (x, y) from a given
starting vertex x to a given final vertex y then for nonnegative costs ce of edges
e ∈ E the linear programming problem (1), (2) has solutions. If α∗

e for e ∈ E
represents an optimal basic solution of this problem then the set of directed edges
E∗ = {e ∈ E|α∗

e > 0} determines an optimal directed path from x to y.

Proof. Assume that λ ≥ 1 and in G there exists at least a directed path
P (x, y) = {x = x0, e0, x1, e1, x2, e2, . . . , xk = y} from x to y. Denote by EP =
{e0, e1, e2, . . . , ek−1} the set of edges of directed path P (x, y). Then it is easy to
check that

αe =







λt, if e = et ∈ EP ;

0, if e ∈ E \ EP
(3)

represents a solution of system (2). Moreover we can see that if the directed path
P (x, y) does not contain directed cycles then the solution determined according to
(3) corresponds to a basic solution of system (2). So, if in G there exists a directed
path from x to y then the set of solutions of system (3) is not empty. Taking into
account that the costs ce, e ∈ E are nonnegative we obtain that the optimal value
of objective function (1) is bounded, i.e. the linear programming problem (1), (2)
has solutions.

Now let us prove that an arbitrary basic solution of system (2) corresponds
to a simple directed path P (x, y) from x to y. Let α = (αe1 , αe2 , . . . , αem) be a
feasible solution of problem (1), (2) and denote Eα = {e ∈ E|αe > 0}. Then it is
easy to observe that the set of directed edges Eα ⊆ E in G induces a subgraph
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Gα = (Xα, Eα) in which vertex x is a source and y is a sink vertex. Indeed, if this is
not so then we can determine a subset of vertices X ′

α from Xα that can be reached
in Gα from x and X ′

α does not contain vertex y. In Gα we can select the subgraph
G′

α = (X ′
α, E

′
α) induced by the subset of vertices X ′

α and we can calculate

S =
∑

u∈X′

α

∑

e∈E−(u)

αe,

where E′−(u) = {e = (v, u) ∈ E′|v ∈ X ′
α}. It is easy to observe that the value S can

be also expresses as follows

S =
∑

u∈X′

α

∑

e∈E+(u)

αe,

where E′+(u) = {e = (u, v) ∈ E′|v ∈ X ′
α}. If we sum the equalities from (3) that

correspond to u ∈ X ′
α then we obtain

∑

u∈X′

alpha

∑

e∈E−(u)

αe − λ
∑

u∈X′

alpha

∑

e∈E+(u)

αe = 1

which involves (1 − λ)S = 1. However this couldn’t take place because λ ≥ 1 and
S ≥ 0, i.e. we obtain the contradiction. So, if α ≥ 1 then in Gα there exists at least
a directed path from x to y. Taking into account that an arbitrary vertex u in Gα

contains at least an entering edge e = (v, u) and at least an outgoing directed edge
e = (u,w) we may conclude that Gα has a structure of directed graph, where x is a
source and y is a sink.

Thus, to prove that a basic solution α = (αe1 , αe2 , . . . , αem) corresponds to a
directed graph Gα that has a structure of a simple directed path from x to y it
is sufficient to show that Gα has a structure of an acyclic directed graph and G
does not contain parallel directed paths P ′(u,w), P ′′(u,w) from a vertex u ∈ Xα

to w ∈ Xα. We can prove the first part of the mentioned property as follows.
If α is a basic solution and Gα contains a directed cycles then there exists a di-
rected path P (x, y) = {x = x0, e0, x1, e1, x2, e2, . . . , xr, er, . . . xk = y} from x
to y that contains a directed cycle {xr, er, xr+1, er+1, . . . , xr+s−1, er+s−1, xr} with
the set of edges E0 = {er, er+1, . . . , er+s−1}. If we denote the set of edges of
the directed path P 1(x, xr) = {x = x0, e0, x1, e1, x2, e2, . . . , xr} from x to xr by
E1 = {e0, e1, e2, . . . , er−1} and we denote the set of edges of the directed path
P 2(xr, y) = {xr = xr+s, er+s, xr+s+1, er+s+1, . . . , xk = y} from xr = xr+s to xk = y
by E2 = {er+s, er+s+1, . . . , ek−1} then for a small positive θ we can construct the
following feasible solution

α′
e =















αe, ∀e ∈ Eα \ (E0 ∪ E2);

αer+i
− λiθ, i = 0, 1, . . . , s− 1;

αer+s+i
− λs+iθ + λiθ, i = 0, 1, . . . , k − r − s− 1.
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Here θ can be chosen in such a way that α′
e = 0 at least for an edge e ∈ E0 ∪E2.

So, the number of nonzero components of the solution α′ = (α′
e1
, α′

e2
, . . . , α′

em
) is

less than the number of nonzero components of solution α.

Now let us show that for a basic solution the graph Gα couldn’t contain par-
allel directed paths from vertex xr to vertex w ∈ Xα. We prove this again by
contradiction. We assume that in Gα we have two directed paths P ′(xr, w) =
{xr, e

′
r, x

′
r+1, . . . , e

′
k, x

′
k = w} and P ′′(xr, y) = (xr, y){xr, er+1, x

′′
r+1, . . . , e

′′
l , x

′′
l = w}

from x to w with the corresponding edge sets E′ = {e′r, e
′
r+1, . . . , e

′
k} and E′′ =

{e′′r , e
′′
r+1, . . . , e

′′
k}. Then for a small positive θ we can construct the following solu-

tion

α′
e =















αe, if e ∈ Eα \ (E′ ∪ E′′);

αe′r+i
− λiθ, if e = e′r+i ∈ E

′, i = 0, 1, . . . , k − r;

αe′′r+i
+ λiθ, if e = er+i” ∈ E′′, i = 0, 1, . . . , l − r.

Here we can chose θ in such a way that α′
el

= 0 at least for an edge el ∈ E′ ∪
E′′, i. e. we obtain that the number of nonzero components of the solution α′ is
less then the number of nonzero components of α. Thus, if α is a basic solution
then the corresponding graph Gα has a structure of a simple directed path from x
to y. This means that if α∗ = (α∗

e1
, α∗

e2
, . . . , α∗

em
) is an optimal basic solution α∗ =

(α∗
e1
, α∗

e2
, . . . , α∗

em
) of problem (1), (2) then the set of directed edges E∗ = {e ∈

E|α∗
e > 0} determines an optimal directed path from x to y.

Corollary 1. If α ≥ 1 and vertex y is reachable in G from x then for an arbitrary
basic solution α of system (2) the corresponding graph Gα has a structure of directed
path from x to y.

Corollary 2. Assume that 0 < λ < 1 and the graph G contains directed cycles. Then
for a basic solution α of system (2) either the corresponding graph Gα has a structure
of directed path from x to y or this graph does not contain directed paths from x to y;
in the second case Gα contains a unique directed cycle that can be reached from x by
using a unique directed path that connects vertex x with this cycle. Moreover, if Gα

does not contain directed paths from x to y then it consists of the set of vertices and
edges {x = x0, e0, x1e1, x2, e2, . . . , xr, er, xr+1, er+1, . . . , xr+s−1, er+s−1, xr} with
a unique directed cycle {xr, er, xr+1, er+1, . . . , xr+s−1, er+s−1, xr} where the nonzero
components αe of α can be expressed as follows

αe =

{

λt, if e = et, t = 0, 1, . . . , r − 1;

λr+i/(1 − λs), if e = er+i, i = 0, 1, . . . , s− 1.
(4)

Remark 1. If 0 < λ < 1 then the linear programming problem (1), (2) may have an
optimal basic solution α∗ for which the graph Gα∗ does not contain a directed path
from x to y. This corresponds to the case when in G the optimal path from x to y
does not exist.



18 DMITRII LOZOVANU

Now we show that the linear programming model (1), (2) can be extended for
the problem of determining the optimal paths from every x ∈ X{y} to y. We can
see that if λ ≥ 1 then there exists the tree of optimal paths from every x ∈ X{y} to
y and this tree of optimal paths can be found on the basis of the following theorem.

Theorem 2. Assume that λ ≥ 1 and in G for an arbitrary u ∈ X \ {y} there exists
at least a directed path P (u, y) from u to y. Additionally we assume that the costs
ce of edges e ∈ E are nonnegative. Then the linear programming problem:
Minimize

φ(α) =
∑

e∈E

ceαe (5)

subject to






∑

e∈E−(u)

αe − λ
∑

e∈E+(u)

αe = 1, ∀u ∈ X \ {y},

αe ≥ 0, ∀e ∈ E

(6)

has solutions. Moreover, if α∗ = (α∗
e1
, α∗

e2
, . . . , α∗

em
) is an optimal basic solution of

problem (5), (6) then the set of directed edges E∗ = {e ∈ E|α∗
e > 0} determines a

tree of optimal directed paths Gα∗ from every u ∈ X \ {y} to y.

Proof. Let α = (αe1 , αe2 , . . . , αem) be a feasible solution of problem (5), (6) and
consider the set of directed edges Eα = {e ∈ E|αe > 0} that corresponds to this
solution. Then in the graph Gα = (X,Eα) induced by the set of edges Eα the
vertex y is attainable from every x ∈ X. An arbitrary basic solution α of system (6)
corresponds to a graph Gα which has a structure of directed tree with sink vertex
y. Moreover the optimal value of the objective function of the problem is bounded.
Therefore if we find an optimal basic solution α∗ of the problem (5), (6) then we
determine the corresponding tree of optimal paths Gα∗ .

If the graph G = (X,E) does not contain directed cycles then Theorem 1 and
Theorem 2 can be extended for an arbitrary positive λ, i.e. in this case the following
theorem holds.

Theorem 3. If G = (X,E) has a structure of an acyclic directed graph with sink
vertex y then for an arbitrary λ ≥ 0 and arbitrary costs ce, e ∈ E there exists the
solution of the linear programming problem (1), (2). Moreover, if α∗ is an optimal
basic solution of this problem then the set of directed edges E∗ = {e ∈ E|α∗

e > 0}
determines an optimal directed path from x to y.

Proof. The proof of this theorem is similar to the proof of Theorems 2. In this
case the set of edges Eα for a basic solution of problem (5), (6) induces the graph
Gα = (Xα, Eα) that has a structure of directed tree with sink vertex y. Therefore
the set of edges Eα∗ for an optimal basic solution of problem (5), (6) corresponds
to a directed tree Gα∗ = (Xα∗ , Eα∗) of optimal paths from every u ∈ X to sink
vertex y.
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As we have shown (see Corollary 2 and Remark 1) if 0 < λ < 1 and the graph
G = (X,E)) contains directed cycles then the linear programming problem (1),
(2) may not find the optimal path from x to y even for the case with positive
costs ce,∀e ∈ E because such an optimal path in G may not exist. Below we il-
lustrate an example of the problem with λ = 1/2 and the network represented in
Figure 1. In the considered network the vertices are represented by circles and edges
by arcs. Inside the circles the numbers of the vertices are written and near the
arcs the values α∗

e that corresponds to the optimal solution of the problem with
x = 4, y = 1 and c(4,2) = 1, c(2,1) = 10, c(2,3) = 1, c(3,2) = 1 are written. The
optimal basic solution of the linear programming problem (1), (2) for the considered
example is α∗

(4,2) = 1, α∗
(2,1) = 0, α∗

(2,3) = 2/3, α∗
(3,2) = 1/3 and the graph Gα∗ is

induced by the set of edges {(4, 2), (2, 3), (3, 2)}. Here we can see that the values
α∗

(4,2) = 1, α∗
(2,3) = 2/3, α∗

(3,2) = 1/3 satisfy condition (4). The corresponding graph
Gα∗ does not contain the directed path from vertex 4 to 1, i.e the optimal path from
vertex 4 to 1 does not exist.

Figure 1. Figure 2.

In Figure 2 the optimal solution of problem (1), (2) with x = 4, y = 1 and
c(4,2) = 1, c(2,1) = 1, c(2,3) = 2, c(3,2) = 2 is represented. In this case the optimal
basic solution of problem (1), (2) is α∗

(4,2) = 1, α∗
(2,1) = 1/2, α∗

(2,3) = 0, α∗
(3,2) = 0.

The corresponding nonzero components of this solution generate in G the subgraph
Gα∗ = (Xα, Eα∗), where Eα∗ = {(4, 2), (2, 1)}. The set of edges Eα∗ generates a
unique directed path from vertex 4 to 1, i.e. in the considered case there exists the
optimal path from vertex 4 to 1.

If for problem (5), (6) we consider the dual problem then on the basis of duality
theorems of linear programming we can prove the following result.

Theorem 4. Assume that λ ≥ 1 and the costs ce, e ∈ E are strict positive. Let
β∗u, ∀u ∈ X be a solution of the following linear programming problem:
Maximize

ψ(β) =
∑

x∈X\{x}

βx (7)
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subject to

βu − λβv ≤ cu,v,∀(u, v) ∈ E0, (8)

where

E0 = {e = (u, v) ∈ E|u ∈ X \ {y}, v ∈ X.

If β∗u u ∈ X is an optimal basic solution of problem (7), (8) then an arbitrary tree
T = (X,E′

β∗) with sink vertex y of the graph Gβ∗ = (X,Eβ∗) induced by the set of
directed edges

Eβ∗ = {e = (x, y) ∈ E|β∗u − λβ∗v = cu,v}

represents the tree of optimal paths from x ∈ X \{y} to y. An optimal basic solution
of problem (7), (8), can be found starting with β∗v = 0 for v = y and β∗u = ∞ for
u ∈ X \ {y} and then repeat |X| − 1 tames the following calculation procedure:
replace β∗u for u ∈ X \ {y} by β∗u = min

v∈X(u)

{

λβ∗v + cu,v

}

, where X(v) = {u ∈

X|(u, v) ∈ E}.

Proof. Assume that α∗
e, e ∈ E and β∗u, u ∈ X represent the optimal solutions of

the primal linear programming problem (5), (6) and the dual linear programming
problem (7), (8), respectively. Then according to dual theorems of linear program-
ming these solutions satisfy the following condition:

α∗
u,v(β

∗
u − λβ∗v − cu,v) = 0 ∀(u, v) ∈ E0. (9)

So, if α∗
e, e ∈ E is an optimal basic solution then β∗u − λβ∗v − cu,v = 0 for an

arbitrary e = (u, v) ∈ Eα∗ . Taking into account that the corresponding graph Gα∗

for an optimal basic solution α∗ has a structure of the directed tree with sink vertex y
then we obtain this tree coincides with the tree of optimal paths Tβ∗ that determines
the solution β∗u, u ∈ X of the problem (7), (8).

Now let us prove that the procedure for calculating the values β∗x determines
correctly the optimal solution of the dual problem. Indeed, if in G the vertex y
is attainable from each v ∈ X then the rank of system (8) is equal to |X| − 1.
This means that for an arbitrary optimal basic solution not more than |X| − 1 its
components may be different from zero. Therefore we can take β∗y = 0. After that
taking into account the condition (9) we can find β∗u for u ∈ X \ {y} using the
calculation procedure from the theorem starting with β∗v = 0 for v = y and β∗u = ∞
for u ∈ X \ {y}.

Thus, based on Theorem 4 we can find the tree of optimal paths in G for the
problem with free number of transitions as follow.

We determine the values β∗u for u ∈ X using the following steps:

Preliminary step (step 0): Fix β∗y = 0, and β∗u = ∞ for u ∈ X \ {y};

General step (step k ( k ≥ 1)): For every u ∈ X \ {y} replace the value β∗u by
β∗u = min

v∈X(u)

{

λβ∗v + cu,v

}

, where X(v) = {u ∈ X|(u, v) ∈ E}. If k < |X| − 1 then

go to next step; otherwise stop.
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If β∗u for u ∈ X are known then we determine the set of directed edges Eβ∗ and the
corresponding directed graph Gβ∗ = (X,Eβ∗). After that we find a directed tree
Tβ∗ = (X,E′

β∗) in Gβ∗ . Then Tβ∗ represents the tree of optimal paths from x ∈ X
to y.

It is ease to observe that the proposed algorithm allows us to solve the considered
problems in general case with the same complexity as the problem with λ = 1, i.e
this algorithm in the case λ ≥ 1 extends the algorithm for shortest path problems
(see [2, 3]).

3 Algorithms for Solving the Problem with Fixed Number

of Transitions on Edges

The optimal path problem with fixed number of transitions from starting vertex
to final one can be formulated and studied using the following linear programming
model:
Minimize

φx,y(α) =
∑

e∈E

ceαe (10)

subject to











































∑

e∈E−(u)

αe − λ
∑

e∈E+(u)

αe = 1, u = x;

∑

e∈E−(u)

αe − λ
∑

e∈E+(u)

αe = 0, ∀u ∈ X \ {x, y};

∑

e∈E−(u)

αe − λ
∑

e∈E+(u)

αe = −λk−1, u = y;

αe ≥ 0, ∀e ∈ E.

(11)

This model is valid for an arbitrary λ > 0 (λ 6= 1). If we solve the linear programming
problem (10), (11) then find an optimal solution α∗ that determines the optimal value
of objective function and the corresponding graph Gα∗ . However such an approach
for solving this problem does not allow to determine the order of the edges from Gα∗

that form the optimal path P (x, y) with fixed number of transitions from x to y.
The algorithms based on linear programming in this case determine in polynomial
time only the optimal cost of the optimal path and the corresponding graph Gα∗ .

In order to determine the optimal path P (x, y) with a given number of tran-
sitions K from x to y it is necessary to solve the sequence of K|X − 1| linear
programming problem (10), (11) with fixed starting vertex for k = 1, 2, . . . ,K and
for an arbitrary final vertex y ∈ X \ {x}.For each such a problem we determine the
optimal value w φx,y(α

k∗) and the corresponding graph Gαk . After that starting
from final vertex y we find the optimal path P (x, y) as follows: we fix a directed
edge eK−1 = (uK−1, uK = y) for which φx,y(α

K∗
) = φx,uK−1(αK−1∗ + λK−1ceK−1),

then find a directed edge eK−2 = (uK−2, uK = y) for which φx,uK−1(αK−1∗) =
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φx,uK−2(αK−1∗ + λK−2ceK−2) and so on. In such a way we find the vertices

x = uo, u1, . . . , uk = y of the path P (x, y).
More useful algorithms for solving the problem with fixed number of transitions

on edges of the network are the dynamic programming algorithms and the time-
expanded network method from [4–6]. To apply these algorithms it is sufficient to
consider the network with cost functions ce(t) = λtce on edges e ∈ E.

4 Conclusion

The optimal paths problem on networks with rated transition time costs on edges
generalizes the shortest path problem in weighted directed graphs. The proposed
linear programming approach for studying this problem allows to ground polynomial
time algorithms for determining the optimal paths in networks with rated costs on
edges. The elaborated algorithms generalizes algorithms for determining the optimal
paths in weighted directed graphs and may be useful for determining the solution
for the dynamic version of minimum cost flow problem on networks with the costs
on edges that depend on flow and on time (the case with separable cost functions).
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