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A selection theorem for set-valued maps into normally

supercompact spaces

V.Valov
∗

Abstract. The following selection theorem is established:
Let X be a compactum possessing a binary normal subbase S for its closed subsets.
Then every set-valued S-continuous map Φ: Z → X with closed S-convex values,
where Z is an arbitrary space, has a continuous single-valued selection. More gener-
ally, if A ⊂ Z is closed and any map from A to X is continuously extendable to a map
from Z to X, then every selection for Φ|A can be extended to a selection for Φ.
This theorem implies that if X is a κ-metrizable (resp., κ-metrizable and connected)
compactum with a normal binary closed subbase S , then every open S-convex surjec-
tion f : X → Y is a zero-soft (resp., soft) map. Our results provide some generaliza-
tions and specifications of Ivanov’s results (see [5–7]) concerning superextensions of
κ-metrizable compacta
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Keywords and phrases: Continuous selections, Dugundji spaces, κ-metrizable
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1 Introduction

In this paper we assume that all topological spaces are Tychonoff and all single-
valued maps are continuous.

Recall that supercompact spaces and superextensions were introduced by deGroot
[4]. A space is supercompact if it possesses a binary subbase for its closed subsets.
Here, a collection S of closed subsets of X is binary provided any linked subfamily
of S has a non-empty intersection (we say that a system of subsets of X is linked
provided any two elements of this system intersect). The supercompact spaces with
binary normal subbase will be of special interest for us. A subbase S which is
closed both under finite intersections and finite unions is called normal if for every
S0, S1 ∈ S with S0 ∩S1 = ∅ there exists T0, T1 ∈ S such that S0 ∩ T1 = ∅ = T0 ∩S1

and T0∪T1 = X. A space X possessing a binary normal subbase S is called normally
supercompact [9] and will be denoted by (X,S).

The superextension λX of X consists of all maximal linked systems of closed sets
in X. The family

U+ = {η ∈ λX : F ⊂ U for some F ∈ η},

U ⊂ X is open, is a subbase for the topology of λX. It is well known that λX is
normally supercompact. Let ηx, x ∈ X, be the maximal linked system of all closed
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sets in X containing x. The map x → ηx embeds X into λX. The book of van Mill [9]
contains more information about normally supercompact space and superextensions,
see also Fedorchuk-Filippov’s book [3].

If S is a closed subbase for X and B ⊂ X, let IS(B) =
⋂

{S ∈ S : B ⊂ S}.
A subset B ⊂ X is called S-convex if for all x, y ∈ B we have IS({x, y}) ⊂ B.
An S-convex map f : X → Y is a map whose fibers are S-convex sets. A set-
valued map Φ: Z → X is said to be S-continuous provided for any S ∈ S both sets
{z ∈ Z : Φ(z) ∩ (X\S) 6= ∅} and {z ∈ Z : Φ(z) ⊂ X\S} are open in Z.

Theorem 1. Let (X,S) be a normally supercompact space and Z an arbitrary space.
Then every S-continuous set-valued map Φ: Z → X has a single-valued selection
provided all Φ(z), z ∈ Z, are S-convex closed subsets of X. More generally, if
A ⊂ Z is closed and every map from A to X can be extended to a map from Z to X,
then every selection for Φ|A is extendable to a selection for Φ.

Corollary 1. Let Φ: Z → X be an S-continuous set-valued map such that each
Φ(z) ⊂ X is closed, where X is a space with a binary normal closed subbase S and Z

arbitrary. Then the map Ψ: Z → X, Ψ(z) = IS
(

Φ(z)
)

, has a continuous selection.

A map f : X → Y is invertible if for any space Z and a map g : Z → Y there
exists a map h : Z → X with f ◦ h = g. If X has a closed subbase S, we say
f : X → Y is S-open provided f(X\S) ⊂ Y is open for every S ∈ S. Theorem 1
yields next corollary.

Corollary 2. Let X be a space possessing a binary normal closed subbase S. Then
every S-convex S-open surjection f : X → Y is invertible.

Another corollary of Theorem 1 is a specification of Ivanov’s results [7] (see also [5]
and [6]). Here, a map f : X → Y is A-soft, where A is a class of spaces, if for any
Z ∈ A, its closed subset A and any two maps k : Z → Y , h : A → X with f ◦h = k|A
there exists a map g : Z → X extending h such that f ◦g = k. When A is the family
of all (0-dimensional) paracompact spaces, then A-soft maps are called (0-)soft [11].

Corollary 3. Let A be a given class of spaces and X be an absolute extensor for
all Z ∈ A. If X has a binary normal closed subbase S, then any S-convex S-open
surjection f : X → Y is A-soft.

Theorem 1 is also applied to establish the following proposition:

Proposition 1. Let X be a κ-metrizable (resp., κ-metrizable and connected) com-
pactum with a normal binary closed subbase S. Then every open S-convex surjection
f : X → Y is a zero-soft (resp., soft) map.

Corollary 4 (see [5,6]). Let X be a κ-metrizable (resp., κ-metrizable and connected)
compactum. Then λf : λX → λY is a zero-soft (resp., soft) map for any open
surjection f : X → Y .
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2 Proof of Theorem 1 and Corollaries 1–3

Recall that a set-valued map Φ : Z → X is lower semi-continuous (br., lsc) if
the set {z ∈ Z : Φ(z) ∩ U 6= ∅} is open in Z for any open U ⊂ X. Φ is upper
semi-continuous (br., usc) provided that the set {z ∈ Z : Φ(z) ⊂ U} is open in
Z whenever U ⊂ X is open. Upper semi-continuous and compact-valued maps are
called usco maps. If Φ is both lsc and usc, it is said to be continuous. Obviously, every
continuous set-valued map Φ : Z → X is S-continuous, where S is a binary closed
normal subbase for X. Let C(X,Y ) denote the set of all (continuous single-valued)
maps from X to Y .

Proof of Theorem 1. Suppose X has a binary normal closed subbase S and Φ: Z → X

is a set-valued S-continuous map with closed S-convex values. Let A ⊂ Z be a
closed set such that every f ∈ C(A,X) can be extended to a map f̄ ∈ C(Z,X). Fix
a selection g ∈ C(A,X) for Φ|A and its extension ḡ ∈ C(Z,X). By [9, Theorem
1.5.18], there exists a (continuous) map ξ : X × exp X → X, defined by

ξ(x, F ) =
⋂

{IS({x, a}) : a ∈ F} ∩ IS(F ),

where exp X is the space of all closed subsets of X with the Vietoris topology. This
map has the following properties for any F ∈ exp X: (i) ξ(x, F ) = x if x ∈ IS(F );
(ii) ξ(x, F ) ∈ IS(F ), x ∈ X. Because each Φ(z), z ∈ Z, is a closed S-convex
set, IS(Φ(z)) = Φ(z), see [9, Theorem 1.5.7]. So, for all z ∈ Z we have h(z) =
ξ
(

ḡ(z),Φ(z)
)

∈ Φ(z). Therefore, we obtain a map h : Z → X which is a selection
for Φ and h(z) = g(z) for all z ∈ A. It remains to show that h is continuous. We
can show that the subbase could be supposed to be invariant with respect to finite
intersections. Because ξ is continuous, this would imply continuity of h. But instead
of that, we follow the arguments from the proof of [9, Theorem 1.5.18].

Let z0 ∈ Z and x0 = h(z0) ∈ W with W being open in X. We may assume that
W = X\S for some S ∈ S. Because x0 is the intersection of a subfamily of the binary
family S, there exists S∗ ∈ S containing x0 and disjoint from S. Since S is normal,
there exist S0, S1 ∈ S such that S ⊂ S1\S0, x0 ∈ S∗ ⊂ S0\S1 and S0 ∪ S1 = X.
Hence, x0 ∈ (X\S1)∩Φ(z0). Because Φ is S-continuous, there exists a neighborhood
O1(z0) of z0 such that Φ(z) ∩ (X\S1) 6= ∅ for every z ∈ O1(z0). Observe that
ḡ(z0) ∈ X\S1 provided Φ(z0) ∩ S1 6= ∅, otherwise x0 ∈ IS({ḡ(z0), a}) ⊂ S1, where
a ∈ Φ(z0) ∩ S1. Consequently, we have two possibilities: either Φ(z0) ⊂ X\S1 or
Φ(z0) intersects both S1 and X\S1. In the first case there exists a neighborhood
O2(z0) with Φ(z) ⊂ X\S1 for all z ∈ O2(z0), and in the second one take O2(z0) such
that ḡ

(

O2(z0)
)

⊂ X\S1 (recall that in this case ḡ(z0) ∈ X\S1). In both cases let
O(z0) = O1(z0)∩O2(z0). Then, in the first case we have h(z) ∈ Φ(z) ⊂ X\S1 ⊂ X\S
for every z ∈ O(z0). In the second case let a(z) ∈ Φ(z) ∩ (X\S1), z ∈ O(z0).
Consequently, h(z) ∈ IS({ḡ(z), a(z)}) ⊂ X\S1 ⊂ S0 ⊂ X\S for any z ∈ O(z0).
Hence, h is continuous.

When the set A is a point a we define g(a) to be an arbitrary point in Φ(a) and
ḡ(x) = g(a) for all x ∈ X. Then the above arguments provide a selection for Φ. �
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Proof of Corollary 1. Since each Ψ(z) is S-convex, by Theorem 1 it suffices to show
that Ψ is S-continuous. To this end, suppose that F0 ∈ S and Ψ(z0)∩(X\F0) 6= ∅ for
some z0 ∈ Z. Then Φ(z0)∩ (X\F0) 6= ∅, for otherwise Φ(z0) ⊂ F0 and Ψ(z0), being
intersection of all F ∈ S containing Φ(z0), would be contained in F0. Since Φ is S-
continuous, there exists a neighborhood O(z0) ⊂ Z of z0 such that Φ(z)∩(X\F0) 6= ∅

for all z ∈ O(z0). Consequently, Ψ(z) ∩ (X\F0) 6= ∅, z ∈ O(z0).
Suppose now that Ψ(z0) ⊂ X\F0. Then Ψ(z0) ∩ F0 = ∅, so there exists S0 ∈ S

with Φ(z0) ⊂ S0 and S0 ∩ F0 = ∅ (recall that S is binary). Since S is normal,
we can find S1, F1 ∈ S such that S0 ⊂ S1\F1, F0 ⊂ F1\S1 and F1 ∪ S1 = X.
Using again that Φ is S-continuous to choose a neighborhood U(z0) ⊂ Z of z0 with
Φ(z) ⊂ X\F1 ⊂ S1 for all z ∈ U(z0). Hence, Ψ(z) ⊂ S1 ⊂ X\F0, z ∈ U(z0), which
completes the proof. �

Proof of Corollary 2. Let X possess a binary normal closed subbase S, f : X → Y

be an S-open S-convex surjection, and g : Z → Y be a map. Since f is both S-open
and closed (recall that X is compact as a space with a binary closed subbase), the
map φ : Y → X, φ(y) = f−1(y), is S-continuous and S-convex valued. So is the
map Φ = φ ◦ g : Z → X. Then, by Theorem 1, Φ admits a continuous selection
h : Z → X. Obviously, g = f ◦ h. Hence, f is invertible. �

Proof of Corollary 3. Suppose X is a compactum with a normal binary closed
subbase S such that X is an absolute extensor for all Z ∈ A. Let us show that
every S-open S-convex surjection f : X → Y is A-soft. Take a space Z ∈ A, its
closed subset A and two maps k : Z → Y , h : A → X such that k|A = f ◦ h. Then
h can be continuously extended to a map h̄ : Z → X. Moreover, the set-valued map
Φ : Z → X, Φ(z) = f−1(k(z)), is S-continuous and has S-convex values. Hence, by
Theorem 1, there is a selection g : Z → X for Φ extending h. Then f ◦ g = k. So, f

is A-soft. �

3 Proof of Proposition 1 and Corollary 4

Proof of Proposition 1. According to Corollary 3, it suffices to show that X is a
Dugundji space (resp., an absolute retract) provided X is a κ-metrizable (resp.,
κ-metrizable and connected) compactum with a normal binary closed subbase S
(recall that the class of Dugundji spaces coincides with the class of compact absolute
extensors for 0-dimensional spaces, see [8]). To this end, we follow the arguments
from the proof of [12, Proposition 3.2]. Suppose first that X is a κ-metrizable
compactum with a normal binary closed subbase S. Consider X as a subset of
a Tyhonoff cube I

τ . Then, by [10] (see also [12] for another proof), there exists a
function e: TX → TIτ between the topologies of X and I

τ such that:

(e1) e(∅) = ∅ and e(U) ∩ X = U for any open U ⊂ X;

(e2) e(U) ∩ e(V ) = ∅ for any two disjoint open sets U, V ⊂ X.

Consider the set valued map r : I
τ → X defined by

r(y) =
⋂

{IS(U) : y ∈ e(U), U ∈ TX} if y ∈
⋃

{e(U) : U ∈ TX} (1)
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and r(y) = X otherwise,

where U is the closure of U in X. According to condition (e2), the system γy =
{U ∈ TX : y ∈ e(U)} is linked for every y ∈ I

τ . Consequently, ωy = {S ∈ S : U ⊂
S for some U ∈ γy} is also linked. This implies r(y) =

⋂

{S : S ∈ ωy} 6= ∅ because
S is binary.

Claim. r(x) = {x} for every x ∈ X.

Suppose there is another point z ∈ r(x). Then, by normality of S, there exist two
elements S0, S1 ∈ S such that x ∈ S0\S1, z ∈ S1\S0 and S0 ∪ S1 = X. Choose an
open neighborhood V of x with V ⊂ S0\S1. Observe that x ∈ e(V ), so z ∈ IS(V ) ⊂
S0, a contradiction.

Finally, we can show that r is upper semi-continuous. Indeed, let r(y) ⊂ W with
y ∈ I

τ and W ∈ TX . Then there exist finitely many Ui ∈ TX , i = 1, 2, .., k, such that
y ∈

⋂i=k
i=1

e(Ui) and
⋂i=k

i=1
IS(U i) ⊂ W . Obviously, r(y′) ⊂ W for all y′ ∈

⋂i=k
i=1

e(Ui).
So, r is an usco retraction from I

τ onto X. According to [1], X is a Dugundji space.
Suppose now, that X is connected. By [9], any set of the form IS(F ) is S-

convex, so is each r(y). According to [9, Corollary 1.5.8], all closed S-convex subsets
of X are also connected. Hence, the map r, defined by (1), is connected-valued.
Consequently, by [1], X is an absolute extensor in dimension 1, and there exists a
map r1 : I

τ → exp X with r1(x) = {x} for all x ∈ X, see [2, Theorem 3.2]. On
the other hand, since X is normally supercompact, there exists a retraction r2 from
exp X onto X, see [9, Corollary 1.5.20]. Then the composition r2 ◦ r1 : I

τ → X is a
(single-valued) retraction. So, X ∈ AR. 2

Proof of Corollary 4. It is well known that λ is a continuous functor preserving open
maps, see [3]. So, λX is κ-metrizable. Moreover, λX is connected if so is X. On
the other hand, the family S = {F+ : F is closed in X}, where F+ = {η ∈ λX :
F ∈ η}, is a binary normal subbase for λX. Observe that λf is S-convex because
(λf)−1(ν) =

⋂

{f−1(H)+ : H ∈ ν} for every ν ∈ λY . Then, Proposition 1 completes
the proof. 2

The next proposition shows that the statements from Proposition 1 and Corol-
lary 4 are actually equivalent. At the same time it provides more information about
validity of Corollary 3.

Proposition 2. For any class A the following statements are equivalent:

(i) If X is a compactum possessing a normal binary closed subbase S, then any
open S-convex surjection f : X → Y is A-soft.

(ii) The map λf : λX → λY is A-soft for any compactum X and any open surjec-
tion f : X → Y .

Proof. (i) ⇒ (ii) Let X be a compactum and f : X → Y be an open surjection.
It is easily seen that λf is an open surjection too. We already noted that
S = {F+ : F ⊂ X is closed} is a normal binary closed subbase for λX and λf

is a S-convex and open map. Hence, by (i), λf is A-soft.
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(ii) ⇒ (i). Suppose X is a compactum possessing a normal binary closed subbase
S, and f : X → Y is an S-convex open surjection. To show that f is A-soft, take
a space Z ∈ A, its closed subset A and two maps h : A → X, g : Z → Y with
f ◦ h = g|A. So, we have the following diagram, where iX and iY are embeddings
defined by x → ηx and y → ηy, respectively.

A
h

−−−−→ X
iX−−−−→ λX

id





y





y

f





y

λf

Z
g

−−−−→ Y
iY−−−−→ λY

Since, by (ii), λf is A-soft, there exists a map g1 : Z → λX such that h = g1|A
and λf ◦ g1 = g. The last equality implies that g1(Z) ⊂ (λf)−1(Y ). According
to [9, Corollary 2.3.7], there exists a retraction r : λX → X, defined by

r(η) =
⋂

{F ∈ S : F ∈ η}. (2)

Consider now the map ḡ = r ◦g1 : Z → X. Obviously, ḡ extends h. Let us show that
f ◦ ḡ = g. Indeed, for any z ∈ Z we have

g1(z) ∈ (λf)−1(g(z)) = (f−1(g(z)))+.

Since f is S-convex, IS
(

f−1(g(z))
)

= f−1(g(z)), see [9, Theorem 1.5.7]. Hence,
f−1(g(z)) is the intersection of the family {F ∈ S : f−1(g(z)) ⊂ F} whose elements
belong to any η ∈ (λf)−1(g(z)). It follows from (2) that r(η) ∈ f−1(g(z)), η ∈
(λf)−1(g(z)). In particular, ḡ(z) ∈ f−1(g(z)). Therefore, f ◦ ḡ = g.

The following corollary follows from Corollary 3 and Proposition 2.

Corollary 5. If X is a compactum with a binary normal closed subbase S such that
λX is an absolute extensor for a given class A, then any open S-convex surjection
f : X → Y is A-soft.
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