
BULETINUL ACADEMIEI DE ŞTIINŢE
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On spaces of densely continuous forms

D.M. Ipate, R.C. Lupu

Abstract. We study the structure of the domain of the minimal upper semicontinu-
ous extension of the set-valued mapping. It is proved that the set of all compact-valued
upper semicontinuous mappings is closed in the space of all set-valued mappings. A
similar assertion is true for the space of densely continuous forms.
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1 Introduction

Let (Y,U) be a uniform space and X be a topological space. By exp(Y ) or 2Y

we denote the space of all closed subsets of Y . The uniformity U is generated by a
family of uniformly continuous pseudometrics P (U). Consider that ρ(y, z) ≤ 1 for
all ρ ∈ P (U) and y, z ∈ Y .

Let ρ ∈ P (U). If y ∈ Y and L ⊆ Y , then N(y, ρ, r) = {z ∈ Y : ρ(y, z) <
r} and N(L, ρ, r) = ∪{N(y, ρ, r) : y ∈ L} for a real number r > 0. We put
ϕ(L,M) = inf{r : L ⊆ N(M,ρ, r), M ⊆ N(L, ρ, r). If ∅ ∈ {L,M} and L 6= M , then
hρ(L,M) = 1. The families hP (U) = {hρ : ρ ∈ P (U)} generate the uniformity h(U)
on exp(Y ).

A set-valued mapping g : X → Y assigns to each point x ∈ X a closed subset
g(x) of Y .

Let g : X → Y be a set-valued mapping. The mapping g is called:

– upper semicontinuous (us-continuous) at a point x0 ∈ X if for every open
V ⊆ Y with g(x0) ⊆ V there exists an open set U of X such that x0 ∈ U and
F (x) ⊆ V for any x ∈ U ;

– lower semicontinuous (ls-continuous) at a point x0 ∈ X if for every open V ⊆ Y
with g(x0) ∩ V 6= ∅ there exists an open set U of X with g(x) ∩ V 6= ∅ for each
x ∈ U ;

– continuous at a point x ∈ X if g simultaneous by is us-continuous and ls-
continuous at the point x;

– weakly continuous (w-continuous) if the graphicGr(g) = ∪{{x}×g(x) : x ∈ X}
is a closed subset of the space X × Y ;

– minimal if the graphic Gr(g) is closed in X × Y , the set Dom(g) = {x ∈ X :
g(x) 6= ∅} is dense in X and for each closed subset F of Gr(g) such that F 6= Gr(g)
there exists a point x ∈ Dom(g) such that F ∩ ({x} × g(x)) = ∅.
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Remark 1. The set Dom(g) = {x ∈ X : g(x) 6= ∅} is the domain of the mapping
g : X → Y . If the set Dom(g) is dense in X and x ∈ X \ Dom(g) then g is not
us-continuous and not ls-continuous at the point x ∈ X.

A mapping g : X → Y is called:

– us-continuous if it is us-continuous at any point x ∈ Dom(g);

– ls-continuous if it is ls-continuous at any point x ∈ Dom(g);

– continuous if it is continuous at any point x ∈ Dom(g).

Denote by F (X,Y ) the set of all single-valued mappings of the space X into the
space Y , by F (X, 2Y ) the set of all set-valued mappings of X into Y , by C(X,Y ) =
{g ∈ F (X,Y ) : g is continuous} the set of all continuous mappings of X into Y .

Let A be a family of subsets of X which is closed under finite union and which
covers X.

We define on F (X, 2Y ) the topology of uniform convergence on sets in A as
follows.

For any pseudometric ρ ∈ P (U) and each B ∈ A on F (X, 2Y ) define the pseu-
dometric ρB(f, g) = sup{hρ(f(x), g(x)) : x ∈ B)}.

Then F (X, 2Y ) has the topology generated by the family of pseudometrics
A(U) = {ρB : B ∈ A, ρ ∈ P (U)}. The pseudometrics A(U) form on F (X, 2Y ) a
Hausdorff uniform structure and the space FA(X, 2Y ) with this topology is com-
pletely regular and Hausdorff [3].

Whenever A consists of the all finite subsets of X, the topology generated by
the uniform structure A(U) is the topology of pointwise convergence on F (X, 2Y )
and this space is denoted by Fp(X, 2

Y ).

Since A consists of the all compact subsets of X, then the topology generated
by the uniform structure A(U) is the topology of uniform convergence on compact
sets and this space is denoted by Fc(X, 2

Y ).

Whenever X ∈ A, then this topology is called the topology of uniform conver-
gence and this space is denoted by Fu(X, 2Y ).

On subspaces of the space FA(X, 2Y ) we consider the topology generated by the
uniform structure A(U) too.

2 Extensions of mappings

Fix a space X, a uniform space (Y,U) with the uniformity U generated by the
pseudometrics P (U) and a compactification cY of Y .

Let g : X → Y be a set-valued mapping.

A set-valued mapping ϕ : X → Y is said to be an usc-extension of the mapping
g if ϕ is a compact-valued us-continuous mapping and g(x) ⊆ ϕ(x) for any x ∈ X.

A set-valued mapping ϕ : X → Y is said to be a minimal usc-extension of the
mapping g if ϕ is an usc-extension of the mapping g and for any usc-extension
ψ : X → Y of g we have ϕ(x) ⊆ ψ(x) for any x ∈ X.

Remark 2. One can say that a set-valued mapping ϕ : X → Y is a maximal usc-
extension of the mapping g if ϕ is an usc-extension of g and Dom(ψ) ⊆ Dom(ϕ) for



92 D.M. IPATE, R.C. LUPU

any usc-extension ψ : X → Y of g. If the space Y is compact, then the mapping
gmax : X −→ Y , where gmax(x) = Y for any x ∈ X, is the maximal usc-extension
of any mapping g : X −→ Y . If the space Y is not compact and ψ : X −→ Y
is an usc-extension of the mapping g : X −→ Y , then ψ(x) 6= Y for any x ∈ X.
Fix a compact subset F of Y and put ψF (x) = ψ(x) ∪ F for each ∪x ∈ X. Then
ψF : X −→ Y is a usc-extension of the mapping g and Gr(ψ) ⊆ Gr(ψF ). Hence,
for a non-compact space Y for each mapping g : X −→ Y does not exist maximal
usc-extension.

Proposition 1. Let g : X → Y be a set-valued mapping and the domain Dom(g)
is dense in X. The following assertions are equivalent:

1. The mapping g has some usc-extension.

2. For g there exists a unique minimal usc-extension mcg : X → Y .

Proof. The implication 2 → 1 is obvious. Assume that ϕ : X → Y is an usc-
extension of g. Then ϕ is an us-continuous mapping of X into cY . Denote by
πX : X × cY → X the projection πX(x, y) = x for all (x, y) ∈ X × cY . Since cY is a
compact space, the projection πX is a perfect mapping. Denote by πcY : X × cY →
cY the projection onto cY . The mapping πcY is continuous.

Every subset M ⊆ X × cY is the graphic of some concrete set-valued mapping
θM : X → cY , where θM(x) =

∏
cY (M ∩ ({x} ×CY )) for any x ∈ X. The mapping

θM is us-continuous if and only if the set M is closed in the subspace πX(M)× cY .

In particular, if ψ : X → Y is an usc-extension of g, then Gr(g) ⊆ Gr(ψ) and
the set Gr(ψ) is closed in the subspace Dom(ψ) × cY . Hence Gr(g) ⊆ Gr(ϕ) and
the set Gr(ϕ) is closed in Dom(ϕ) × cY .

Denote by Φ the closure of the set Gr(g) in the space X × cY .

Then the set Φ1 = Φ ∩ (Dom(ϕ)× cY ) is the closure of Gr(g) in Dom(ϕ)× cY .
The mapping w : X → cY , where Gr(w) = Φ, is us-continuous. Moreover, g(x) ⊆
w(x) ⊆ ϕ(x) ⊆ Y for any x ∈ Dom(g). Let H = {x ∈ X : w(x) ⊆ Y }. By
construction, Dom(g) ⊆ Dom(ϕ) ⊆ H. Denote by mcg : X → Y the mapping with
the domainDom(mcg) = H andmcg(x) = w(x) for any x ∈ H. SinceDom(w) = X,
the mapping mcg is correctly defined. Obviously, mcg is an usc-extension of g.

Let ψ : X → Y be a usc-extension of g. Since Gr(g) ⊆ Gr(ψ), the set Φ∩Gr(ψ)
is the closure of the set Gr(g) in Dom(ψ) × cY . Thus mcg(x) = w(x) ⊆ ψ(x) for
any x ∈ H ∩Dom(ψ) = Dom(mcg) ∩Dom(ψ) and Dom(ψ) ⊆ Dom(mcg). Hence
mcg is the minimal usc-extension of g. The existence of the minimal usc-extension
is proved. The uniqueness of the minimal usc-extension is obvious. The proof is
complete.

Let g : X → Y be a set-valued mapping. The mapping meg : X → Y with the
graphic Gr(meg) = clX×Y Gr(g) is called the minimal w-continuous extension of the
mapping g.

Proposition 2. Let g : X → Y be a set-valued mapping and the set Dom(g) is

dense in X. Then:
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1. If ϕ : X → Y is a w-continuous mapping and g(x) ⊆ ϕ(x) for any x ∈
Dom(g), then meg(x) ⊆ ϕ(x) for any x ∈ X.

2. If mcg is the minimax usc-extension of g, then mcg(x) ⊆ meg(x) for any

x ∈ X.

Proof. Follows from the coincidence of the closures of the sets Gr(g), Gr(mcg), and
Gr(meg) in X × cY .

Corollary 1. If the space Y is compact, then mcg = meg for any set-valued mapping

g : X → Y with the dense domain Dom(g) in X.

Remark 3. Let mcg : X → Y be the minimax usc-extension of a set-valued mapping
g : X → Y with the dense domain Dom(g) in X. If x /∈ Dom(g), then we say
that X is an essential point of usc-discontinuity of the mapping g. If x ∈
Dom(mcg) \ Dom(g), then x is inessential point of usc-discontinuits of the
mapping g.

3 m-metric and m-Baire spaces

Let m be an infinite cardinal number.

A uniform space (Y,U) is an m-metric space if the uniform structure U is gener-
ated by a family P (U) of pseudometrics of cardinality ≤ m. In this case we assume
that the cardinality |P (U)| ≤ m and for any ρ1, ρ2 ∈ P (U) there exists ρ ∈ P (U)
such that sup{ρ1(x, y), ρ2(x, y)} ≤ ρ(x, y) for all x, y ∈ Y .

A set L of a space X is called a Gm-set if L is the intersection of m open subsets
of X. For m = ℵ0 the Gm-set is called a Gδ-set. The complement of a Gm-set is an
Fm-set and of Gδ-set is an Fσ-set.

A subset A of a space X is called m-meager if A is the union of m nowhere
dense subsets of X. The space X is called an m-Baire space if every non-empty
open subset of X is not m-meager.

For a space X the next three assertions are equivalent:
1 bm) X is an m-Baire space.

2 bm) The intersection of m open and dense subsets of X is dense in X.

3 bm) The intersection of m dense Gm-subsets is dense in X.
A space X is a Baire space if it is an ℵ0-Baire space.

A space X is called m-complete if X is a Gm-subset of some compactification
cX of X.

Proposition 3. Let (Y,U) be an m-complete m-metric space, g : X → Y be a

set-valued mapping with a dense domain Dom(g) in X and mcg : X → Y be the

usc-extension of g. Then Dom(mcg) is a dense Gm-set of X.

Proof. Let Φ be the closure of the setGr(g) inX×cY , where cY is a compactification
of Y , and ω : X → cY be the us-continuous mapping with the graphic Gr(ω) =
Φ. Then Φ is the closure of the set Gr(mcg) in X × cY too. By construction,
Dom(mcg) = {x ∈ X : ω(x) ⊆ Y } and mcg(x) = ω(x) for all x ∈ Dom(mcg). Fix a
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family {Uα : α ∈ A} of open subsets of Y for which |A| ≤ m and Y = ∩{Uα : α ∈ A}.
For any α ∈ A the set Vα = {x ∈ X : ω(x) ⊆ Uα} is open in X and Dom(mcg) ⊆ Vα.
Let L = ∩{Vα : α ∈ A}. By construction, Domc(g) ⊆ L and L is a Gm-set of X.
Suppose that x /∈ Domc(g). Then there exist a point y ∈ ω(x) \ Y and α ∈ A for
which y /∈ Uα. Then x /∈ Vα and x /∈ L. Therefore L = Domc(g). The proof is
complete.

Proposition 4. Let g : X → Y be a minimal us-continuous mapping of a space X
into an m-metric space (Y,U). Then Doms(g) = {x ∈ X : g(x) is a singleton set}
is a Gm-subset of Dom(g).

Proof. We can assume that X = Dom(g). Consider the pseudometrics P (U) = {ρα :
α ∈ A} which generate the uniformity U on Y . Assume that |A| ≤ m.

For every n ∈ N = {1, 2, . . .}, α ∈ A and y ∈ Y we put V (y, α, n) = {x ∈
X : g(x) ⊆ N(y, ρα, 2

−n)} and V (α, n) = ∪{V (y, α, n) : y ∈ Y }. Since the set
N(y, ρα, 2

−n) is open in Y and the mapping g is us-continuous, the set V (α, n) is
open in X. The set L = ∩{V (α, n) : α ∈ A,n ∈ N} is a Gm-set of X.

If x ∈ Doms(g) and g(x) = y ∈ Y , then x ∈ V (y, α, n) for all α ∈ A and
n ∈ N . Hence Doms(g) ⊆ L. Let x /∈ Doms(g). Then there exist two distinct
points y0, z0 ∈ g(x), α ∈ A and n ∈ N for which ρα(y0, z0) > 2−n > 0. In this case
g(x) \ V (y, α, n) 6= ∅ for any y ∈ Y . Thus x /∈ V (α, h). Therefore L = Doms(g).
The proof is complete.

Corollary 2 Let g : X → Y be a us-continuous mapping of an m-Baire space X
into an m-complete m-metric uniform space (Y,U). The following assertions are

equivalent:

1. The mapping meg : X → Y , Y is minimal, i.e. g : Dom(g) → Y is a minimal

mapping.

2. Doms(g) is a dense Gm-set of X.

Proof. Implication 2 → 1 is obvious. Let g : Dom(g) → Y be minimal. Then the
mapping mcg : X → Y is minimal. Proposition 4 completes the proof.

4 Spaces of dense forms

Fix an infinite cardinal number m, an m-Baire space X and an m-complete m-
metric space (Y,U) with uniformity U generated by the family P (U) = {ρα : α ∈ A}
of pseudometrics, where |A| ≤ m.

A set-valued mapping g : X → Y is called a dence set-valued continuous form
from X to Y if Dom(g) is a dense subset of X and g = mcg.

A set-valued mapping g : X → Y is called a dense continuous form from X to
Y if Doms(g) is a dense subset of X and g = mcg.

Remark 4. From Corollary 2 it follows that for a set-valued mapping g : X → Y the
following assertions are equivalent:

1. g is a dense continuous form from X to Y .
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2. There exists a dense subspace Z of X and a continuous single-valued mapping
f : Z → Y such that g = mcf .

Hence our definition of a dense continuous form coincides with the definition of
a dense continuous form from [5].

Denote by DUC(X,Y ) the family of all us-continuous compact-valued mappings
g : X → Y for which the domain Dom(g) is dense in X, by DU(X,Y ) the family
of all dense set-valued continuous forms from X to Y , by DC(X,Y ) the family
of all single-valued mappings g ∈ DUC(X,Y ) and by D(X,Y ) the family of all
dense continuous forms from X to Y . It is obvious that D(X,Y ) ⊆ DU(X,Y ) ⊆
DUC(X,Y ).

There exists a single-valued mapping e : DUC(X,Y ) → DU(X,Y ), where e(g) =
mcg for any g ∈ DUC(X,Y ).

5 Completeness of the spaces of set-valued dense continuous forms

Fix a space X and a complete uniform space (Y,U) with the uniformity U gen-
erated by the family of pseudometrics P (U) = {ρα : α ∈ A}.

Let FC(X,Y ) be the set of all compact-valued us-continuous mappings of X
into Y . On X fix a family Γ of subsets which is closed under finite union and which
covers X.

On F (X, exp(Y )) consider the topology and the uniformity generated by the
pseudometrics Γ(U) = {ραB : α ∈ A,B ∈ Γ}.

Theorem 1. Let X ∈ Γ. Then the set FC(X,Y ) is closed in the space

FΓ(X, exp(Y )).

Proof. Let g ∈ F (X, exp(Y ) \ FC(X,Y ).

Case 1. g(x0) is not a compact set for some point x0 ∈ X.

Since Y is a complete uniform space, in this case there exist α ∈ A, ε > 0 and
an infinite sequence {yn ∈ g(x0) : n ∈ N} such that ρα(yn, ym) ≥ ε for all n,m ∈ N
and n 6= m. Fix B ∈ Γ for which x0 ∈ B and δ < e−1 such that 0 < 3δ < ε.

Let f ∈ F (X : exp(Y )) and ραB(f, g) < δ. Then for any n ∈ N there exists a
point zn ∈ f(x0) such that ρα(yn, zn) < δ. In this case ρα(zn,zm) ≥ δ for all n,m ∈ N
and n 6= m. Thus the set f(x0) is not precompact in Y . Since Y is complete, the set
f(x0) is not compact. Therefore the set V = {f ∈ F (X, exp(Y )) : ραB(g, f) < δ} is
open in FΓ(X, exp(Y )), g ∈ V and V ∩ FC(X,Y ) = ∅.

Case 2. g(x) is a compact set of Y for each x ∈ X.

In this case there exists a point x0 ∈ Dom(g) such that g is not us-continuous
at x0. Thus there exists an open subset U of Y such that g(x0) ⊆ U and for
any neighborhood W of x0 in X there exists a point x ∈ W ∩ Dom(g) for which
g(x) \ U 6= ∅.

Since the set g(x0) is compact there exists ε > 0 and α ∈ A such that
N(g(x0), ρα, 4ε) ⊆ U . Suppose that ραx(g, f) < ε and f ∈ FC(X,Y ). In this
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case f(x0) ⊆ N(g(x0), pα, ε), the set W = {x ∈ X : f(x) ⊆ N(g(x0), pα, ε)} is open
in X and x0 ∈W . There exists x ∈W such that g(x) \ U 6= ∅. Fix y ∈ g(x) \ U .

Since y ∈ N(g(x0), pα, 4ε), then N(y, pα, 4ε) ∩ g(x0) = ∅. Since ραx(g, f) < ε,
there exists z ∈ f(x) such that ραX(g, f) < ε. Hence z /∈ N(g(x0), ρα, ε) and x /∈W ,
a contradiction. Therefore N(g(x0), ρα, ε)∩FC(X,Y ) = ∅ and the set FC(X,Y ) is
closed.

In the case 1 we have proved the following assertion.

Proposition 5. The set F c(X, exp Y ) of all compact-valued mappings is closed in

the space FΓ(X, exp Y ) for any family Γ.

Proposition 6. The set DU(X,Y ) is dense in the space F c
p (X, exp Y ) of all

compact–valued mappings in the topology of pointwise convergence.

Proof. Fix a mapping g ∈ F c(X, exp Y ), α ∈ A, ε > 0 and a finite subset F =
{x1, x2 . . . xm} of X. Fix a point b ∈ Y and the open subsets {v1, v2, . . . vn} of X
such that xi ∈ Vi and Vi ∩ Vj = ∅ for all i, j ≤ n and i 6= j.

We put f(x) = g(xi) for all i ≤ n and x ∈ Vi, and f(x) = ∪{g(xi) : i ≤ n}
for any x ∈ (X \ U{Vi : i ≤ n}). Then f is us-continuous, Dom(f) = X and
ραF (g, f) = 0 < ε. The proof is complete.

Proposition 7. The set F d(X, exp Y ) of all set-valued mappings g : X → Y with a

dense domain Dom(g) in X is closed in Fu(X, exp(Y )) in the topology of uniform

convergence.

Proof. Let g : X → Y be a set-valued mapping and the set Dom(g) be not dense in
X. Then the set V = X \ clX Dom(g) is open and non–empty.

Fix α ∈ A. If L = Y and L 6= ∅, hρα(∅, L) = 1. The set U = {f ∈
F (X, exp(Y )) : hρα(g, f) < 1} is open in Fu(X, exp(Y )) and g ∈ U . Let
f ∈ F d(X, exp(Y )). Since the set Dom(f) is dense in X, there exists a point
x ∈ V ∩ Dom(f). In this case f(x) 6= ∅ and g(x) = ∅. Hence hρα(f(x), g(x)) = 1
and f /∈ U . Therefore U ∩ F d(X, exp Y ) = ∅. The proof is complete.

Corollary 3. The set F cd(X, exp(Y )) of all compact-valued mappings with the dense

domain is dense in the space Fu(X, exp(Y )).

Proof. By virtue of Propositions 5 and 7, the set F ed(X, exp(Y )) = F c(X : expY )∩
F d(X, exp(Y )) is closed in Fu(X, exp(Y )).

Theorem 2. The set FC(X,Y ) is closed in the space Fu(X, exp(Y )).

Proof. Let expc(Y ) be the spaces of all compact subsets of Y in the topology gener-
ated by the pseudometrics hP (U). The uniform space expc(Y ) is complete [9]. Fix a
Cauchy sequence {gµ : µ ∈M}, whereM is a directed set. Since the space expc(Y ) is
complete, for any x ∈ X in expc(Y ) there exists the limit g(x) = lim{gµ(x) : µ ∈M .
In this case g = lim{gµ : µ ∈ M} in the space Fn(X, exp(Y )). Fix α ∈ A. There
exists λ ∈ M such that hρα(g(x), gµ(x)) < 1 for all µ ≥ λ and all x ∈ X. Thus
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Dom(g) = Dom(gµ) for all µ ≥ λ. We can assume that Dom(g) = Dom(gµ) = X
for all µ ∈M .

We affirm that the mapping g : X → Y is us-continuous. Fix x0 ∈ X and
an open subset U of Y for which g(x0) ⊆ U . There exist α ∈ A and 0 < ε < 1
such that N(g(x0), ρλ, 4ε) ⊆ U . Fix now µ ∈ M for which hρα(g(x), gµ(x)) < ε
for all x ∈ X. The set V = {x ∈ X : gµ(x) ⊆ N(gµ(x0), ρα, ε)} is open in X
and x0 ∈ V . If x ∈ V , then hρα(gµ(x0), gµ(x)) < ε, hρα(g(x0), ρµ(x0)) < ε and
hρα(g(x0), gµ(x)) < 2ε. Sice hρα(g(x), gµ(x)) < ε, then hρα(g(x0), g(x)) < 3ε and
g(x) ⊆ N(g(x0), ρα, 4ε) ⊆ U . Hence g is us-continuous at the point x0. The proof
is complete.

Corollary 4. The set DU(X,Y ) of all set-valued α continuous forms M which are

closed in the space Fu(X, exp(Y )) and in the uniformity of uniform convergence is

a complete uniform space.

6 Completeness of the space of dense continuous forms

Fix an infinite cardinal number m, an m-Baire space X and an m-complete m-
metric space (Y,U) with a complete uniformity U generated by the pseudometrics
P (U) = {ρα : α ∈ A}, where |A| ≤ m.

Theorem 3. The set D(X,Y ) is closed in the space Fu(X, exp(Y )).

Proof. Since D(X,Y ) ⊆ DU(X,Y ) and the set is closed in Fu(X, exp Y ), then it
is sufficient to prove that the set D(X,Y ) is closed in the space DUu(X,Y ). Let
{gµ ∈ D(X,Y ) : µ ∈ M} be a Cauchy sequence where M is a directed set. Since Y
is an m-metric space we can assume that |M | ≤ m. Let g = lim{gµ : µ ∈M}. From
Theorem 2 it follows that g is a compact-valued us-continuous mapping. If α ∈ A,
then there exists λ ∈ M such that hρα(g(x), gµ(x)) < 1 for all x ∈ X and µ ≥ α.
Thus Dom(g) = Dom(gµ) for all µ ≥ λ.

Therefore g ∈ DU(X,Y ) and we can assume that Dom(g) = Dom(gµ) = X
for all µ ∈ M . From Corollary 2 it follows that Doms(gµ) = {x ∈ X : gµ(x) is a
singleton set} is a dense Gm-set of X for any µ ∈ M . Since |M | ≤ m and X is an
m-Baire space, the subspace Z = ∩{Doms(gµ) : µ ∈ M} is a dense Gm-set of X.
Thus fµ = gµ|Z : Z → Y is a single-valued continuous mapping of Z into Y for any
µ ∈M .

Let f = g|Z : Z → Y . Then f = lim{fµ : µ ∈ M} and the uniform limit
of single–valued mappings is a single–valued mappings. Thus Z ⊆ Doms(g) and
Doms(g) is a dense subset of X. From Remark 4 it follows that g ∈ D(X;Y ). The
proof is complete.

Corollary 5. The space D(X;Y ) in the uniformity of uniform convergence is

complete.
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