On free groups in classes of groups with topologies

Mitrofan M. Choban, Liubomir L. Chiriac

Abstract. We study properties of free groups in distinct classes of groups with topologies. The conditions under which the quasi-metric on the space of generators X is extended to an invariant quasi-metric on a free group $F(X, \mathcal{V})$ in the fixed quasi-variety \mathcal{V} of groups with topologies are given. This result is applied to the study: – of free paratopological groups:

- of free quasitopological groups;

- of free semitopological groups;

- of free left topological groups.

of nee for topological groups.

Mathematics subject classification: 22F30, 29J15, 54H11, 54E15. Keywords and phrases: Paratopological group, semitopological group, quasi-variety of groups with topologies, quasi-metric.

1 Introduction

By a space we understand a topological T_0 -space. We use the terminology from [3,9]. Let $\mathbb{N} = \{1, 2, ...\}$. By $cl_X H$ we denote the closure of a set H in a space X, |A| is the cardinality of a set A.

A paratopological group is a group endowed with a topology such that the multiplication is jointly continuous. Recall that a semitopological group is a group with a topology such that the multiplication is separately continuous. Every paratopological group is a semitopological group. A semitopological group with a continuous inverse operation $x \to x^{-1}$ is called a *quasitopological* group. A *topological* group is a paratopological group with a continuous inverse operation $x \to x^{-1}$.

The space S of reals \mathbb{R} with the topology generated by the open base consisting of the sets $[a,b) = \{x \in \mathbb{R} : a \leq x < b\}$, where $a, b \in \mathbb{R}$ and a < b, is called the Sorgenfrey line [9]. The Sorgenfrey line has the following properties [3]:

-S is an Abelian paratopological group with the Baire property;

-S is a hereditarily Lindelöf first-countable hereditarily separable non-metrizable space;

-S does not admit a structure of a topological group.

In this paper we study properties of free paratopological groups in a given quasi-variety of paratopological groups \mathcal{W} . The general theorem of existence of free paratopological (semitopological, quasitopological) groups in distinct classes of groups with topologies was proved in [7]. We follow [5, 7, 8, 11, 12] for the concept

[©] Mitrofan M. Choban, Liubomir L. Chiriac, 2013

of a free object. The paratopological topology on a free group F(X, W) is constructed by the Markov–Graev method [10,13] developed in [15] for pseudo-quasimetrics. We develop this method for free groups in the non-Burnside quasi-varieties of paratopological groups. In [15] the authors use the method of left (right) invariant pseudo-quasi-metrics. Since the topology generated by left (right) invariant pseudo-quasi-metrics may not be a paratopological topology [3,4,14,15], this point of view may create dangerous moments. For this we use the method of invariant pseudo-quasi-metrics. The method of invariant pseudo-metrics on free objects was developed in [6,10].

There exist distinct conditions under which a paratopological topology on a group is topological (see the references in [1-3, 15]). If G is a paratopological group and $x^n = e$ for some natural number n, then G is a topological group. By virtue of this fact, the method of invariant pseudo-quasi-metrics is useful in the non-Burnside quasi-varieties of paratopological groups. In the Burnside quasi-varieties of paratopological groups any invariant pseudo-quasi-metric is a pseudo-metric.

2 Quasi-metrics on groups

A function $\rho : X \times X \to R$ is called a *pseudo-quasi-metric* if $\rho(x, x) = 0$ and $0 \le \rho(x, z) \le \rho(x, y) + \rho(y, z)$ for all $x, y, z \in X$. If ρ is a pseudo-quasi-metric and $\rho(x, y) + \rho(y, x) > 0$ for all distinct $x, y \in X$, then ρ is called a *quasi-metric*.

Any pseudo-quasi-metric ρ generates a topology $\mathfrak{T}(\rho)$ with the open base $\{B(x,\rho,r) = \{y \in X : \rho(x,y) < r\} : x \in X, r > 0\}$. The family \mathfrak{P} of pseudoquasi-metric generates the topology $\mathfrak{T}(P) = \sup\{\mathfrak{T}(\rho) : \rho \in \mathfrak{P}\}$. If $\mathfrak{P} = \emptyset$, then $\mathfrak{T}(P) = \{\emptyset, X\}$. The topology $\mathfrak{T}(\mathfrak{P})$ is a T_0 -topology if and only if for any two distinct points $x, y \in X$ we have $\rho(x, y) + \rho(y, y) > 0$ for some $\rho \in \mathfrak{P}$.

If ρ is a pseudo-quasi-metric on a space X and the sets from $\mathcal{T}(\rho)$ are open in X, then we say that ρ is a *continuous pseudo-quasi-metric*.

Let U be an open subset of the space X. We put $\rho_U(x, y) = 1$ if $x \in U$ and $y \in X \setminus U$, and $\rho_U(x, y) = 0$ otherwise. Then $\mathfrak{T}(\rho_U) = \{\emptyset, U, X\}$. Hence, any topology is generated by some family of pseudo-quasi-metrics.

Let G be a group and ρ be a pseudo-quasi-metric on G. The pseudo-quasi-metric ρ is called:

-left (respectively, right) invariant if $\rho(xa, xb) = \rho(a, b)$ (respectively, $\rho(ax, bx) = \rho(a, b)$) for all $x, a, b \in G$;

- *invariant* if it simultaneously is both left and right invariant.

If ρ is a left (or right) invariant pseudo-quasi-metric on a paratopological group G, then ρ is continuous if and only if the set $B(e, \rho, r)$ is open in G for any r > 0.

If ρ is an invariant pseudo-quasi-metric on the group G, then $(G, \mathcal{T}(\rho))$ is a paratopological group and $\rho(x^{-1}, y^{-1}) = \rho(y, x)$ for any $x, y \in G$. Thus any family \mathcal{P} of invariant pseudo-quasi-metrics generates a paratopological topology $\mathcal{T}(\mathcal{P})$ on the group.

A pseudo-quasi-metric ρ on a group G is called a *stable* pseudo-quasi-metric if $\rho(x_1x_2, y_1y_2) \leq \rho(x_1y_1) + \rho(x_2y_2)$ for all $x_1, x_2, y_1, y_2 \in G$ [6].

Proposition 1. Let ρ be a pseudo-quasi-metric on a group G. The next assertions are equivalent:

- 1. ρ is invariant.
- 2. ρ is stable.

Proof. Is obvious.

If ρ is a pseudo-quasi-metric on a group G and $\rho(x,y) = \rho(y,x)$ for all $x, y \in X$, then ρ is a pseudo-metric. The pseudo-metric ρ is invariant if and only if $\rho(y^{-1}, x^{-1}) = \rho(x, y) = \rho(zx, zy) = \rho(xz, yz)$ for all $x, y, z \in G$.

Definition 1. A subset H of a group G is called invariant if $xHx^{-1} = H$ for any $x \in G$.

Proposition 2. Let U be an invariant open subset of a paratopological group G with a topology \mathfrak{T} and $e \in U$. We put $d_U(x, y) = 0$ if $x^{-1}y \in U$ and $d_U(x, y) = 1$ if $x^{-1}y \notin U$. Then d_U is an invariant pseudo-quasi-metric and $\mathfrak{T}(d_U) \subseteq \mathfrak{T}$.

Proof. If $x \in U$, then $d_U(e, x) = 0$ and $d_U(e, y) = 1$ if $y \notin U$. Thus $B(e, d_U, r) = U$ for $0 < r \le 1$ and $B(e, d_U, r) = G$ for r > 1. By construction, $d_U(x, y) = d_U(e, x^{-1}y) = d_U(e, (x^{-1}z^{-1})(zy)) = d_U(zx, zy)$ for all $x, y, z \in G$. Let $x, y \in G$. Then $x^{-1}y \in U$ if and only if $(z^{-1}x^{-1})(yz) \in U$ for any $z \in G$. Thus $d_U(xz, yz) = d_U(x, y)$. The proof is complete. \Box

Corollary 1. For a paratopological group G the following assertions are equivalent:

- 1. The topology on G is generated by a family of invariant pseudo-quasi-metrics.
- 2. There exists an open base \mathbb{B} of G at e such that any $U \in \mathbb{B}$ is invariant.

Remark 1. Let U be an open subset of a paratopological group G with a topology \mathfrak{T} and $e \in U$. We put $d_{lU}(x,y) = 0$ if $x^{-1}y \in U$, and $d_{lU}(x,y) = 1$ if $x^{-1}y \notin U$, $d_{rU}(x,y) = 0$ if $xy^{-1} \in U$, and $d_U(x,y) = 1$ if $xy^{-1} \notin U$. Then d_{lU} is a continuous left invariant pseudo-quasi-metric on G and d_{rU} is a continuous right invariant pseudo-quasi-metric on G. Thus:

- the topology of a paratopological group G is generated by a family of left invariant pseudo-quasi-metrics;

- the topology of a paratopological group G is generated by a family of right invariant pseudo-quasi-metrics.

As was established by A. S. Mishchenko [14] (see also [4]), the topology, generated by a family of left (or right) invariant pseudo-metrics, may not be a paratopological topology.

3 Free paratopological groups

A class \mathcal{V} of groups with topologies is called *a quasi-variety* of groups if:

- (F1) the class \mathcal{V} is multiplicative;
- (F2) if $G \in \mathcal{V}$ and A is a subgroup of G, then $A \in \mathcal{V}$;
- (F3) every space $G \in \mathcal{V}$ is a T_0 -space.

Let S be a set of multiplicative and hereditary properties of groups with topologies. A class \mathcal{V} of groups with topologies is called *an* S*-complete* quasi-variety of groups with topologies if it is a quasi-variety with the next property:

(F4) if $G \in \mathcal{V}$, then G is a group with topology with the properties S.

(F5) if $G \in \mathcal{V}$ and T is a T₀-topology on G with the properties S, then $(G, T) \in \mathcal{V}$ too.

A quasi-variety \mathcal{V} of paratopological groups is called *an* S-*complete variety* of paratopological groups if it is an S-complete quasi-variety with the next property:

(F6) if $g: A \longrightarrow B$ is a continuous homomorphism of a paratopological group $A \in \mathcal{V}$ onto a T_0 -paratopological group B with the property S, then $B \in \mathcal{V}$.

Denote by I_p the property to be a paratopological group with an invariant bases at the identity e. If S_p is the property to be a paratopological group, then an S_p -complete variety is called a complete variety and an S_p -complete quasi-variety is called a complete quasi-variety of paratopological groups.

Let X be a non-empty topological space and \mathcal{V} be a quasi-variety of groups with topologies. In any space X the basic point $p_X \in X$ is fixed, i.e. any space is pointed.

A free group of a space X in a class \mathcal{V} is a pair $(F(X, \mathcal{V}), e_X)$ with the properties: $-F(X, \mathcal{V}) \in \mathcal{V}, e_X : X \to F(X, \mathcal{V})$ is a continuous mapping and $e = e_X(p_X)$ is the neutral element of the group $F(X, \mathcal{V})$;

- the set $e_X(X)$ generates the group $F(X, \mathcal{V})$;

- for any continuous mapping $f: X \to G \in \mathcal{V}$, where $f(p_X) = e$, there exists a unique continuous homomorphism $\overline{f}: F(X, \mathcal{V}) \to G$ such that $f = \overline{f} \circ e_X$.

An abstract free group of a space X in the class \mathcal{V} is a pair $(F^a(X, \mathcal{V}), a_X)$ with the properties:

 $-F^{a}(X, \mathcal{V}) \in X, a_{X} : X \to F^{a}(X, \mathcal{V})$ is a mapping and $e = a_{x}(p_{X});$

- the set $a_X(X)$ generates the group $F^a(X, \mathcal{V})$;

- for any mapping $g: X \to G \in \mathcal{V}$, where $f(p_X) = e$, there exists a unique continuous homomorphism $\widehat{g}: F^a(X, \mathcal{V}) \to G$ such $g = \widehat{g} \circ a_X$.

In the proof of the following assertion we use the Kakutani's method [11].

Theorem 1 (see [7]). Let \mathcal{V} be a quasi-variety of groups with topologies. Then for each space X there exist:

- a unique free group $(F(X, \mathcal{V}), e_X)$;

- a unique abstract free group $(F^a(X, \mathcal{V}), a_X)$;

- a unique continuous homomorphism $r_X : F^a(X, \mathcal{V}) \to F(X, \mathcal{V})$ of $F^a(X, \mathcal{V})$ onto $F(X, \mathcal{V})$ such that $e_X = r_X \circ a_X$.

Proof. Let τ be an infinite cardinal number and $|X| \leq \tau$. Then the class $\{f_{\alpha} : X \to G_{\alpha} : \alpha \in A\}$ of all mappings $f_{\alpha} : X \to G_{\alpha}$ with $G_{\alpha} \in \mathcal{V}$ and $|G_{\alpha}| \leq \tau$ is a set.

Let $B = \{\beta \in A : f_{\beta} : X \to G_{\beta} \text{ is continuous}\}$. Consider the diagonal product $a_X = \Delta\{f_{\alpha} : \alpha \in A\} : X \to H_1 = \prod\{G_{\alpha} : \alpha \in A\}$ and the diagonal product $e_X = \Delta\{f_{\alpha} : \alpha \in A\} : X \to H_2 = \prod\{G_{\alpha} : \alpha \in B\}$. Let $F^a(X, \mathcal{V})$ be the subgroup of H_1 generated by the set $a_X(X)$ and $F(X, \mathcal{V})$ be the subgroup of H_2 generated by the set $e_X(X)$. Since $B \subseteq A$ there exists a unique continuous projection

 $r_X : F^a(X, \mathcal{V}) \to F(X, \mathcal{V})$ such that $e_X = r_X \circ a_X$. The objects $(F(X, \mathcal{V}), e_X)$, $(F^a(X, V), a_X)$ and r_X are constructed. The proof is complete. \Box

The group $F(X, \mathcal{V})$ is called *abstract free* if r_X is a continuous isomorphism. The next problems are important in the theory of universal algebras with topologies (see [5,7,12]).

Problem 1. Under which conditions the free group F(X, V) is abstract free?

Problem 2. Under which conditions the mapping $e_X : X \to F(X, V)$ is an embedding?

These problems for varieties of topological algebras were posed by A.I. Mal'cev [12].

Remark 2 (see [5,6,8]). A quasi-variety \mathcal{V} is non-trivial if in \mathcal{V} there exists an infinite group G. If the variety V is non-trivial, then:

 $-a_X$ is a one-to-one mapping of X onto $a_X(X)$.

Moreover, if \mathcal{V} is a non-trivial I_p -complete quasi-variety or a non-trivial S_p -complete quasi-variety, then:

- for any completely regular space X the mapping e_X is an embedding of X into $F(X, \mathcal{V})$ and the free group F(X, V) is abstract free (see [5,7]).

Proposition 3. Let G be a paratopological group, $n \in \mathbb{N}$ and $x^n = e$ for any $x \in G$. Then G is a topological group.

Proof. Since $x^{-1} = x^{n-1}$ and the mapping $x \to x^{n-1}$ is continuous, the mapping $x \to x^{-1}$ is continuous. The proof is complete.

Let \mathcal{V} be a quasi-variety of paratopological groups, X be a space and $e \in X$. On the free group $F^a(X, \mathcal{V}, e)$ with the identity e consider the maximal paratopological topology $\mathcal{T}(X, \mathcal{V}, e)$ for which the identical mapping $a_X : X \to F^a(X, \mathcal{V}, e)$ is continuous.

Proposition 4. Let \mathcal{V} be a quasi-variety of semitopological groups, X be a space and $e, e_1 \in X$. Then:

1. The semitolopological groups $F(X, \mathcal{V}, e)$ and $F(X, \mathcal{V}, e_1)$ are topologically isomorphic.

2. The semitolopological groups $(F^a(X, \mathcal{V}, e), a_X, \mathcal{T}(X, \mathcal{V}, e))$ and $(F^a(X, \mathcal{V}, e_1), b_X, \mathcal{T}(X, \mathcal{V}, e_1))$ are topologically isomorphic.

Proof. Consider the natural continuous mappings $e_X : X \to F(X, \mathcal{V}, e)$ and $l_X : X \to F(X, \mathcal{V}, e_1)$. We can assume that e_X and l_X are embeddings and $e_X(x) = l_X(x) = x$ for any $x \in X$. There exist two continuous homomorphisms $\varphi : F(X, \mathcal{V}, e) \to F(X, \mathcal{V}, e_1)$ and $\psi : F(X, \mathcal{V}, e_1) \to F(X, \mathcal{V}, e)$ such that $\varphi(x)) = xe^{-1}$ and $\psi(x) = e_X(xe_1^{-1})$ for any $x \in X$. Since ψ is a homomorphism, $\psi(\varphi(x)) = \psi(x \cdot e^{-1}) = \psi(x) \cdot \psi(e^{-1}) = \psi(x) \cdot \psi(e)^{-1} = (xe_1^{-1}) \cdot (e \cdot e_1^{-1})^{-1} = x$ for $x \in X \subseteq F(X, \mathcal{V}, e)$. Hence the composition $\varphi \circ \psi$ is a continuous homomorphism such that $(\psi \circ \varphi)(x) = x$ for any $x \in X$. Thus $\psi \circ \varphi$ is the identical isomorphism and $\psi = \varphi^{-1}$. The assertion 1 is proved. The proof of the assertion 2 is similar. The proof is complete.

4 Construction of the group $F^a(X, \mathcal{V})$

Fix a non-trivial quasi-variety \mathcal{V} of paratopological groups.

Consider a space X. Then we can assume that $X \subseteq F^a(X, \mathcal{V})$ as a subset and $a_X(x) = x$ for each $x \in X$. In particular $e = p_X$ is the neutral element of the group $F^a(X, \mathcal{V})$. In this case $e \in X \subseteq F^a(X, \mathcal{V})$. The set X is called an alphabet.

Let $\widetilde{X} = X \cup X^{-1}$. Obviously, if $x = p_X$, then $x^{-1} = x = e$.

If $n \geq 1$ and $x_1, x_2, ..., x_n \in \widetilde{X}$, then the symbol $x_1x_2...x_n$ is called a word of the length n in the alphabet X.

Any word $x_1x_2...x_n$, where $x_1, x_2, ..., x_n \in \widetilde{X}$, represents a unique element $[x_1x_2...x_n] = x_1 \cdot x_2 \cdot ... \cdot x_n \in F^a(X, \mathcal{V}).$

A given element $b \in F^a(X, \mathcal{V})$ is represented by many words. There exists a word of the minimal length which represents the given element b. The length n of this word is called the length of the element b and we put l(b) = n.

If an element $b \in F^a(X, \mathcal{V})$ is represented by the words $x_1x_2...x_n$, $y_1y_2...y_m$ of the minimal length, then n = m and $\{x_1, x_2, ..., x_n\} = \{y_1, y_2, ..., y_m\}$. In this case we say that the word $x_1x_2...x_n$ is irreducible and that $Sup(b) = X \cap$ $\{x_1, x_1^{-1}, x_2, x_2^{-1}, ..., x_n, x_n^{-1}\}$ is the support of the element b. The set $Sup^*(b) =$ $\{e, x_1, x_1^{-1}, x_2, x_2^{-1}, ..., x_n, x_n^{-1}\}$ is the generalized support of the element b. Obviously, $Sup(e) = \{e\}$ and $e \notin Sup(b)$ if $b \neq e$. If $e \in Y \subseteq X$, $b \in F^a(X, \mathcal{V})$ and $F^a(Y, \mathcal{V})$ is the subgroup of $F^a(X, \mathcal{V})$ generated by the set Y, then $b \in F^a(Y, \mathcal{V})$ if any only if $Sup(b) \subseteq Y$. If \mathcal{V} is the variety of all paratopological groups, then any $b \in F^a(X, \mathcal{V})$ is represented by a unique word of the minimal length. Moreover, in this case any irreducible word is of the minimal length.

Let \mathcal{V}_a be the variety of all T_0 -paratopological Abelian groups and \mathcal{V}_g be the variety of all T_0 -paratopological groups.

For any $n \in \mathbb{N}$ denote by \mathcal{B}_n the Burnside variety of all T_0 -paratopological groups of the exponent (index) $n: G \in \mathcal{B}_n$ if and only if $x^n = e$ for each $x \in G$. The variety \mathcal{B}_1 is the unique trivial variety of paratopological groups. If \mathcal{V} is an I_p -variety of Abelian paratopological groups, then either $\mathcal{V} = \mathcal{V}_a$, or $\mathcal{V} = \mathcal{V}_a \cap \mathcal{B}_n$ for some $n \in \mathbb{N}$.

If \mathcal{V} is a quasi-variety of paratopological groups and $\mathbb{Z} \in \mathcal{V}$, where \mathbb{Z} is the group of integers, then \mathcal{V} is a quasi-variety of the exponent 0. Obviously, if \mathcal{V} is an I_p -complete variety of the exponent 0, then $\mathcal{V}_a \subseteq \mathcal{V}$.

A class of paratopological Abelian groups is I_p -complete if and only if it is complete.

5 Extension of pseudo-quasi-metrics on free groups

Fix a non-trivial I_p -complete quasi-variety \mathcal{V} of paratopological groups. Consider a non-empty set X with a fixed point $e \in X$. We assume that $e \in X \subseteq F^a(X, \mathcal{V})$ and e is the identity of the group $F^a(X, \mathcal{V})$.

Let ρ be a pseudo-quasi-metric on the set X. Denote by $Q(\rho)$ the set of all invariant pseudo-quasi-metrics d on $F^a(X, \mathcal{V})$ for which $d(x, y) \leq \rho(x, y)$ for all $x, y \in X$. The set $Q(\rho)$ is non-empty, since it contains the trivial pseudo-quasimetric d(x, y) = 0 for all x, y. For all $a, b \in F^a(X, \mathcal{V})$ we put $\widehat{\rho}(a, b) = \sup\{d(a, b) : d \in Q(\rho)\}$. We say that $\widehat{\rho}$ is the maximal extension of ρ on $F^a(X, \mathcal{V})$.

Property 1.
$$\widehat{\rho}(a, a) = 0$$
 and $\widehat{\rho}(a, b) \leq \widehat{\rho}(a, c) + \widehat{\rho}(c, b)$ for all $a, b, c \in F^a(X, \mathcal{V})$.

Proof. We assume that $\infty + \infty = t + \infty = \infty + t = \infty \le \infty$ and $t < \infty$ for any real number t. In these conditions the assertion of Property 1 follows from the construction of $\hat{\rho}$.

Property 2.
$$\hat{\rho}(x,y) \leq \rho(x,y)$$
 for all $x, y \in X$

Proof. Follows from the constructions of $\hat{\rho}$.

Property 3.
$$\widehat{\rho}(xa, xb) = \widehat{\rho}(ax, bx) = \widehat{\rho}(a, b)$$
 for all $x, a, b \in F^a(X, \mathcal{V})$.

Proof. Follows from the invariance of the pseudo-quasi-metrics $Q(\rho)$.

Property 4. $\widehat{\rho}(a,b) = \widehat{\rho}(ab^{-1},e) = \widehat{\rho}(e,a^{-1}b).$

Proof. Follows from Property 3.

Property 5. $\hat{\rho}(a_1a_2, b_1b_2) \leq \hat{\rho}(a_1, b_1) + \hat{\rho}(a_2, b_2).$

Proof. Follows from Proposition 1 and Property 3.

Property 6.
$$\widehat{\rho}(a^{-1}, b^{-1}) = \widehat{\rho}(b, a)$$
 for all $a, b \in F^a(X, \mathcal{V})$.
Proof. We have $\widehat{\rho}(a^{-1}, b^{-1}) = \widehat{\rho}(aa^{-1}b, ab^{-1}b) = \widehat{\rho}(b, a)$.

Property 7. $\widehat{\rho}(a,b) < \infty$ for all $a, b \in F^a(X, \mathcal{V})$.

 $\begin{array}{l} Proof. \text{ For some } n \in N \text{ we have } a = x_1^{\varepsilon_1} x_2^{\varepsilon_2} \dots x_n^{\varepsilon_n} \text{ and } b = y_1^{\delta_1} y_2^{\delta_2} \dots y_n^{\delta_n}. \text{ Fix } i \leq n. \text{ If } \varepsilon_i = \delta_i = 1, \text{ then } \widehat{\rho}(x_i^{\varepsilon_i}, y_i^{\delta_i}) = \widehat{\rho}(x_i, y_i) \leq \rho(x, y). \text{ If } \varepsilon_i = \delta_i = -1, \text{ then } \widehat{\rho}(x_i^{\varepsilon_i}, y_i^{\delta_i}) = \widehat{\rho}(x_i, x_i) \leq \rho(y_i, x_i). \text{ If } \varepsilon_i = -\delta_i, \text{ then } \widehat{\rho}(x_i^{\varepsilon_i}, y_i^{\delta_i}) \leq \widehat{\rho}(x_i, y_i^{-1}) + \widehat{\rho}(x_i^{-1}, y_i) \leq \rho(e, x_i) + \rho(x_i, e) + \rho(e, y_i) + \rho(y_i, e). \text{ Hence } \widehat{\rho}(x_i^{\varepsilon_i}, y_i^{\delta_i}) \leq \rho(x_i, y_i) + \rho(y_i, x_i) + \rho(e, x_i) + \rho(x_i, e) + \rho(e, y_i) + \rho(y_i, e) < \infty. \text{ Then } \widehat{\rho}(a, b) \leq \sum \{ \widehat{\rho}(x_i^{\varepsilon_i}, y_i^{\delta_i}) : i \leq n \} < \infty. \end{array}$

Example 1. Consider the variety \mathcal{B}_2 of paratopological groups. Any group $G \in \mathcal{B}_2$ is commutative. Fix a space X with the fixed point $e \in X$.

Let $\rho(z,z) = \rho(z,e) = 0$ for any $z \in X$ and $\rho(e,x) = \rho(x,y) = 1$ for all $x, y \in X, x \neq y, x \neq e \neq y$. Then ρ is a quasi-metric on X. In this case $x^{-1} = x$ for $x \in X$. If $x_1x_2...x_n$ is an irreducible word, then $|\{x_1, x_2, ..., x_n\}| = n$, i.e. $x_i \neq x_j$ for distinct $i, j \leq n$. Consider the maximal extension $\hat{\rho}$ of the quasi-metric ρ on $G = F^a(X, \mathcal{B}_2)$. Then $\hat{\rho}(x, y) = \hat{\rho}(y^{-1}, x^{-1}) = \hat{\rho}(y, x)$, i.e. $\hat{\rho}$ is a pseudo-metric. Hence $\hat{\rho}(x, e) = \hat{\rho}(e, x) = \rho(x, e) = 0$ for any $x \in X$. Thus $0 \leq \hat{\rho}(x, y) \leq \hat{\rho}(x, e) + \rho(e, y) = 0$ for all $x, y \in X$. Therefore $\hat{\rho}(a, b) = 0$ for all $a, b \in G$. We proved that the pseudo-quasi-metric $\hat{\rho}$ is trivial.

Example 2. Let \mathcal{A}_3 be the variety of all paratopological Abelian groups with the identity $x^3 = e$. Fix a space X with the basic point $e \in X$. Let $b \in X \setminus \{e\}$. Then the words bb and b^{-1} are irreducible, $bb = b^{-1}$, the word bb is not of the minimal length and the word b^{-1} is of the minimal length.

Proposition 5. Let ρ be a quasi-metric on $X, \rho(x^{-1}, y^{-1}) = \rho(y, x), \ \rho(x, y^{-1}) = \max\{\rho(x, e), \rho(e, y^{-1})\}\ and \ \rho(y^{-1}, x) = \max\{\rho(y^{-1}, e), \rho(e, x)\}\ for \ all \ x, y \in X.$ Then $\hat{\rho}(a, b) = \inf\{\sum\{\hat{\rho}(x_i^{\varepsilon_i}, y_i^{\delta_i}) : i \leq n\} : n \in N, a \equiv x_1^{\varepsilon_1} \cdot x_2^{\varepsilon_2} \cdot \ldots \cdot x_n^{\varepsilon_n}, b \equiv y_1^{\delta_1} \cdot y_2^{\delta_2} \cdot \ldots \cdot y_n^{\delta_n}\}\ for \ all \ a, b \in F^a(X, \mathcal{V}).$

 $\begin{array}{l} Proof. \ \text{Obviously} \ \widehat{\rho_1}(a,b) = \inf \{ \sum \{ \widehat{\rho}(x_i^{\varepsilon_i}, y_i^{\delta_i}) : i \leq n, n \in N, a \equiv x_1^{\varepsilon_1} \cdot x_2^{\varepsilon_2} \cdot \ldots \cdot x_n^{\varepsilon_n}, b \equiv y_1^{\delta_1} \cdot y_2^{\delta_2} \cdot \ldots \cdot y_n^{\delta_n} \} \text{ is an invariant pseudo-quasi-metric on } F^a(X, \mathcal{V}) \text{ and } \widehat{\rho_1}(x,y) \leq \widehat{\rho}(x,y) \text{ for all } x, y \in F^a(X, \mathcal{V}). \text{ If } a = x_1^{\varepsilon_1} \cdot x_2^{\varepsilon_2} \cdot \ldots \cdot x_n^{\varepsilon_n} \text{ and } b = y_1^{\delta_1} \cdot y_2^{\delta_2} \cdot \ldots \cdot y_n^{\delta_n}, \text{ then } \widehat{\rho}(a,b) \leq \sum \{ \widehat{\rho}(x_i^{\varepsilon_i}, t_i^{\delta_i}) : i \leq n \}. \text{ Thus } \widehat{\rho}(a,b) \leq \widehat{\rho_1}(a,b). \text{ The proof is complete.} \end{array}$

6 Elementary spaces and free groups

Fix a non-trivial quasi-variety \mathcal{V} of paratopological groups. Consider the space $E_{\infty} = \{0, 1, -1, 2, -2, \dots, n, -n, \dots\}$ with the topology generated by the quasi-metric $\rho_{\infty}(x, y) = 1$ if x < y, and $\rho_{\infty}(x, y) = 0$ if $x \leq y$. Let $E_n = \{0, 1, -1, 2, -2, \dots, n, -n\}$ and $\rho_n(x, y) = \rho_{\infty}(x, y)$ for all $x, y \in E_n$. Then (E_n, ρ_n) is a subspace of the quasi-metric space $(E_{\infty}, \rho_{\infty})$. Assume that $p_{E_{\infty}} = p_{E_n} = 0 \in E_n$ for each n. For any $n \in N$ consider the continuous retraction $r_n : E_{\infty} \to E_n$, where $r_n(x) = x$ for any $x \in E_n$, $r_n(x) = -n$ for any $x \leq -n$ and $r_n(x) = n$ for any $x \geq n$.

Proposition 6. The following assertions are equivalent:

- 1. $e_{E_1}: E_1 \to F(E_1, \mathcal{V})$ is an embedding;
- 2. $e_{E_{\infty}}: E_{\infty} \to F(E_{\infty}, \mathcal{V})$ is an embedding;
- 3. $e_X : X \to F(X, \mathcal{V})$ is an embedding for any space X.

Proof. Implications $3 \to 2 \to 1$ are obvious. Assume that e_{E_1} is an embedding. Fix a T_0 -space X. There exist a cardinal number τ and an embedding $f : X \to E_1^{\tau}$, where $f(p_X) = 0$. We assume that $E_1 \subseteq F(E_1, \mathcal{V})$. Then $E_1^{\tau} \subseteq F(E_1, \mathcal{V})^{\tau}$. Consider the continuous homomorphism $\hat{f} : F(X, \mathcal{V}) \to F(E_1, \mathcal{V})^{\tau}$ generated by the mapping f. Since $f = \hat{f} \circ e_X$ is an embedding, e_X is an embedding too. The proof is complete. \Box

Lemma 1. Let F be a finite set of a space X and $|F| = n \ge 1$. Then there exists a continuous mapping $s_F : X \to E_n \subseteq E_\infty$ such that $s_F(p_X) = 0$ and $s_F(x) \neq s_F(y)$ for all distinct $x, y \in F$.

Proof. We can assume that $p_X \in F$. In any non-empty finite space Y there exists a point y such that the set $\{y\}$ is closed in Y. Thus in F there exists a wellordering $F = \{x_1, x_2, ..., x_n\}$ such that the set $\{x_1, x_2, ..., x_i\}$ is closed in F for any $i \leq n$. Assume that $p_X = x_k$, where $1 \leq k \leq n$. We put $F_1 = cl_X\{x_1\}, F_2 =$ $cl_X\{x_1, x_2\} \setminus cl_X\{x_1\}, ..., F_{n-1} = cl_X\{x_1, x_2, ..., x_{n-1}\} \setminus cl_X\{x_1, x_2, ..., x_{n-2}\}, F_n =$ $X \setminus cl_X\{x_1, x_2, ..., x_{n-1}\}$. Obviously, there exists a continuous mapping $s_F : X \to E_n$ such that $s_F(p_X = 0, s_F(x_i) = i - k < s_F(x_j) = j - k$ for $1 \leq j < i \leq n$ and $s_F(F_i) = s_F(\{x_i\})$ for any $i \leq n$. The proof is complete. \Box

Proposition 7. For a quasi-variety \mathcal{V} the following assertions are equivalent: 1. The free group $F(E_{\infty}, \mathcal{V})$ is abstract free.

- 2. For each $n \in N$ the free group $F(E_n, \mathcal{V})$ is abstract free.
- 3. For each T_0 -space X the free group $F(X, \mathcal{V})$ is abstract free.

Proof. Implications $3 \rightarrow 2 \rightarrow 1 \rightarrow 2$ are obvious. Implication $1 \rightarrow 3$ follows from Lemma 1.

The next assertion is obvious.

Proposition 8. For an I_p -complete quasi-variety \mathcal{V} the following assertions are equivalent:

1. The maximal extension d_{∞} of the quasi-metric ρ_{∞} on $F^{a}(E_{\infty}, \mathcal{V})$ is a quasimetric and $\rho(x, y) = d_{\infty}(x, y)$ for all $x, y \in E_{\infty}$;

2. For any $n \in N$ the maximal extension d_n of the quasi-metric ρ_n on $F^a(E_n, \mathcal{V})$ is a quasi-metric and $\rho_n(x, y) = d_n(x, y)$ for all $x, y \in E_n$.

Proposition 9. Let \mathcal{V} be an I_p -complete quasi-variety, $n \in \mathbb{N}$ and the maximal extension d_n of the quasi-metric ρ_n on $F^a(E_n, \mathcal{V})$ is a quasi-metric. Then:

- 1. $F(E_n, \mathcal{V})$ is an abstract free group;
- 2. $e_{E_n}: E_n \to F(E_n, \mathcal{V})$ is an embedding;
- 3. $d_n(x,y) = \rho_n(x,y)$ for all $x, y \in E_n$.

Proof. There exists r > 0 such that $r \leq 1$ and $1 = \rho_n(x, y) \geq d_n(x, y) \geq r$ for any $x, y \in E_n$ for which x < y. Then $d'(x, y) = \min\{1, r^{-1}d_n(x, y)\}$ is an invariant quasi-metric on $F^a(E_n, V)$ and $d'(x, y) = \rho_n(x, y)$ for all $x, y \in E_n$. Since $d'(x, y) \leq d_n(x, y)$ for all $x, y \in F^a(E_n, V)$, we have $d_n(x, y) = \rho_n(x, y)$ for all $x, y \in E_n$. The proof is complete. \Box

Corollary 2. If \mathcal{V} is an I_p -complete quasi-variety and d_{∞} is a quasi-metric on $F^a(E_{\infty}, \mathcal{V})$, then $d_{\infty}(x, y) = \rho_{\infty}(x, y)$ for all $x, y \in E_{\infty}$.

Corollary 3. Let \mathcal{V} be an I_p -complete quasi-variety. Assume that d_{∞} is a quasimetric on $F^a(E_{\infty}, \mathcal{V})$. Then for any T_0 -space X the free group $F(X, \mathcal{V})$ is abstract free, $e_X : X \to F(X, \mathcal{V})$ is an embedding and on $F(X, \mathcal{V})$ there exists a T_0 -topology T which is generated by some family of invariant pseudo-quasi-metrics and e_X is an embedding of X into $(F(X, \mathcal{V}), T)$.

7 Free Abelian groups of spaces

Proposition 10. The maximal extension d_{∞} of the quasi-metric ρ_{∞} on $F^{a}(E_{\infty}, \mathcal{V}_{a})$ is a quasi-metric.

Proof. On the group \mathbb{Z} of integers consider the topology generated by the quasimetric $\rho(x, y) = 1$ for x < y and $\rho(x, y) = 0$ for $y \leq x$. Obviously, ρ is an invariant quasi-metric and $\mathbb{Z} \in \mathcal{V}_a$.

The group $G = \{(x_n : n \in \mathbb{Z}) \in \mathbb{Z}^{\mathbb{Z}} : \text{the set } \{n \in \mathbb{Z} : x_n \neq 0\} \text{ is finite}\}, G \in \mathcal{V}_a$ is Abelian and on G consider the topology generated by the invariant quasi-metric $d((x_n : n \in \mathbb{Z}), (y_n : n \in \mathbb{Z})) = \sup\{d(x_n, y_n) : n \in \mathbb{Z}\}.$ We put $a_0 = (x_n : n \in \mathbb{Z})$ and $x_n = 0$ for any $n \in \mathbb{Z}$. If $n \in \mathbb{Z}$ and $n \geq 1$, then $a_n : (x_n : n \in \mathbb{Z})$, where $x_i = 1$ for $i \in \{0, 1, 2, ..., n - 1\}$ and $x_j = 0$ for each $j \in \mathbb{Z} \setminus \{0, 1, 2, ..., n - 1\}.$ If $n \in \mathbb{Z}$ and $n \leq -1$, then $a_n = (x_n : n \in \mathbb{Z})$, where $x_i = -1$ for each $i \in \{-1, -2, ..., -n\}$ and $x_j = 0$ for any $j \in \mathbb{Z} \setminus \{-1, -2, ..., -n\}$. Consider the mapping $h : E_{\infty} \to \mathbb{Z}^{\mathbb{Z}}$, where $d(n) = a_n$ for any $n \in E_{\infty}$. By construction, $\rho_{\infty}(x, y) = d(h(x), h(y))$ for all $x, y \in E_{\infty}$. Thus h is an isometrical embedding of E_{∞} in $\mathbb{Z}^{\mathbb{Z}}$. The set $d_{\infty}(E_{\infty})$ generated the group G and the pair (G, h) is the abstract free group $(F^a(E_{\infty}, \mathcal{V}_a), a_{E_{\infty}})$ of the space E_{∞} . In this case $d(x, y) \leq d_{\infty}(x, y)$ for any $x, y \in G = F^a(E_{\infty}, V_{\infty})$. Thus d_{∞} is a quasi-metric. The proof is complete. \Box

Corollary 4. For any T_0 -space X the free group $F(X, \mathcal{V}_a)$ is abstract free, $e_X : X \to F(X, \mathcal{V}_a)$ is an embedding and the topology of the space $F(X, \mathcal{V}_a)$ is generated by some family of invariant pseudo-quasi-metric.

8 On the non-Burnside quasi-varieties

Let \mathcal{V} be an I_p -complete quasi-variety of paratopological groups. Assume that $\mathbb{Z} \in \mathcal{V}$, i. e. $\mathcal{V}_a \subseteq \mathcal{V} \subseteq \mathcal{V}_g$.

We put $F(X) = F(X, \mathcal{V})$ and $F^a(X) = F^a(X, \mathcal{V})$ for any space X.

Fix two words $x_1x_2...x_n$ and $y_1y_2...y_m$, where $x_1, x_2, ..., x_n, y_1, y_2, ..., y_m \in X$.

If $x_1x_2...x_n$ and $y_1y_2...y_m$ are irreducible, then $[x_1x_2...x_n] = [y_1y_2...y_m]$ if and only if n = m and there exists a bijection $h = \{1, 2, ..., n\} \longrightarrow \{1, 2, ..., m\}$ such that $x_i = y_{h(i)}$ for any $i \leq n$.

The words $x_1x_2...x_n$ and $y_1y_2...y_m$ are called equivalent if $[x_1x_2...x_n] = [y_1y_2...y_m]$. The words $x_1x_2...x_n$ and $y_1y_2...y_m$ are called strongly equivalent if $[x_1x_2...x_n] = [y_1y_2...y_m]$, n = m and there exists a bijection $h : \{1, 2, ..., n\} \longrightarrow \{1, 2, ..., m\}$ such that $x_i = y_{h(i)}$ for any $i \leq n$.

Let $\mathbb{N}_n = \{1, 2, ..., n\}$ for any $n \in \mathbb{N}$. If i < j, then we put $[i, j] = [j, i] = \{k \in \mathbb{N} : i \le k \le j\}$. If $i, j \in A \subseteq \mathbb{N}$, then $[i, j]_A = [i, j] \cap A$.

A scheme for an element $b \in F^a(X)$ is a word $x_1x_2...x_n$ and a mapping $s : \mathbb{N}_n \to \mathbb{N}_n$ such that:

1. $b = [x_1 x_2 \dots x_n];$

2. $s(i) \neq i$ and s(s(i)) = i for any $i \leq n$;

3. There exist a word $y_1y_2...y_n$ and a bijection $h: \mathbb{N}_n \longrightarrow \mathbb{N}_n$ such that:

 $-b = [y_1y_2...y_n]$ and $y_i = x_{h(i)}$ for any $i \le n$;

- if $\sigma(i) = h^{-1}(s(h(i)))$ then for any $i, j \in \{1, 2, ..., n\}$ the sets $[i, \sigma(i)], [j, \sigma(j)]$ are either disjoint or one contains the other.

A mapping σ from the definition of the scheme has the following properties:

- 4. There are no $i, j \in \mathbb{N}_n$ such that $i < j < \sigma(i) < \sigma(j)$.
- 5. For some i < n we have $\sigma(i) = i + 1$.
- 6. The mappings s and σ are bijections and involutions without fixed points.
- 7. The number n is even.

The method of scheme for pseudo-metric and $\mathcal{V} \in {\mathcal{V}_a, \mathcal{V}_g}$ are due to the work of M. I. Graev [10]. The problem of the extension of pseudo-metrics on $F^a(X, \mathcal{V})$ for any quasi-variety \mathcal{V} of topological algebras was examined in [6]. In the case $\mathcal{V} \in {\mathcal{V}_a, \mathcal{V}_g}$ the notion of the scheme for pseudo-quasi-metrics was defined in [15]. We use the method of scheme from [15], in the general case, for any non-Burnside quasi-variety.

On a space X fix a continuous pseudo-quasi-metric ρ . Assume that $e \in X \subseteq F^a(X)$ and e is the identity of the group $F^a(X)$. For any $x, y \in X$ we put $\rho^*(x^{-1}, y^{-1}) = \rho(y, x), \ \rho^*(x^{-1}, y) = \rho^*(x^{-1}, e) + \rho^*(e, y)$ and $\rho^*(x, y^{-1}) = \rho^*(y^{-1}, x) = \rho^*(x, e) + \rho^*(e, y^{-1})$. Obviously, ρ^* is a pseudo-quasi-metric on \widetilde{X} .

For any $b \in F^{a}(X)$ we put $N_{\rho}(b) = inf\{\frac{1}{2}\sum\{\rho^{*}(x_{i}^{-1}, x_{s(i)}) : i \leq 2m\} : m \in \mathbb{N}, s : N_{m} \to N_{m} \text{ is a scheme, } b = [x_{1}x_{2}...x_{m}]\}.$

As in [15] we say that the word $x_1x_2...x_n$ is almost irreducible if:

 $-x_i \in Sup^*([x_1, x_2, ..., x_n])$ for any $i \le n$;

- any word $y_1y_2...y_n$ which is strongly equivalent with the word $x_1x_2...x_n$ does not contain two consecutive symbols of the form $u^{-1}u, u \in \widetilde{X} \setminus \{e\}$.

If $b \in F^a(X)$ and $2m \ge l(b) \ge 1$, then $b = [x_1, x_2, ..., x_{2m}]$ for some almost irreducible word $x_1x_2...x_{2m}$. The next property of the function N_ρ is important.

Lemma 2 (see [15], Claim 2). If $b \in F^a(X)$ and l(b) = n, then there exist an almost irreducible word $x_1x_2...x_{2m}$ and a scheme $s : \mathbb{N}_m \to \mathbb{N}_m$ such that:

- 1. $b = [x_1 x_2 \dots x_{2m}]$ and $n \le 2m \le 2n$;
- 2. $2N_{\rho}(b) = \sum \{\rho^*(x_i^{-1}, x_{s(i)}) : i \le 2m\}.$

Proof. Obviously, we can assume that $b \neq e$. Let $b = [x_1, x_2 \dots x_{2m}]$ and $s : \mathbb{N}_{2m} \to \mathbb{N}_{2m}$ be a scheme.

Assume that the word $x_1x_2...x_m$ is not almost irreducible. Then we can suppose that there exist i < 2m and $u \in \widetilde{X}$ such that $x_i = u$ and $x_{i+1} = u^{-1}$. If h(i) = i+1, then we put $A = \{1, ..., i - 1, i + 2, ..., 2m\}$ and $\sigma = s|A$. Then σ is a scheme for the element $x = [x_1x_2...x_{i-1}x_{i+2}...x_{2m}]$ and respective word $x_1x_2...x_{i-1}x_{i+2}...x_{2m}$, |A| = 2m - 2 and $\sum \{\rho^*(x_j^{-1}, x_{\varphi(j)}) : j \in A\} \leq \sum \{\rho^*(x_i^{-1}, x_{h(i)}) : i \in \mathbb{N}_{2m}\}$. If $r = s(i) \neq i+1$ and t = s(i+1), then $A = \{1, ..., i - 1, i + 2, ..., 2m\}, \sigma(j) =$ s(j) for $j \in \mathbb{N}_{2m} \setminus \{i, i + 1, r, t\}$ and $\sigma(r) = t$, $\sigma(t) = r$. Since $\rho^*(x_r^{-1}, x_t) +$ $\rho^*(x_t^{-1}, x_r) \leq \rho^*(x_1^{-1}, u^{-1}) + \rho^*(u^{-1}, x_r) + \rho^*(x_r^{-1}, u) + \rho^*(u, x_1) = \rho^*(x_t^{-1}, x_{i+1}) +$ $\rho^*(x_i^{-1}, x_r) + \rho^*(x_r^{-1}, x_i) + \rho^*(x_{i+1}^{-1}, x_t), \sigma$ is a scheme and $\sum \{\rho^*(x_j^{-1}, x_{\varphi(j)}) : j \in$ $A\} \leq \sum \{\rho^*(x_i^{-1}, x_{h(i)}) : i \in \mathbb{N}_{2m}\}$. Thus we can assume that the word $x_1x_2...x_{2m}$ is almost irreducible and for any $i \leq 2m$ we have $x_{i+1} \neq x_i^{-1}$. In particular, if i < 2m, then $x_i \cdot x_{i+1} \neq e$. In this conditions, the word $x_1x_2...x_{2m}$ is almost irreducible and $2m \leq 2n = 2l(a)$. Since there exists a finite set of almost irreducible words of the length $\leq 2l(b)$ which represents the given element $b \in F^a(X)$, the proof is complete. \Box

Lemma 3 (see [15], Claim 4). $N_{\rho}(x^{-1}y) = \rho(x, y)$ for all $x, y \in X$.

Proof. Fix $x, y \in X$. If x = y, then $x^{-1} \cdot y = y \cdot x^{-1} = e, N_{\rho}(e) = 0 = \rho(x, y)$. Assume that $x \neq y$. Then $l(x^{-1}y) = 2$ and for the element $b = x^{-1}y$ there exist only the next possible almost irreducible words of the length ≤ 4 : $x^{-1}y, ex^{-1}ey, x^{-1}eye, ex^{-1}ye, y^{-1}x, ey^{-1}ex, y^{-1}exe, ey^{-1}xe$. If $\mathcal{V} \neq \mathcal{V}_a$, then there exist only the next possible almost irreducible words of the length ≤ 4 : $x^{-1}y, ex^{-1}eye, ex^{-1}ye$. The direct calculation permits to obtain $N_{\rho}(x^{-1}y) = \rho(x, y)$. **Lemma 4** (see [15], Claim 3). The function N_{ρ} has the the next properties: 1. $N_{\rho}(e) = 0$ and $N_{\rho}(b) \ge 0$ for any $b \in F^{a}(X)$. 2. $N_{\rho}(a \cdot b) \le N_{\rho}(a) + N_{\rho}(b)$ for any $a, b \in F^{a}(X)$. 3. $N_{\rho}(xbx^{-1}) = N_{\rho}(b)$ for any $b, x \in F^{a}(X)$.

Proof. Assertions (1) and (2) are obvious. Let $b_1b_2...b_{2m}$ be an almost irreducible word, $b = [b_1b_2...,b_{2m}]$, $s : \mathbb{N}_{2m} \to \mathbb{N}_{2m}$ be a scheme and $2\mathbb{N}_{\rho}(b) = \sum\{\rho^*(b_i^{-1}, b_{s(i)}) : i \in \mathbb{N}_{2m}\}$. Fix the irreducible word $x_1x_2...x_k$. Put $x = [x_1, x_2, ..., x_k], y_{2m+1}y_{2m+2}...y_{2m+k} = x_1x_2...x_k, y_{2m+k+1}...y_{2m+2k} = x_k^{-1}, A = \{1, 2, ..., 2m, ..., 2m + 2k\}, \varphi(i) = s(i)$ for $i \leq 2m$ and $\varphi(2m + i) = 2m + 2k - i + 1$ for $i \leq k$.

Let $y_1, y_2, ..., y_{2m} = b_1, b_2, ..., b_{2m}$. Then φ is a scheme on A for the element $x^{-1}bx$, $x_{-1}bx = [y_{2m+k+1}...y_{2m+2k}y_1...y_{2m}y_{2m+1}...y_{2m+k}]$ and $\sum \{\rho^*(y_j^{-1}, y_{h(j)}) : j \in A\} = \sum \{\rho^*(b_i^{-1}, b_{h(j)}) : i \in \mathbb{N}_m\}$. Hence $N_\rho(x^{-1}bx) \leq \mathbb{N}_\rho(b)$ and $N_\rho(b) = M_\rho((xx^{-1})b(xx^{-1})) \leq \mathbb{N}_\rho(x^{-1}bx)$. The property (3) is proved. \Box

Lemma 5. The function $d(x, y) = N_{\rho}(x^{-1}y)$ is an invariant pseudo-quasi-metric on $F^{a}(X)$. Moreover, $d(x, y) \leq \widehat{\rho}(x, y)$ and $N_{\rho}(b) \leq \widehat{\rho}(e, b)$, where $\widehat{\rho}$ is the maximal extension of ρ on $F^{a}(X)$, for any $x, y, b \in F^{a}(X)$.

Proof. Really, $d(xa, xb) = N_{\rho}(a^{-1}x^{-1}xb) = N_{\rho}(a^{-1}b) = d(a, b)$ and $d(ax, bx) = N_{\rho}(x^{-1}a^{-1}bx) = N_{\rho}(a^{-1}b) = d(a, b)$. Since $d(x, y) = \rho(x, y)$ for $x, y \in X$, we have $d(x, y) \leq \widehat{\rho}(x, y)$ for all $x, y \in F^{a}(X)$. The proof is complete. \Box

Proposition 11. Let r > 0 and X be a linear ordered space with the topology generated by the quasi-metric $\rho(x, y) = r$ if x < y and $\rho(x, y) = 0$ if $y \leq x$. Then the maximal extension d of ρ on $F^a(X, e)$ is a quasi-metric for any point $e \in X$.

Proof. We can assume that r = 1.

Let $e \in X$ and $e_1 \notin X$. We put $Y = X \cup \{e_1\}$, $\rho(e_1, e_1) = 0$ and $\rho(x, e_1) = \rho(e_1, x) = 1$ for any $x \in X$. Then (X, ρ) is a quasi-metric subspace of the quasimetric space (Y, ρ) . On $F^a(Y) = F^a(Y, \mathcal{V}, e_1)$ consider the function $\mathbb{N}_{\rho}(y)$.

Claim 1. If $b \in F^a(Y) \setminus \{e_1\}$, then $\mathbb{N}_{\rho}(b) + \mathbb{N}_{\rho}(b^{-1}) \neq 0$.

Proof. Assume that $\mathbb{N}_{\rho}(b) + \mathbb{N}_{\rho}(b^{-1}) = 0$, $b = [b_1b_2...b_n]$ and the word $b_1b_2...b_n$ is irreducible. Then $b_1, b_2, ..., b_n \in \widetilde{X} \subseteq \widetilde{Y}$. Since $\mathbb{N}_{\rho}(b) = 0$, there exists an almost irreducible word $x_1x_2...x_{2m}$ of the minimal length and a scheme $s : \mathbb{N}_{2m} \to \mathbb{N}_{2m}$ such that $b = [x_1x_2...x_{2m}]$ and $\sum \{\rho^*(x_i^{-1}, x_{s(i)}) : i \leq 2m\} = 0$. From the minimality of the length of the word $x_1x_2...x_n$ it follows that $x_i \neq e_1$ for any $i \leq 2m$. Really, if $x_i = e_1$, then $x_{s(i)} \neq e_1$ and $\rho^*(x_{s(i)}^{-1}, x_i) = 1$, a contradiction. Thus the words $x_1x_2...x_{2m}$ and $b_1b_2...b_n$ are equivalent, n = 2m is an even number and s is a scheme on \mathbb{N}_{2m} for the element b. We can assume that $x_i = b_i$ for any $i \leq n$. Therefore $\sum \{\rho^*(b_i, b_{s(i)}) : i \leq n\} = 0$. We can assume that for any $i, j \in \{1, 2, ..., n\}$ the sets [i, s(i)], [j, s(j)] are either disjoint or one contains the other. Since $\mathbb{N}_{\rho}(b^{-1}) = 0$ and $b = [b_n^{-1}...b_2^{-1}b_1^{-1}]$, there exists a scheme $q : \mathbb{N}_n \to \mathbb{N}_n$ such that $\sum \{\rho^*(b_i, b_{q(i)}^{-1}) : i \leq n\} = 0$. Since the word $b_1 b_2 ... b_n$ is irreducible, $b_{i+1} \neq b_i^{-1}$ for any i < n.

We affirm that s = q. Assume that $i_1 \in \mathbb{N}$ and $s(i_1) \neq q(i_1)$. Put $j_1 = s(i_1)$. Since $s(j_1) \neq q(j_1)$ and $\rho^*(x_i^{-1}, x_{j_1}) = \rho^*(j_i^{-1}, x_{i_1}) = 0$, $X \cap \{x_{i_1}, x_{j_1}\} \neq \emptyset$ and $X^{-1}\{x_{i_1}, x_{j_1}\} \neq \emptyset$. We can assume that $x_{i_1} \in X$ and $x_{j_1} \in X^{-1}$. For any $k \geq 1$ we put $i_{k+1} = q(j_k)$ and $j_{k+1} = s(i_{k+1})$. For any k < 1 we have $x_{j_k} \neq x_k \neq x_{i_{k+1}}$, $\rho^*(x_k^{-1}, x_{k_k}) = \rho^*(x_{j_k}^{-1}, x_{i_{k+1}}) = \rho^*(x_{j_{k+1}}, x_{j_k}^{-1})$. Let k be the first number for which $\{i_{k+1}, j_{k+1}\} \cap \{i_1, j_1, i_2, j_2, ..., i_k, j_k\} \neq \emptyset$. Suppose that $i_{k+1} = q(j_k) \in \{i_1, j_1, ..., i_k, j_k\}$. If $i_{k+1} = i_p$ for some $p \leq k$, then $j_k = q(i_{k+1}) = q(i_p) = j_{p-1}$, a contradiction. If $i_{k+1} = i_p$ for some $p \leq k$, then $j_k = s(i_{k+1}) = h(j_p) = i_{p+1}$. Since $i_k \neq j_k$, we have p + 1 < k and $j_k \in \{i_{p+1}, j_{p+1}\}$, a contradiction. Now suppose that $j_{k+1} \in \{i_1, j_1, ..., i_k, j_k\}$. If $j_{k+1} = j_p$ for some $p \leq k$, then $i_{k+1} = s(j_{k+1}) = s(j_p) = j_p$, a contradiction. If $j_{k+1} = j_p$ for some $p \leq k$, then $i_{k+1} = s(i_{k+1}) = s(j_p) = i_p$, a contradiction. Therefore q(i) = s(i) for any $i \leq n$. There exists i < n such that h(i) = q(i) = i+1. Let $x_i \in X$. Then $x_{i+1} \in X^{-1}$. Since $\rho^*(x_{i+1}^{-1}, x_i) = \rho^*(x_{i+1}^{-1}) = 0$, we have $x_i \leq x_{i+1}^{-1}$ and $x_i \cdot x_{i+1} = e$, a contradiction with the condition of irreducibility of the word $b_1b_2...b_n$. Claim 1 is proved.

Claim 2. On $F^a(Y, e_1)$ there exists an invariant quasi-metric such that: - $d_1(x, y) = \rho(x, y)$ for any $x, y \in X$; - $d_1(x, y) \in \{0, 1\}$ for any $x, y \in F^a(Y, e_1)$.

Proof. Let $d_2(x, y) = N_{\rho}(x^{-1}y)$ for all $x, y \in F^a(Y, e_1)$. By construction, $d_2(x, y) \ge 1$ provided $d_2(x, y) > 0$. From this fact and the Claim 1 it follows that $d_1(x, y) = min\{1, d_2(x, y)\}$ is the desired quasi-metric. \Box

Claim 3. Let $e \in X \subseteq Y$. Then on $F^a(Y, e)$ there exists a quasi-metric ρ_1 such that:

- $\rho_1(x, y) = \rho(x, y)$ for any $x, y \in X$; - $\rho_1(x, y) \in \{0, 1\}$ for any $x, y \in F^a(Y, e)$.

Proof. Let d_1 be quasi-metric with the properties from Claim 2. In the proof of Proposition 4 it was established that there exists an isomorphism $\varphi : F^a(X, e) \to F^a(Y, e_1)$ such that $\varphi(x) = xe^{-1}$ for any $x \in Y$. We put $\rho_1(x, y) = d_1(\varphi(x), \varphi(y))$ for any $x, y \in F^a(Y, e)$. Since the quasi-metric d_1 is continuous on the space $(F^a(Y, e_1), T(y, e_1))$, the quasi-metric ρ_1 is continuous on the space $(F^a(Y, e), T(Y, e))$. For any $x, y \in Y$ we have $\rho_1(x, y) \in \{0, 1\}$. Let $x, y \in X$ and x < y. Then $\rho(y, x) = 0, \ \rho(x, y) = 1$ and $1 \in \{\rho_1(x, y), \rho(y, x)\}$. Since the quasi-metric ρ_1 is continuous, we have $\rho_1(x, y) = 1 = \rho(x, y)$ and $\rho_1(y, x) = 0 = \rho(y, x)$. Claim 3 is proved. \Box

Since $F^{a}(Y, e)$ is a subgroup of the group $F^{a}(Y, e)$, the proof is complete.

Corollary 5. For any $n \in \mathbb{N}$ the maximal extension d_n of the quasi-metric ρ_n on $F^a(E_n)$ is a quasi-metric.

Corollary 6. The maximal extension d_{∞} of the quasi-metric ρ_{∞} on $F^{a}(E_{\infty})$ is a quasi-metric.

From Corollary 5 it follows

Corollary 7. For any pointed T_0 -space X the free group F(X) is abstract free and $e_X : X \to F(X)$ is an embedding. Moreover on F(X) there exists a topology T which is generated by some family of almost invariant pseudo-quasi-metrics and e_X is an embedding of X into (F(X), T).

9 On quasi-varities of paratopological groups

Let S be a set of properties of paratopological groups, any paratopological group with invariant base has the properties S, W be a non-trivial S-complete quasi-variety of paratopoligical groups. Denote by V the S-complete variety of paratopoligical groups generated by the quasi-variety W. We say that W is a Burnside quasi-variety if V is a Burnside variety.

A quasi-variety \mathcal{W} is a non-Burnside quasi-variety if and only if $\mathbb{Z} \in \mathcal{W}$.

The next assertions affirm that the free objects of spaces in quasi-varieties are the same as in varieties.

Proposition 12. For any pointed space X:

1. There exists an isomorphism $\varphi : F^a(X, \mathcal{V}) \longrightarrow F^a(X, \mathcal{W})$ such that $\varphi(x) = x$ for any $x \in X$.

2. There exists a topological isomorphism $\varphi : F(X, \mathcal{V}) \longrightarrow F(X, \mathcal{W})$ such that $\psi(e_{(X,\mathcal{V})}(x)) = e_{(X,\mathcal{W})}(x)$ for any $x \in X$.

Proof. The assertion 1 is obvious.

Fix a space X. Let $(F(X, \mathcal{V}), e_{(X, \mathcal{V})})$ be the free object of the space X in the class \mathcal{V} and $(F(X, \mathcal{W}), e_{(X, \mathcal{W})})$ be the free object of the space X in the class \mathcal{W} . There exists a continuous homomorphism $\varphi : F(X, \mathcal{V}) \longrightarrow F(X, \mathcal{W})$ such that $\varphi(x) = x$ for any $x \in X$.

Case 1. $\mathbb{Z} \notin \mathcal{W}$.

In this case $\mathcal{W} \subseteq \mathcal{B}_n$ for some $n \in \mathbb{N}$. By virtue of Proposition 3, \mathcal{W} is a quasivariety of topological groups. For quasi-varieties of topological groups the assertions of Proposition 12 are known (see [5,8]).

Case 2. $\mathbb{Z} \in \mathcal{W}$.

In this case the variety \mathcal{V} is not a Burnside variety. Then, by virtue of Corollary 7, the free objects $F(X, \mathcal{V})$, $F(X, \mathcal{W})$ are abstract free and the mappings $e_{(X,\mathcal{V})}$ and $e_{(X,\mathcal{W})}$ are embeddings. The proof is complete.

Theorem 2. If $\mathbb{Z} \in \mathcal{W}$, then for any pointed space X we have:

1. The free topological group $(F(X, W), e_X)$ is abstract free and the mapping e_X is an embedding.

2. If ρ is a continuous pseudo-quasi-metric on the space X, then:

(2a) the maximal extension $\hat{\rho}$ of the pseudo-quasi-metric ρ on F(X, W) is a continuous invariant pseudo-quasi-metric;

(2b) $\rho(x,y) = \widehat{\rho}(e_X(x), e_X(y))$ for all $x, y \in X$; (2c) if $x, y \in F(X, W)$ and ρ is a quasi-metric on $Sup^*(x) \cup Sup^*(y)$, then $\widehat{\rho}(x,y) + \widehat{\rho}(y,x) > 0$;

(2d) if ρ is a quasi-metric, then $\hat{\rho}$ is a quasi-metric too.

Proof. We can assume that $e_X(x) = x$ for any $x \in X$ and $X \subseteq (F(X, W))$.

On (F(X, W) consider the function $N_{\rho}(b)$ and the pseudo-quasi-metric $d(x, y) = N_{\rho}(x^{-1}y)$. By virtue of Lemma 5, d is an invariant pseudo-quasi-metric. From Lemma 3 it follows that $d(x, y) = N_{\rho}(x^{-1}y) = \rho(x, y)$ for all $x, y \in X$. Thus $d(x, y) \leq \hat{\rho}(x, y)$ for all $x, y \in F(X, W)$ and $d(x, y) = \hat{\rho}(x, y)$ for all $x, y \in X$.

Let $x, y \in F(X, W)$ and ρ be a quasi-metric on $Z = Sup^*(x) \cup Sup^*(y)$. We put $b = x^{-1}y$. Then $Sup^*(b) \subseteq Z$. Let $r = min\{\rho(u, v) : u, v \in Z, \rho(u, v) > 0\}$. Since the space Z is finite, we have r > 0 and there exists an ordering on Z such that $\rho(u, v) > 0$ provided u < v. We have $Z \subseteq F^a(Z, W) \subseteq F(X, W)$. By virtue of Proposition 11, $N_{\rho}(c) + N_{\rho}(c^{-1}) > 0$ for each $c \in F^a(Z, W)$. Since $b \in F^a(Z, W)$, $0 < N_{\rho}(b) + N_{\rho}(b^{-1}) = d(x, y) + d(y, x) \leq \hat{\rho}(x, y) + \hat{\rho}(y, x)$. The assertions 1, (2a), (2b) and (2c) are proved. The assertion (2d) follows from the assertion (2c). The proof is complete.

10 Free groups of quasi-uniform spaces

A quasi-uniformity on a set X is a family \mathcal{U} of entourages of the diagonal $\Delta(X) = \{(x, x) : x \in X\}$ and a family \mathcal{P} of the pseudo-quasi-metrics on X, which satisfies the following conditions:

(QU1) If $V \in \mathcal{U}$ and $V \subseteq W \subseteq X \times X$, then $V \in \mathcal{U}$.

(QU2) If $V, W \in \mathcal{U}$, then $V \cap W \in \mathcal{U}$.

(QU3) If $V \in \mathcal{U}$, then there exist $\rho \in \mathcal{P}$ and r > 0 such that $\{(x,y) \in X \times X : \rho(x,y) < r\} \subseteq V$.

(QU4) $\{(x, y) \in X \times X : \rho(x, y) < r\} \in \mathcal{U} \text{ for all } \rho \in \mathcal{P} \text{ and } r > 0.$

(QU5) If $\rho_1, \rho_2 \in \mathcal{P}$, then there exists $\rho \in \mathcal{P}$ such that $max\{\rho_1(x, y), \rho_2(x, y)\} \le \rho(x, y)$ for all $x, y \in X$.

(QU6) If $x, y \in X$ and $x \neq y$, then $\rho(x, y) + \rho(y, x) > 0$ for some $\rho \in \mathcal{P}$.

Obviously, the quasi-uniformity ${\mathcal U}$ is generated by a family of pseudo-quasi-metrics ${\mathcal P}.$

Fix a non-trivial I_p -complete quasi-variety \mathcal{W} of paratopological groups.

Let $G \in W$. Denote by QP(G) the family of all continuous pseudo-quasi-metrics on the space G, $LQP(G) = \{d \in QP(G) : d \text{ is left invariant}\}$, $RQP(G) = \{d \in QP(G) : d \text{ is right invariant}\}$ and $IQP(G) = LQP(G) \cap RQP(G)$.

The pseudo-quasi-metrics LQP(G) generate the left quasi-uniformity \mathcal{U}_l on Gand the pseudo-quasi-metrics RQP(G) generate the left quasi-uniformity \mathcal{U}_r on G. These quasi-uniformities generate the topology of the space G. If G is a paratopological group with the invariant base at the identity e, then $\mathcal{U}_l = \mathcal{U}_r$.

Assume that \mathcal{W} is not a Burnside quasi-variety. Fix a quasi-uniformity pointed space (X, \mathcal{U}) generated by the pseudo-quasi-metrics \mathcal{P} . For any $\rho \in \mathcal{P}$ denote by $\hat{\rho}$

its maximal extension on F(X, W). We put $\widehat{\mathcal{P}} = \{\widehat{\rho} : \rho \in \mathcal{P}\}$. The family $\widehat{\mathcal{P}}$ generates an invariant quasi-uniformity on F(X, W).

11 Free quasitopological groups

A class \mathcal{V} of quasitopological groups is called a *C*-complete quasi-variety of quasitopological groups if:

- (QF1) the class \mathcal{V} is multiplicative;
- (QF2) if $G \in \mathcal{V}$ and A is a subgroup of G, then $A \in \mathcal{V}$;
- (QF3) every space $G \in \mathcal{V}$ is a T_0 -space;

(QF4) if $G \in \mathcal{V}$, \mathcal{T} is a compact T_0 -topology on G and (G, \mathcal{T}) is a quasitopological group, then $(G, \mathcal{T}) \in \mathcal{V}$.

Lemma 6. Let G be a quasitopological group. If G is a T_0 -space, then G is a T_1 -space. *Proof.* It is obvious.

On any set X there exists the profinite topology $\mathfrak{T}_{pf}(X) = \{X, \emptyset\} \cup \{X \setminus F : F$ is a finite set. The space $(X, \mathfrak{T}_{pf}(X))$ is a compact T_1 -space.

Lemma 7. Let G be a group. Then $(G, \mathcal{T}_{pf}(G))$ is a quasitopological group.

Proof. It is obvious.

Theorem 3. Let W be a non-trivial C-complete quasi-variety of quasitopological groups. For any T_1 -space X the free group F(X, W) is abstract free and $e_X : X \to F(X, W)$ is an embedding.

Proof. For any infinite cardinal τ we fix a group $G_{\tau} \in \mathcal{W}$ of the cardinality τ with the profinite topology $\mathcal{T}_{pf}(G_{\tau})$. Further we fix an infinite group $G_0 \in \mathcal{W}$. Let F be a non-empty closed subset of the space X and $b \notin F$.

Case 1. The set $X \setminus F$ is finite.

In this case the sets F and $X \setminus F$ are open-and-closed. There exists a mapping $g: X \longrightarrow G_0$ such that $g(p_X) = e, g(F)$ and $g(X \setminus F)$ are singletons and $g^{-1}(g(F)) = F$. Then the mapping g is continuous and $g(b) \notin cl_{G_0}g(F) = g(F)$.

Case 2. The set $X \setminus F$ is infinite.

Let $\tau = |X \setminus F|$. There exists a mapping $g: X \longrightarrow G$ such that $g(X) = G_{\tau}$, $g^{-1}(g(F)) = F$, g(F) is a singleton $g(p_X) = e$ and $g(x) \neq g(y)$ for distinct points $x, y \in X \setminus F$. Since X is a T_1 -space, the mapping g is continuous and $g(b) \notin cl_{G_0}g(F) = g(F)$.

Therefore the mapping $e_X : X \to F(X, W)$ is an embedding. Thus we can assume that $e = p_X \in X \subseteq F(X, W)$.

Assume that $e = p_X \in X \subseteq F^a(X, W)$. On F(X, W) we consider the profinite topology $\mathfrak{T}_{pf}(F^a(X, W))$. Then the mapping $a_X : X \longrightarrow F^a(X, W)$ is a continuous injection. Therefore there exists a continuous homomorphism $\psi : F(X, W) \rightarrow$ $F^a(X, W)$ such that $\psi(x) = x$ for any $x \in X$. Hence ψ is an isomorphism. The proof is complete. \Box

12 Free left topological groups

A group G with topology is called a *left* (respectively, *right*) topological group if the left translation $L_a(x) = ax$ (respectively, the right translation $R_a(x) = xa$) is continuous for any $a \in G$.

A class \mathcal{V} of left topological groups is called *an LI-complete quasi-variety* of left topological groups if:

- (LF1) the class \mathcal{V} is multiplicative;
- (LF2) if $G \in \mathcal{V}$ and A is a subgroup of G, then $A \in \mathcal{V}$;
- (LF3) every space $G \in \mathcal{V}$ is a T_0 -space;

(LF4) if $G \in \mathcal{V}$, \mathcal{T} is a compact T_0 -topology on G and (G, \mathcal{T}) is a left topological group, then $(G, \mathcal{T}) \in \mathcal{V}$;

(SF5) if $G \in \mathcal{V}$, \mathcal{T} is a T_0 -topology on G and (G, \mathcal{T}) is a paratopological group with an invariant base, then $(G, \mathcal{T}) \in \mathcal{V}$.

From Theorem 2 it follows

Corollary 8. Let W be a non-trivial LI-complete quasi-variety of left topological groups and $\mathbb{Z} \in W$. Then for any pointed space X the free left topological group $(F(X, W), e_X)$ is abstract free and the mapping e_X is an embedding.

From Theorem 3 it follows

Corollary 9. Let W be a non-trivial LI-complete quasi-variety of left topological groups, $n \in \mathbb{N}$ and $x^n = e$ for any $x \in G$ and $G \in W$. Then for any pointed T_1 -space X the free left topological group $(F(X, W), e_X)$ is abstract free and the mapping e_X is an embedding.

The following assertion completes Corollary 9.

Lemma 8. Let G be a left topological group and for any $x \in G$ there exists $n(x) \in \mathbb{N}$ such that $x^{n(x)} = e$. Then G is a T_1 -space.

Proof. Any finite T_0 -space contains a closed one-point subset. Thus any finite left topological group is a T_1 -space. By conditions, any point $a \in G$ is contained in a finite subgroup $G(a) = \{a^i : 0 \le i \le n(a)\}$. Thus $\{e\}$ is a closed subset of the group G and G is a T_1 -space.

Remark 3. The similar assertions are true for classes of right topological groups.

13 Free semitopological groups

A class \mathcal{V} of semitopological groups is called *a CI-complete quasi-variety* of semi-topological groups if:

- (SF1) the class \mathcal{V} is multiplicative;
- (SF2) if $G \in \mathcal{V}$ and A is a subgroup of G, then $A \in \mathcal{V}$;

(SF3) every space $G \in \mathcal{V}$ is a T_0 -space;

(SF4) if $G \in \mathcal{V}, \mathcal{T}$ is a compact T_0 -topology on G and (G, \mathcal{T}) is a quasitopological group, then $(G, \mathcal{T}) \in \mathcal{V}$;

(SF5) if $G \in \mathcal{V}$, \mathfrak{T} is a T_0 -topology on G and (G, \mathfrak{T}) is a paratopological group with an invariant base, then $(G, \mathfrak{T}) \in \mathcal{V}$.

From Theorem 2 it follows

Corollary 10. Let W be a non-trivial CI-complete quasi-variety of semitopological groups and $\mathbb{Z} \in W$. Then for any pointed space X the free topological group $(F(X, W), e_X)$ is abstract free and the mapping e_X is an embedding.

From Theorem 3 it follows

Corollary 11. Let W be a non-trivial CI-complete quasi-variety of semitopological groups, $n \in \mathbb{N}$ and $x^n = e$ for any $x \in G$ and $G \in W$. Then for any pointed T_1 -space X the free topological group $(F(X, W), e_X)$ is abstract free and the mapping e_X is an embedding.

Lemma 6 completes Corollary 11.

References

- ARHANGEL'SKII A. V., CHOBAN M. M. Completeness type properties of semitopological groups, and the theorems of Montgomery and Ellis. Topology Proceed., 2011, 37, 33–60.
- [2] ARHANGEL'SKII A. V., CHOBAN M. M., KENDEROV P. S. Topological games and continuity of group operations. Topol. Appl., 2010, 157, 2542–2552.
- [3] ARHANGELSKII A. V., TKACHENKO M. G. Topological groups and related structures. Atlantis Press. Amsterdam-Paris, 2008.
- BEL'NOV V. K. Dimension of topological homogeneous spaces and free homogeneous spaces. Dokl. Akad. Nauk SSSR, 1978, 238:4, 781–784.
- [5] CHOBAN M. On the theory of topological algebraic systems. Trans. Moscow Math. Soc., 1986, 48, 115–159 (Russian original: Trudy Mosk. Matem. Ob-va, 1985, 48, 106–149).
- [6] CHOBAN M. The theory of stable metrics. Math. Balkanica, 1988, 2, 357–373.
- [7] CHOBAN M. General conditions of the existence of free algebras. Acta Comment. Univ. Tartuensis, 1989, 836, 157–171.
- [8] CHOBAN M. Some topics in topological algebra. Topol. Appl., 1993, 54, 183-202.
- [9] ENGELKING R. General Topology. PWN. Warszawa, 1977.
- [10] GRAEV M. I. Free topological groups. Trans. Moscow Math. Soc., 1962, 8, 303–364 (Russian original: Izvestia Akad. Nauk SSSR, 1948, 12, 279–323).
- [11] KAKUTANI SH. Free topological groups and infinite direct product topological groups. Proceed. Imp. Acad. Tokyo, 1944, 20, 595–598.

- MAL'CEV A. I. Free topological algebras. Trans. Moscow Math. Soc., 1961, (2) 17, 173–200.
 (Russian original: Izvestia Akad. Nauk SSSR 21 (1957), 171-198).
- [13] MARKOV A. A. On free topological groups. Trans. Moscow Math. Soc., 1962, 8, 195–272 (Russian original: Izvestia Akad. Nauk SSSR 9 (1945), 3-64).
- [14] MISHCHENKO A. S. On the dimension of groups with left-invariant topologies. Dokl. Akad. Nauk. SSSR, 1964, 159, 753–754.
- [15] ROMAGUERA S., SANCHIS M., TKACHENKO M. Free paratopological groups. Topology Proceed., 2003, 27:2, 613–640 (Topology Atlas, Preprint, 529, 2003, 21 p.).

MITROFAN M. CHOBAN, LIUBOMIR L. CHIRIAC Department of Mathematics Tiraspol State University MD-2069, Chişinău Moldova E-mail: mmchoban@gmail.com Received March 9, 2013