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On free groups in classes of groups with topologies
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Abstract. We study properties of free groups in distinct classes of groups with
topologies. The conditions under which the quasi-metric on the space of generators
X is extended to an invariant quasi-metric on a free group F (X, V) in the fixed quasi-
variety V of groups with topologies are given. This result is applied to the study:
– of free paratopological groups;
– of free quasitopological groups;
– of free semitopological groups;
– of free left topological groups.
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1 Introduction

By a space we understand a topological T0-space. We use the terminology from
[3, 9]. Let N = {1, 2, ...}. By clXH we denote the closure of a set H in a space X,
|A| is the cardinality of a set A.

A paratopological group is a group endowed with a topology such that the mul-
tiplication is jointly continuous. Recall that a semitopological group is a group with
a topology such that the multiplication is separately continuous. Every paratopo-
logical group is a semitopological group. A semitopological group with a continuous
inverse operation x → x−1 is called a quasitopological group. A topological group is
a paratopological group with a continuous inverse operation x→ x−1.

The space S of reals R with the topology generated by the open base consisting
of the sets [a, b) = {x ∈ R : a ≤ x < b}, where a, b ∈ R and a < b, is called the
Sorgenfrey line [9]. The Sorgenfrey line has the following properties [3]:

– S is an Abelian paratopological group with the Baire property;

– S is a hereditarily Lindelöf first-countable hereditarily separable non-metrizable
space;

– S does not admit a structure of a topological group.

In this paper we study properties of free paratopological groups in a given
quasi-variety of paratopological groups W. The general theorem of existence of
free paratopological (semitopological, quasitopological) groups in distinct classes of
groups with topologies was proved in [7]. We follow [5, 7, 8, 11, 12] for the concept
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of a free object. The paratopological topology on a free group F (X,W) is con-
structed by the Markov–Graev method [10, 13] developed in [15] for pseudo-quasi-
metrics. We develop this method for free groups in the non-Burnside quasi-varieties
of paratopological groups. In [15] the authors use the method of left (right) in-
variant pseudo-quasi-metrics. Since the topology generated by left (right) invariant
pseudo-quasi-metrics may not be a paratopological topology [3, 4, 14,15], this point
of view may create dangerous moments. For this we use the method of invariant
pseudo-quasi-metrics. The method of invariant pseudo-metrics on free objects was
developed in [6, 10].

There exist distinct conditions under which a paratopological topology on a
group is topological (see the references in [1–3, 15]). If G is a paratopological
group and xn = e for some natural number n, then G is a topological group. By
virtue of this fact, the method of invariant pseudo-quasi-metrics is useful in the non-
Burnside quasi-varieties of paratopological groups. In the Burnside quasi-varieties
of paratopological groups any invariant pseudo-quasi-metric is a pseudo-metric.

2 Quasi-metrics on groups

A function ρ : X × X → R is called a pseudo-quasi-metric if ρ(x, x) = 0 and
0 ≤ ρ(x, z) ≤ ρ(x, y) + ρ(y, z) for all x, y, z ∈ X. If ρ is a pseudo-quasi-metric and
ρ(x, y) + ρ(y, x) > 0 for all distinct x, y ∈ X, then ρ is called a quasi-metric.

Any pseudo-quasi-metric ρ generates a topology T(ρ) with the open base
{B(x, ρ, r) = {y ∈ X : ρ(x, y) < r} : x ∈ X, r > 0}. The family P of pseudo-
quasi-metric generates the topology T(P ) = sup{T(ρ) : ρ ∈ P}. If P = ∅, then
T(P ) = {∅,X}. The topology T(P) is a T0-topology if and only if for any two
distinct points x, y ∈ X we have ρ(x, y) + ρ(y, y) > 0 for some ρ ∈ P.

If ρ is a pseudo-quasi-metric on a space X and the sets from T(ρ) are open in
X, then we say that ρ is a continuous pseudo-quasi-metric.

Let U be an open subset of the space X. We put ρU (x, y) = 1 if x ∈ U and
y ∈ X \ U , and ρU (x, y) = 0 otherwise. Then T(ρU ) = {∅, U,X}. Hence, any
topology is generated by some family of pseudo-quasi-metrics.

Let G be a group and ρ be a pseudo-quasi-metric on G. The pseudo-quasi-metric
ρ is called:

– left (respectively, right) invariant if ρ(xa, xb) = ρ(a, b) (respectively, ρ(ax, bx) =
ρ(a, b)) for all x, a, b ∈ G;

– invariant if it simultaneously is both left and right invariant.

If ρ is a left (or right) invariant pseudo-quasi-metric on a paratopological group
G, then ρ is continuous if and only if the set B(e, ρ, r) is open in G for any r > 0.

If ρ is an invariant pseudo-quasi-metric on the group G, then (G,T(ρ)) is a
paratopological group and ρ(x−1, y−1) = ρ(y, x) for any x, y ∈ G. Thus any family
P of invariant pseudo-quasi-metrics generates a paratopological topology T(P) on
the group.

A pseudo-quasi-metric ρ on a group G is called a stable pseudo-quasi-metric if
ρ(x1x2, y1y2) ≤ ρ(x1y1) + ρ(x2y2) for all x1, x2, y1, y2 ∈ G [6].
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Proposition 1. Let ρ be a pseudo-quasi-metric on a group G. The next assertions
are equivalent:

1. ρ is invariant.

2. ρ is stable.

Proof. Is obvious.

If ρ is a pseudo-quasi-metric on a group G and ρ(x, y) = ρ(y, x) for all
x, y ∈ X, then ρ is a pseudo-metric. The pseudo-metric ρ is invariant if and only if
ρ(y−1, x−1) = ρ(x, y) = ρ(zx, zy) = ρ(xz, yz) for all x, y, z ∈ G.

Definition 1. A subset H of a group G is called invariant if xHx−1 = H for any
x ∈ G.

Proposition 2. Let U be an invariant open subset of a paratopological group G

with a topology T and e ∈ U . We put dU (x, y) = 0 if x−1y ∈ U and dU (x, y) = 1 if
x−1y 6∈ U . Then dU is an invariant pseudo-quasi-metric and T(dU ) ⊆ T.

Proof. If x ∈ U , then dU (e, x) = 0 and dU (e, y) = 1 if y 6∈ U . Thus B(e, dU , r) =
U for 0 < r ≤ 1 and B(e, dU , r) = G for r > 1. By construction, dU (x, y) =
dU (e, x−1y) = dU (e, (x−1z−1)(zy)) = dU (zx, zy) for all x, y, z ∈ G. Let x, y ∈ G.
Then x−1y ∈ U if and only if (z−1x−1)(yz) ∈ U for any z ∈ G. Thus dU (xz, yz) =
dU (x, y). The proof is complete. �

Corollary 1. For a paratopological group G the following assertions are equivalent:

1. The topology on G is generated by a family of invariant pseudo-quasi-metrics.

2. There exists an open base B of G at e such that any U ∈ B is invariant.

Remark 1. Let U be an open subset of a paratopological group G with a topology
T and e ∈ U . We put dlU (x, y) = 0 if x−1y ∈ U , and dlU (x, y) = 1 if x−1y 6∈
U , drU (x, y) = 0 if xy−1 ∈ U , and dU (x, y) = 1 if xy−1 6∈ U . Then dlU is a
continuous left invariant pseudo-quasi-metric on G and drU is a continuous right
invariant pseudo-quasi-metric on G. Thus:

- the topology of a paratopological group G is generated by a family of left
invariant pseudo-quasi-metrics;

- the topology of a paratopological group G is generated by a family of right
invariant pseudo-quasi-metrics.

As was established by A. S.Mishchenko [14] (see also [4]), the topology, generated
by a family of left (or right) invariant pseudo-metrics, may not be a paratopological
topology.

3 Free paratopological groups

A class V of groups with topologies is called a quasi-variety of groups if:

(F1) the class V is multiplicative;

(F2) if G ∈ V and A is a subgroup of G, then A ∈ V;

(F3) every space G ∈ V is a T0−space.
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Let S be a set of multiplicative and hereditary properties of groups with topolo-
gies. A class V of groups with topologies is called an S-complete quasi-variety of
groups with topologies if it is a quasi-variety with the next property:

(F4) if G ∈ V, then G is a group with topology with the properties S.

(F5) if G ∈ V and T is a T0-topology on G with the properties S, then (G,T ) ∈ V

too.

A quasi-variety V of paratopological groups is called an S-complete variety of
paratopological groups if it is an S-complete quasi-variety with the next property:

(F6) if g : A −→ B is a continuous homomorphism of a paratopological group
A ∈ V onto a T0-paratopological group B with the property S, then B ∈ V.

Denote by Ip the property to be a paratopological group with an invariant bases
at the identity e. If Sp is the property to be a paratopological group, then an
Sp-complete variety is called a complete variety and an Sp-complete quasi-variety is
called a complete quasi-variety of paratopological groups.

Let X be a non-empty topological space and V be a quasi-variety of groups with
topologies. In any space X the basic point pX ∈ X is fixed, i.e. any space is pointed.

A free group of a space X in a class V is a pair (F (X,V), eX ) with the properties:

– F (X,V) ∈ V, eX : X → F (X,V) is a continuous mapping and e = eX(pX) is
the neutral element of the group F (X,V);

– the set eX(X) generates the group F (X,V);

– for any continuous mapping f : X → G ∈ V, where f(pX) = e, there exists a
unique continuous homomorphism f̄ : F (X,V) → G such that f = f̄ ◦ eX .

An abstract free group of a space X in the class V is a pair (F a(X,V), aX ) with
the properties:

– F a(X,V) ∈ X,aX : X → F a(X,V) is a mapping and e = ax(pX);

– the set aX(X) generates the group F a(X,V);

– for any mapping g : X → G ∈ V, where f(pX) = e, there exists a unique
continuous homomorphism ĝ : F a(X,V) → G such g = ĝ ◦ aX .

In the proof of the following assertion we use the Kakutani’s method [11].

Theorem 1 (see [7]). Let V be a quasi-variety of groups with topologies. Then for
each space X there exist:

- a unique free group (F (X,V), eX );

- a unique abstract free group (F a(X,V), aX );

- a unique continuous homomorphism rX : F a(X,V) → F (X,V) of F a(X,V)
onto F (X,V) such that eX = rX ◦ aX .

Proof. Let τ be an infinite cardinal number and |X| ≤ τ . Then the class {fα : X →
Gα : α ∈ A} of all mappings fα : X → Gα with Gα ∈ V and |Gα| ≤ τ is a set.

Let B = {β ∈ A : fβ : X → Gβ is continuous}. Consider the diagonal product
aX = ∆{fα : α ∈ A} : X → H1 =

∏
{Gα : α ∈ A} and the diagonal product

eX = ∆{fα : α ∈ A} : X → H2 =
∏
{Gα : α ∈ B}. Let F a(X,V) be the

subgroup of H1 generated by the set aX(X) and F (X,V) be the subgroup of H2

generated by the set eX(X). SinceB ⊆ A there exists a unique continuous projection
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rX : F a(X,V) → F (X,V) such that eX = rX ◦ aX . The objects (F (X,V), eX ),
(F a(X,V ), aX) and rX are constructed. The proof is complete. �

The group F (X,V) is called abstract free if rX is a continuous isomorphism.
The next problems are important in the theory of universal algebras with topologies
(see [5, 7, 12]) .

Problem 1. Under which conditions the free group F (X,V ) is abstract free?

Problem 2. Under which conditions the mapping eX : X → F (X,V ) is an embed-
ding?

These problems for varieties of topological algebras were posed by
A. I. Mal’cev [12].

Remark 2 (see [5,6,8]). A quasi-variety V is non-trivial if in V there exists an infinite
group G. If the variety V is non-trivial, then:

– aX is a one-to-one mapping of X onto aX(X).
Moreover, if V is a non-trivial Ip-complete quasi-variety or a non-trivial

Sp-complete quasi-variety, then:
– for any completely regular space X the mapping eX is an embedding of X into

F (X,V) and the free group F (X,V ) is abstract free (see [5, 7]).

Proposition 3. Let G be a paratopological group, n ∈ N and xn = e for any x ∈ G.
Then G is a topological group.

Proof. Since x−1 = xn−1 and the mapping x → xn−1 is continuous, the mapping
x→ x−1 is continuous. The proof is complete. �

Let V be a quasi-variety of paratopological groups, X be a space and e ∈ X.
On the free group F a(X,V, e) with the identity e consider the maximal paratopo-
logical topology T(X,V, e) for which the identical mapping aX : X → F a(X,V, e) is
continuous.

Proposition 4. Let V be a quasi-variety of semitopological groups, X be a space
and e, e1 ∈ X. Then:

1. The semitolopological groups F (X,V, e) and F (X,V, e1) are topologically iso-
morphic.

2. The semitolopological groups (F a(X,V, e), aX ,T(X,V, e)) and (F a(X,V, e1),
bX ,T(X,V, e1)) are topologically isomorphic.

Proof. Consider the natural continuous mappings eX : X → F (X,V, e) and
lX : X → F (X,V, e1). We can assume that eX and lX are embeddings and
eX(x) = lX(x) = x for any x ∈ X. There exist two continuous homomor-
phisms ϕ : F (X,V, e) → F (X,V, e1) and ψ : F (X,V, e1) → F (X,V, e) such that
ϕ(x)) = xe−1 and ψ(x) = eX(xe−1

1 ) for any x ∈ X. Since ψ is a homomorphism,
ψ(ϕ(x)) = ψ(x · e−1) = ψ(x) · ψ(e−1) = ψ(x) · ψ(e)−1 = (xe−1

1 ) · (e · e−1
1 )−1 = x for

x ∈ X ⊆ F (X,V, e). Hence the composition ϕ ◦ ψ is a continuous homomorphism
such that (ψ ◦ ϕ)(x) = x for any x ∈ X. Thus ψ ◦ ϕ is the identical isomorphism
and ψ = ϕ−1. The assertion 1 is proved. The proof of the assertion 2 is similar.
The proof is complete. �
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4 Construction of the group F a(X, V)

Fix a non-trivial quasi-variety V of paratopological groups.

Consider a space X. Then we can assume that X ⊆ F a(X,V) as a subset and
aX(x) = x for each x ∈ X. In particular e = pX is the neutral element of the group
F a(X,V). In this case e ∈ X ⊆ F a(X,V). The set X is called an alphabet.

Let X̃ = X ∪X−1. Obviously, if x = pX , then x−1 = x = e.

If n ≥ 1 and x1, x2, ..., xn ∈ X̃ , then the symbol x1x2...xn is called a word of the
length n in the alphabet X.

Any word x1x2...xn, where x1, x2, ..., xn ∈ X̃ , represents a unique element
[x1x2...xn] = x1 · x2 · ... · xn ∈ F a(X,V).

A given element b ∈ F a(X,V) is represented by many words. There exists a
word of the minimal length which represents the given element b. The length n of
this word is called the length of the element b and we put l(b) = n.

If an element b ∈ F a(X,V) is represented by the words x1x2...xn, y1y2...ym

of the minimal length, then n = m and {x1, x2, ..., xn} = {y1, y2, ..., ym}. In
this case we say that the word x1x2...xn is irreducible and that Sup(b) = X ∩
{x1, x

−1
1 , x2, x

−1
2 , ..., xn, x

−1
n } is the support of the element b. The set Sup∗(b) =

{e, x1, x
−1
1 , x2, x

−1
2 , ..., xn, x

−1
n } is the generalized support of the element b. Obvi-

ously, Sup(e) = {e} and e 6∈ Sup(b) if b 6= e. If e ∈ Y ⊆ X, b ∈ F a(X,V) and
F a(Y,V) is the subgroup of F a(X,V) generated by the set Y , then b ∈ F a(Y,V) if
any only if Sup(b) ⊆ Y . If V is the variety of all paratopological groups, then any
b ∈ F a(X,V) is represented by a unique word of the minimal length. Moreover, in
this case any irreducible word is of the minimal length.

Let Va be the variety of all T0-paratopological Abelian groups and Vg be the
variety of all T0-paratopological groups.

For any n ∈ N denote by Bn the Burnside variety of all T0-paratopological groups
of the exponent (index) n: G ∈ Bn if and only if xn = e for each x ∈ G. The variety
B1 is the unique trivial variety of paratopological groups. If V is an Ip-variety of
Abelian paratopological groups, then either V = Va, or V = Va∩Bn for some n ∈ N.

If V is a quasi-variety of paratopological groups and Z ∈ V, where Z is the
group of integers, then V is a quasi-variety of the exponent 0. Obviously, if V is an
Ip-complete variety of the exponent 0, then Va ⊆ V.

A class of paratopological Abelian groups is Ip-complete if and only if it is
complete.

5 Extension of pseudo-quasi-metrics on free groups

Fix a non-trivial Ip-complete quasi-variety V of paratopological groups. Consider
a non-empty set X with a fixed point e ∈ X. We assume that e ∈ X ⊆ F a(X,V)
and e is the identity of the group F a(X,V).

Let ρ be a pseudo-quasi-metric on the set X. Denote by Q(ρ) the set of all
invariant pseudo-quasi-metrics d on F a(X,V) for which d(x, y) ≤ ρ(x, y) for all



ON FREE GROUPS IN CLASSES OF GROUPS WITH TOPOLOGIES 67

x, y ∈ X. The set Q(ρ) is non-empty, since it contains the trivial pseudo-quasi-
metric d(x, y) = 0 for all x, y. For all a, b ∈ F a(X,V) we put ρ̂(a, b) = sup{d(a, b) :
d ∈ Q(ρ)}. We say that ρ̂ is the maximal extension of ρ on F a(X,V).

Property 1. ρ̂(a, a) = 0 and ρ̂(a, b) ≤ ρ̂(a, c) + ρ̂(c, b) for all a, b, c ∈ F a(X,V).

Proof. We assume that ∞ + ∞ = t + ∞ = ∞ + t = ∞ ≤ ∞ and t < ∞ for
any real number t. In these conditions the assertion of Property 1 follows from the
construction of ρ̂. �

Property 2. ρ̂(x, y) ≤ ρ(x, y) for all x, y ∈ X.

Proof. Follows from the constructions of ρ̂. �

Property 3. ρ̂(xa, xb) = ρ̂(ax, bx) = ρ̂(a, b) for all x, a, b ∈ F a(X,V).

Proof. Follows from the invariance of the pseudo-quasi-metrics Q(ρ). �

Property 4. ρ̂(a, b) = ρ̂(ab−1, e) = ρ̂(e, a−1b).

Proof. Follows from Property 3. �

Property 5. ρ̂(a1a2, b1b2) ≤ ρ̂(a1, b1) + ρ̂(a2, b2).

Proof. Follows from Proposition 1 and Property 3. �

Property 6. ρ̂(a−1, b−1) = ρ̂(b, a) for all a, b ∈ F a(X,V).

Proof. We have ρ̂(a−1, b−1) = ρ̂(aa−1b, ab−1b) = ρ̂(b, a). �

Property 7. ρ̂(a, b) <∞ for all a, b ∈ F a(X,V).

Proof. For some n ∈ N we have a = xε1
1 x

ε2
2 ...x

εn

n and b = yδ1
1 y

δ2
2 ...y

δn

n . Fix i ≤

n. If εi = δi = 1, then ρ̂(xεi

i , y
δi

i ) = ρ̂(xi, yi) ≤ ρ(x, y). If εi = δi = −1, then

ρ̂(xεi

i , y
δi

i ) = ρ̂(x−1
i , y−1

i ) = ρ̂(yi, xi) ≤ ρ(yi, xi). If εi = −δi, then ρ̂(xεi

i , y
δi

i ) ≤

ρ̂(xi, y
−1
i ) + ρ̂(x−1

i , yi) ≤ ρ(e, xi) + ρ(xi, e) + ρ(e, yi) + ρ(yi, e). Hence ρ̂(xεi

i , y
δi

i ) ≤
ρ(xi, yi) + ρ(yi, xi) + ρ(e, xi) + ρ(xi, e) + ρ(e, yi) + ρ(yi, e) < ∞. Then ρ̂(a, b) ≤∑

{ρ̂(xεi

i , y
δi

i ) : i ≤ n} <∞. �

Example 1. Consider the variety B2 of paratopological groups. Any group G ∈ B2

is commutative. Fix a space X with the fixed point e ∈ X.

Let ρ(z, z) = ρ(z, e) = 0 for any z ∈ X and ρ(e, x) = ρ(x, y) = 1 for all
x, y ∈ X,x 6= y, x 6= e 6= y. Then ρ is a quasi-metric on X. In this case x−1 = x for
x ∈ X. If x1x2...xn is an irreducible word, then |{x1, x2, ..., xn}| = n, i. e. xi 6= xj

for distinct i, j ≤ n. Consider the maximal extension ρ̂ of the quasi-metric ρ on G =
F a(X,B2). Then ρ̂(x, y) = ρ̂(y−1, x−1) = ρ̂(y, x), i.e. ρ̂ is a pseudo-metric. Hence
ρ̂(x, e) = ρ̂(e, x) = ρ(x, e) = 0 for any x ∈ X. Thus 0 ≤ ρ̂(x, y) ≤ ρ̂(x, e)+ρ(e, y) = 0
for all x, y ∈ X. Therefore ρ̂(a, b) = 0 for all a, b ∈ G. We proved that the pseudo-
quasi-metric ρ̂ is trivial.

Example 2. Let A3 be the variety of all paratopological Abelian groups with the
identity x3 = e. Fix a space X with the basic point e ∈ X. Let b ∈ X \ {e}. Then
the words bb and b−1 are irreducible, bb = b−1, the word bb is not of the minimal
length and the word b−1 is of the minimal length.
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Proposition 5. Let ρ be a quasi-metric on X, ρ(x−1, y−1) = ρ(y, x), ρ(x, y−1) =
max{ρ(x, e), ρ(e, y−1)} and ρ(y−1, x) = max{ρ(y−1, e), ρ(e, x)} for all x, y ∈ X.
Then ρ̂(a, b) = inf{

∑
{ρ̂(xεi

i , y
δi

i ) : i ≤ n} : n ∈ N, a ≡ xε1
1 · xε2

2 · ... · xεn

n , b ≡

yδ1
1 · yδ2

2 · ... · yδn

n } for all a, b ∈ F a(X,V).

Proof. Obviously ρ̂1(a, b) = inf{
∑

{ρ̂(xεi

i , y
δi

i ) : i ≤ n, n ∈ N, a ≡ xε1
1 ·xε2

2 ·...·xεn

n , b ≡

yδ1
1 ·yδ2

2 ·...·yδn

n } is an invariant pseudo-quasi-metric on F a(X,V) and ρ̂1(x, y) ≤ ρ̂(x, y)
for all x, y ∈ F a(X,V). If a = xε1

1 · xε2
2 · ... · xεn

n and b = yδ1
1 · yδ2

2 · ... · yδn

n , then

ρ̂(a, b) ≤
∑

{ρ̂(xεi

i , t
δi

i ) : i ≤ n}. Thus ρ̂(a, b) ≤ ρ̂1(a, b). The proof is complete. �

6 Elementary spaces and free groups

Fix a non-trivial quasi-variety V of paratopological groups. Consider the space
E∞ = {0, 1,−1, 2,−2, . . . n,−n, . . .} with the topology generated by the quasi-metric
ρ∞(x, y) = 1 if x < y, and ρ∞(x, y) = 0 if x ≤ y. Let En = {0, 1,−1, 2,−2, . . . n,−n}
and ρn(x, y) = ρ∞(x, y) for all x, y ∈ En. Then (En, ρn) is a subspace of the quasi-
metric space (E∞, ρ∞). Assume that pE∞

= pEn
= 0 ∈ En for each n. For any

n ∈ N consider the continuous retraction rn : E∞ → En, where rn(x) = x for any
x ∈ En, rn(x) = −n for any x ≤ −n and rn(x) = n for any x ≥ n.

Proposition 6. The following assertions are equivalent:
1. eE1 : E1 → F (E1,V) is an embedding;
2. eE∞

: E∞ → F (E∞,V) is an embedding;
3. eX : X → F (X,V) is an embedding for any space X.

Proof. Implications 3 → 2 → 1 are obvious. Assume that eE1 is an embedding. Fix
a T0-space X. There exist a cardinal number τ and an embedding f : X → Eτ

1 ,
where f(pX) = 0. We assume that E1 ⊆ F (E1,V). Then Eτ

1 ⊆ F (E1,V)τ . Consider

the continuous homomorphism f̂ : F (X,V) → F (E1,V)τ generated by the
mapping f . Since f = f̂ ◦ eX is an embedding, eX is an embedding too. The proof
is complete. �

Lemma 1. Let F be a finite set of a space X and |F | = n ≥ 1. Then there exists a
continuous mapping sF : X → En ⊆ E∞ such that sF (pX) = 0 and sF (x) 6= sF (y)
for all distinct x, y ∈ F .

Proof. We can assume that pX ∈ F . In any non-empty finite space Y there exists
a point y such that the set {y} is closed in Y . Thus in F there exists a well-
ordering F = {x1, x2, ..., xn} such that the set {x1, x2, ..., xi} is closed in F for any
i ≤ n. Assume that pX = xk, where 1 ≤ k ≤ n. We put F1 = clX{x1}, F2 =
clX{x1, x2} \ clX{x1},..., Fn−1 = clX{x1, x2, ..., xn−1} \ clX{x1, x2, ..., xn−2}, Fn =
X \clX{x1, x2, ..., xn−1}. Obviously, there exists a continuous mapping sF : X → En

such that sF (pX = 0, sF (xi) = i − k < sF (xj) = j − k for 1 ≤ j < i ≤ n and
sF (Fi) = sF ({xi}) for any i ≤ n. The proof is complete. �

Proposition 7. For a quasi-variety V the following assertions are equivalent:
1. The free group F (E∞,V) is abstract free.
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2. For each n ∈ N the free group F (En,V) is abstract free.
3. For each T0-space X the free group F (X,V) is abstract free.

Proof. Implications 3 → 2 → 1 → 2 are obvious. Implication 1 → 3 follows from
Lemma 1. �

The next assertion is obvious.

Proposition 8. For an Ip-complete quasi-variety V the following assertions are
equivalent:

1. The maximal extension d∞ of the quasi-metric ρ∞ on F a(E∞,V) is a quasi-
metric and ρ(x, y) = d∞(x, y) for all x, y ∈ E∞;

2. For any n ∈ N the maximal extension dn of the quasi-metric ρn on F a(En,V)
is a quasi-metric and ρn(x, y) = dn(x, y) for all x, y ∈ En.

Proposition 9. Let V be an Ip-complete quasi-variety, n ∈ N and the maximal
extension dn of the quasi-metric ρn on F a(En,V) is a quasi-metric. Then:

1. F (En,V) is an abstract free group;
2. eEn

: En → F (En,V) is an embedding;
3. dn(x, y) = ρn(x, y) for all x, y ∈ En.

Proof. There exists r > 0 such that r ≤ 1 and 1 = ρn(x, y) ≥ dn(x, y) ≥ r

for any x, y ∈ En for which x < y. Then d′(x, y) = min{1, r−1dn(x, y)} is an
invariant quasi-metric on F a(En, V ) and d′(x, y) = ρn(x, y) for all x, y ∈ En. Since
d′(x, y) ≤ dn(x, y) for all x, y ∈ F a(En,V), we have dn(x, y) = ρn(x, y) for all
x, y ∈ En. The proof is complete. �

Corollary 2. If V is an Ip-complete quasi-variety and d∞ is a quasi-metric on
F a(E∞,V), then d∞(x, y) = ρ∞(x, y) for all x, y ∈ E∞.

Corollary 3. Let V be an Ip-complete quasi-variety. Assume that d∞ is a quasi-
metric on F a(E∞,V). Then for any T0-space X the free group F (X,V) is abstract
free, eX : X → F (X,V) is an embedding and on F (X,V) there exists a T0−topology
T which is generated by some family of invariant pseudo-quasi-metrics and eX is an
embedding of X into (F (X,V), T ).

7 Free Abelian groups of spaces

Proposition 10. The maximal extension d∞ of the quasi-metric ρ∞ on F a(E∞,Va)
is a quasi-metric.

Proof. On the group Z of integers consider the topology generated by the quasi-
metric ρ(x, y) = 1 for x < y and ρ(x, y) = 0 for y ≤ x. Obviously, ρ is an invariant
quasi-metric and Z ∈ Va.

The group G = {(xn : n ∈ Z) ∈ Z
Z : the set {n ∈ Z : xn 6= 0} is finite}, G ∈ Va

is Abelian and on G consider the topology generated by the invariant quasi-metric
d((xn : n ∈ Z), (yn : n ∈ Z)) = sup{d(xn, yn) : n ∈ Z}. We put a0 = (xn : n ∈ Z)
and xn = 0 for any n ∈ Z. If n ∈ Z and n ≥ 1, then an : (xn : n ∈ Z), where xi = 1
for i ∈ {0, 1, 2, ..., n − 1} and xj = 0 for each j ∈ Z \ {0, 1, 2, ..., n − 1}. If n ∈ Z and
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n ≤ −1, then an = (xn : n ∈ Z), where xi = −1 for each i ∈ {−1,−2, ...,−n} and
xj = 0 for any j ∈ Z \ {−1,−2, ...,−n}. Consider the mapping h : E∞ → Z

Z, where
d(n) = an for any n ∈ E∞. By construction, ρ∞(x, y) = d(h(x), h(y)) for all x, y ∈
E∞. Thus h is an isometrical embedding of E∞ in Z

Z. The set d∞(E∞) generated
the group G and the pair (G,h) is the abstract free group (F a(E∞,Va), aE∞

) of the
space E∞. In this case d(x, y) ≤ d∞(x, y) for any x, y ∈ G = F a(E∞, V∞). Thus
d∞ is a quasi-metric. The proof is complete. �

Corollary 4. For any T0-space X the free group F (X,Va) is abstract free,
eX : X → F (X,Va) is an embedding and the topology of the space F (X,Va) is
generated by some family of invariant pseudo-quasi-metric.

8 On the non-Burnside quasi-varieties

Let V be an Ip-complete quasi-variety of paratopological groups. Assume that
Z ∈ V, i. e. Va ⊆ V ⊆ Vg.

We put F (X) = F (X,V) and F a(X) = F a(X,V) for any space X.

Fix two words x1x2...xn and y1y2...ym, where x1, x2, ..., xn, y1, y2, ..., ym ∈ X̃.

If x1x2...xn and y1y2...ym are irreducible, then [x1x2...xn] = [y1y2...ym] if and
only if n = m and there exists a bijection h = {1, 2, ..., n} −→ {1, 2, ...,m} such that
xi = yh(i) for any i ≤ n.

The words x1x2...xn and y1y2...ym are called equivalent if [x1x2...xn] = [y1y2...ym].

The words x1x2...xn and y1y2...ym are called strongly equivalent if [x1x2...xn] =
[y1y2...ym], n = m and there exists a bijection h : {1, 2, ..., n} −→ {1, 2, ...,m} such
that xi = yh(i) for any i ≤ n.

Let Nn = {1, 2, ..., n} for any n ∈ N. If i < j, then we put [i, j] = [j, i] = {k ∈
N : i ≤ k ≤ j}. If i, j ∈ A ⊆ N, then [i, j]A = [i, j] ∩A.

A scheme for an element b ∈ F a(X) is a word x1x2...xn and a mapping s : Nn →
Nn such that:

1. b = [x1x2...xn];

2. s(i) 6= i and s(s(i)) = i for any i ≤ n;

3. There exist a word y1y2...yn and a bijection h : Nn −→ Nn such that:

– b = [y1y2...yn] and yi = xh(i) for any i ≤ n;

– if σ(i) = h−1(s(h(i))) then for any i, j ∈ {1, 2, ..., n} the sets [i, σ(i)], [j, σ(j)]
are either disjoint or one contains the other.

A mapping σ from the definition of the scheme has the following properties:

4. There are no i, j ∈ Nn such that i < j < σ(i) < σ(j).

5. For some i < n we have σ(i) = i+ 1.

6. The mappings s and σ are bijections and involutions without fixed points.

7. The number n is even.

The method of scheme for pseudo-metric and V ∈ {Va,Vg} are due to the work
of M. I.Graev [10]. The problem of the extension of pseudo-metrics on F a(X,V)
for any quasi-variety V of topological algebras was examined in [6]. In the case
V ∈ {Va,Vg} the notion of the scheme for pseudo-quasi-metrics was defined in [15].
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We use the method of scheme from [15], in the general case, for any non-Burnside
quasi-variety.

On a space X fix a continuous pseudo-quasi-metric ρ. Assume that e ∈
X ⊆ F a(X) and e is the identity of the group F a(X). For any x, y ∈ X we
put ρ∗(x−1, y−1) = ρ(y, x), ρ∗(x−1, y) = ρ∗(x−1, e) + ρ∗(e, y) and ρ∗(x, y−1) =
ρ∗(y−1, x) = ρ∗(x, e) + ρ∗(e, y−1). Obviously, ρ∗ is a pseudo-quasi-metric on X̃ .

For any b ∈ F a(X) we put Nρ(b) = inf{1
2

∑
{ρ∗(x−1

i , xs(i)) : i ≤ 2m} : m ∈
N, s : Nm → Nm is a scheme, b = [x1x2...xm]}.

As in [15] we say that the word x1x2...xn is almost irreducible if:

– xi ∈ Sup∗([x1, x2, ..., xn]) for any i ≤ n;

– any word y1y2...yn which is strongly equivalent with the word x1x2...xn does
not contain two consecutive symbols of the form u−1u, u ∈ X̃ \ {e}.

If b ∈ F a(X) and 2m ≥ l(b) ≥ 1, then b = [x1, x2, ..., x2m] for some almost
irreducible word x1x2...x2m. The next property of the function Nρ is important.

Lemma 2 (see [15], Claim 2). If b ∈ F a(X) and l(b) = n, then there exist an almost
irreducible word x1x2...x2m and a scheme s : Nm → Nm such that:

1. b = [x1x2...x2m] and n ≤ 2m ≤ 2n;

2. 2Nρ(b) =
∑

{ρ∗(x−1
i , xs(i)) : i ≤ 2m}.

Proof. Obviously, we can assume that b 6= e. Let b = [x1, x2...x2m] and s : N2m →
N2m be a scheme.

Assume that the word x1x2...xm is not almost irreducible. Then we can suppose
that there exist i < 2m and u ∈ X̃ such that xi = u and xi+1 = u−1. If h(i) = i+1,
then we put A = {1, ..., i − 1, i + 2, ..., 2m} and σ = s|A. Then σ is a scheme for
the element x = [x1x2...xi−1xi+2...x2m] and respective word x1x2...xi−1xi+2...x2m,
|A| = 2m − 2 and

∑
{ρ∗(x−1

j , xϕ(j)) : j ∈ A} ≤
∑

{ρ∗(x−1
i , xh(i)) : i ∈ N2m}. If

r = s(i) 6= i + 1 and t = s(i + 1), then A = {1, ..., i − 1, i + 2, ..., 2m}, σ(j) =
s(j) for j ∈ N2m \ {i, i + 1, r, t} and σ(r) = t, σ(t) = r. Since ρ∗(x−1

r , xt) +
ρ∗(x−1

t , xr) ≤ ρ∗(x−1
1 , u−1) + ρ∗(u−1, xr) + ρ∗(x−1

r , u) + ρ∗(u, x1) = ρ∗(x−1
t , xi+1) +

ρ∗(x−1
i , xr) + ρ∗(x−1

r , xi) + ρ∗(x−1
i+1, xt), σ is a scheme and

∑
{ρ∗(x−1

j , xϕ(j)) : j ∈

A} ≤
∑

{ρ∗(x−1
i , xh(i)) : i ∈ N2m}. Thus we can assume that the word x1x2...x2m is

almost irreducible and for any i ≤ 2m we have xi+1 6= x−1
i . In particular, if i < 2m,

then xi · xi+1 6= e. In this conditions, the word x1x2...x2m is almost irreducible
and 2m ≤ 2n = 2l(a). Since there exists a finite set of almost irreducible words
of the length ≤ 2l(b) which represents the given element b ∈ F a(X), the proof is
complete. �

Lemma 3 (see [15], Claim 4). Nρ(x
−1y) = ρ(x, y) for all x, y ∈ X.

Proof. Fix x, y ∈ X. If x = y, then x−1 · y = y · x−1 = e,Nρ(e) = 0 = ρ(x, y).
Assume that x 6= y. Then l(x−1y) = 2 and for the element b = x−1y there exist only
the next possible almost irreducible words of the length ≤ 4: x−1y, ex−1ey, x−1eye,
ex−1ye, y−1x, ey−1ex, y−1exe, ey−1xe. If V 6= Va, then there exist only the next
possible almost irreducible words of the length ≤ 4: x−1y, ex−1ey, x−1eye, ex−1ye.
The direct calculation permits to obtain Nρ(x

−1y) = ρ(x, y). �
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Lemma 4 (see [15], Claim 3). The function Nρ has the the next properties:

1. Nρ(e) = 0 and Nρ(b) ≥ 0 for any b ∈ F a(X).

2. Nρ(a · b) ≤ Nρ(a) +Nρ(b) for any a, b ∈ F a(X).

3. Nρ(xbx
−1) = Nρ(b) for any b, x ∈ F a(X).

Proof. Assertions (1) and (2) are obvious. Let b1b2...b2m be an almost irre-
ducible word, b = [b1b2..., b2m], s : N2m → N2m be a scheme and 2Nρ(b) =∑

{ρ∗(b−1
i , bs(i)) : i ∈ N2m}. Fix the irreducible word x1x2...xk. Put x =

[x1, x2, ..., xk], y2m+1y2m+2...y2m+k = x1x2...xk, y2m+k+1...y2m+2k = x−1
k , A =

{1, 2, ..., 2m, ..., 2m + 2k}, ϕ(i) = s(i) for i ≤ 2m and ϕ(2m + i) = 2m+ 2k − i + 1
for i ≤ k.

Let y1, y2, ..., y2m = b1, b2, ..., b2m. Then ϕ is a scheme on A for the
element x−1bx, x−1bx = [y2m+k+1...y2m+2ky1...y2my2m+1...y2m+k] and∑

{ρ∗(y−1
j , yh(j)) : j ∈ A} =

∑
{ρ∗(b−1

i , bh(j)) : i ∈ Nm}. Hence Nρ(x
−1bx) ≤ Nρ(b)

and Nρ(b) = Mρ((xx
−1)b(xx−1)) ≤ Nρ(x

−1bx). The property (3) is proved. �

Lemma 5. The function d(x, y) = Nρ(x
−1y) is an invariant pseudo-quasi-metric

on F a(X). Moreover, d(x, y) ≤ ρ̂(x, y) and Nρ(b) ≤ ρ̂(e, b), where ρ̂ is the maximal
extension of ρ on F a(X), for any x, y, b ∈ F a(X).

Proof. Really, d(xa, xb) = Nρ(a
−1x−1xb) = Nρ(a

−1b) = d(a, b) and d(ax, bx) =
Nρ(x

−1a−1bx) = Nρ(a
−1b) = d(a, b). Since d(x, y) = ρ(x, y) for x, y ∈ X, we have

d(x, y) ≤ ρ̂(x, y) for all x, y ∈ F a(X). The proof is complete. �

Proposition 11. Let r > 0 and X be a linear ordered space with the topology
generated by the quasi-metric ρ(x, y) = r if x < y and ρ(x, y) = 0 if y ≤ x. Then
the maximal extension d of ρ on F a(X, e) is a quasi-metric for any point e ∈ X.

Proof. We can assume that r = 1.

Let e ∈ X and e1 6∈ X. We put Y = X ∪ {e1}, ρ(e1, e1) = 0 and ρ(x, e1) =
ρ(e1, x) = 1 for any x ∈ X. Then (X, ρ) is a quasi-metric subspace of the quasi-
metric space (Y, ρ). On F a(Y ) = F a(Y,V, e1) consider the function Nρ(y). �

Claim 1. If b ∈ F a(Y ) \ {e1}, then Nρ(b) + Nρ(b
−1) 6= 0.

Proof. Assume that Nρ(b) + Nρ(b
−1) = 0, b = [b1b2...bn] and the word b1b2...bn is

irreducible. Then b1, b2, ..., bn ∈ X̃ ⊆ Ỹ . Since Nρ(b) = 0, there exists an almost
irreducible word x1x2...x2m of the minimal length and a scheme s : N2m → N2m such
that b = [x1x2...x2m] and

∑
{ρ∗(x−1

i , xs(i)) : i ≤ 2m} = 0. From the minimality of
the length of the word x1x2...xn it follows that xi 6= e1 for any i ≤ 2m. Really,
if xi = e1, then xs(i) 6= e1 and ρ∗(x−1

s(i), xi) = 1, a contradiction. Thus the words
x1x2...x2m and b1b2...bn are equivalent, n = 2m is an even number and s is a scheme
on N2m for the element b. We can assume that xi = bi for any i ≤ n. Therefore∑

{ρ∗(bi, bs(i)) : i ≤ n} = 0. We can assume that for any i, j ∈ {1, 2, ..., n} the sets
[i, s(i)], [j, s(j)] are either disjoint or one contains the other.
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Since Nρ(b
−1) = 0 and b = [b−1

n ...b−1
2 b−1

1 ], there exists a scheme q : Nn → Nn such
that

∑
{ρ∗(bi, b

−1
q(i)) : i ≤ n} = 0. Since the word b1b2...bn is irreducible, bi+1 6= b−1

i

for any i < n.

We affirm that s = q. Assume that i1 ∈ N and s(i1) 6= q(i1). Put j1 = s(i1).
Since s(j1) 6= q(j1) and ρ∗(x−1

i , xj1) = ρ∗(j−1
i , xi1) = 0, X ∩ {xi1 , xj1} 6= ∅ and

X−1{xi1 , xj1} 6= ∅. We can assume that xi1 ∈ X and xj1 ∈ X−1. For any k ≥ 1
we put ik+1 = q(jk) and jk+1 = s(ik+1). For any k < 1 we have xjk

6= xk 6= xik+1
,

ρ∗(x−1
k , xkk

) = ρ∗(x−1
jk
, xik) = ρ∗(xjk

, x−1
ik+1

) = ρ∗(xjk+1
, x−1

jk
). Let k be the first

number for which {ik+1, jk+1} ∩ {i1, j1, i2, j2, ..., ik, jk} 6= ∅. Suppose that ik+1 =
q(jk) ∈ {i1, j1, ..., ik, jk}. If ik+1 = ip for some p ≤ k, then jk = q(ik+1) = q(ip) =
jp−1, a contradiction. If ik+1 = ip for some p ≤ k, then jk = s(ik+1) = h(jp) =
ip+1. Since ik 6= jk, we have p + 1 < k and jk ∈ {ip+1, jp+1}, a contradiction.
Now suppose that jk+1 ∈ {i1, j1, ..., ik , jk}. If jk+1 = ip for some p ≤ k, then
ik+1 = s(jk+1) = s(ip) = jp, a contradiction. If jk+1 = jp for some p ≤ k, then
ik+1 = s(ik+1) = s(jp) = ip, a contradiction. Therefore q(i) = s(i) for any i ≤ n.
There exists i < n such that h(i) = q(i) = i+1. Let xi ∈ X. Then xi+1 ∈ X−1. Since
ρ∗(x−1

i+1, xi) = ρ∗(x−1
h(i)) = 0, we have x−1

i+1 ≤ xi. Since ρ∗(xi, x
−1
i+1) = ρ∗(xi, x

−1
q(i)) =

0, we have xi ≤ x−1
i+1. Hence xi = x−1

i+1 and xi · xi+1 = e, a contradiction with the
condition of irreducibility of the word b1b2...bn. Claim 1 is proved. �

Claim 2. On F a(Y, e1) there exists an invariant quasi-metric such that:

- d1(x, y) = ρ(x, y) for any x, y ∈ X;

- d1(x, y) ∈ {0, 1} for any x, y ∈ F a(Y, e1).

Proof. Let d2(x, y) = Nρ(x
−1y) for all x, y ∈ F a(Y, e1). By construction, d2(x, y) ≥ 1

provided d2(x, y) > 0. From this fact and the Claim 1 it follows that d1(x, y) =
min{1, d2(x, y)} is the desired quasi-metric. �

Claim 3. Let e ∈ X ⊆ Y . Then on F a(Y, e) there exists a quasi-metric ρ1 such
that:

- ρ1(x, y) = ρ(x, y) for any x, y ∈ X;

- ρ1(x, y) ∈ {0, 1} for any x, y ∈ F a(Y, e).

Proof. Let d1 be quasi-metric with the properties from Claim 2. In the proof of
Proposition 4 it was established that there exists an isomorphism ϕ : F a(X, e) →
F a(Y, e1) such that ϕ(x) = xe−1 for any x ∈ Y . We put ρ1(x, y) = d1(ϕ(x), ϕ(y))
for any x, y ∈ F a(Y, e). Since the quasi-metric d1 is continuous on the space
(F a(Y, e1), T (y, e1)), the quasi-metric ρ1 is continuous on the space (F a(Y, e), T (Y, e)).
For any x, y ∈ Y we have ρ1(x, y) ∈ {0, 1}. Let x, y ∈ X and x < y. Then
ρ(y, x) = 0, ρ(x, y) = 1 and 1 ∈ {ρ1(x, y), ρ(y, x)}. Since the quasi-metric ρ1 is
continuous, we have ρ1(x, y) = 1 = ρ(x, y) and ρ1(y, x) = 0 = ρ(y, x). Claim 3 is
proved. �

Since F a(Y, e) is a subgroup of the group F a(Y, e), the proof is complete.

Corollary 5. For any n ∈ N the maximal extension dn of the quasi-metric ρn on
F a(En) is a quasi-metric.
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Corollary 6. The maximal extension d∞ of the quasi-metric ρ∞ on F a(E∞) is a
quasi-metric.

From Corollary 5 it follows

Corollary 7. For any pointed T0-space X the free group F (X) is abstract free and
eX : X → F (X) is an embedding. Moreover on F (X) there exists a topology T

which is generated by some family of almost invariant pseudo-quasi-metrics and eX
is an embedding of X into (F (X), T ).

9 On quasi-varities of paratopological groups

Let S be a set of properties of paratopological groups, any paratopological group
with invariant base has the properties S, W be a non-trivial S-complete quasi-variety
of paratopoligical groups. Denote by V the S-complete variety of paratopoligical
groups generated by the quasi-variety W. We say that W is a Burnside quasi-variety
if V is a Burnside variety.

A quasi-variety W is a non-Burnside quasi-variety if and only if Z ∈ W.
The next assertions affirm that the free objects of spaces in quasi-varieties are

the same as in varieties.

Proposition 12. For any pointed space X:
1. There exists an isomorphism ϕ : F a(X,V) −→ F a(X,W) such that ϕ(x) = x

for any x ∈ X.

2. There exists a topological isomorphism ϕ : F (X,V) −→ F (X,W) such that
ψ(e(X,V)(x)) = e(X,W)(x) for any x ∈ X.

Proof. The assertion 1 is obvious.
Fix a space X. Let (F (X,V), e(X,V)) be the free object of the space X in the class

V and (F (X,W), e(X,W)) be the free object of the space X in the class W. There
exists a continuous homomorphism ϕ : F (X,V) −→ F (X,W) such that ϕ(x) = x

for any x ∈ X.

Case 1. Z 6∈ W.
In this case W ⊆ Bn for some n ∈ N. By virtue of Proposition 3, W is a quasi-

variety of topological groups. For quasi-varieties of topological groups the assertions
of Proposition 12 are known (see [5, 8]).

Case 2. Z ∈ W.

In this case the variety V is not a Burnside variety. Then, by virtue of Corollary
7, the free objects F (X,V), F (X,W) are abstract free and the mappings e(X,V) and
e(X,W) are embeddings. The proof is complete. �

Theorem 2. If Z ∈ W, then for any pointed space X we have:

1. The free topological group (F (X,W), eX ) is abstract free and the mapping eX
is an embedding.

2. If ρ is a continuous pseudo-quasi-metric on the space X, then:
(2a) the maximal extension ρ̂ of the pseudo-quasi-metric ρ on F (X,W) is a

continuous invariant pseudo-quasi-metric;
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(2b) ρ(x, y) = ρ̂(eX(x), eX (y)) for all x, y ∈ X;

(2c) if x, y ∈ F (X,W) and ρ is a quasi-metric on Sup∗(x) ∪ Sup∗(y), then
ρ̂(x, y) + ρ̂(y, x) > 0;

(2d) if ρ is a quasi-metric, then ρ̂ is a quasi-metric too.

Proof. We can assume that eX(x) = x for any x ∈ X and X ⊆ (F (X,W).

On (F (X,W) consider the function Nρ(b) and the pseudo-quasi-metric d(x, y) =
Nρ(x

−1y). By virtue of Lemma 5, d is an invariant pseudo-quasi-metric. From
Lemma 3 it follows that d(x, y) = Nρ(x

−1y) = ρ(x, y) for all x, y ∈ X. Thus
d(x, y) ≤ ρ̂(x, y) for all x, y ∈ F (X,W) and d(x, y) = ρ̂(x, y) for all x, y ∈ X.

Let x, y ∈ F (X,W) and ρ be a quasi-metric on Z = Sup∗(x) ∪ Sup∗(y). We
put b = x−1y. Then Sup∗(b) ⊆ Z. Let r = min{ρ(u, v) : u, v ∈ Z, ρ(u, v) > 0}.
Since the space Z is finite, we have r > 0 and there exists an ordering on Z such
that ρ(u, v) > 0 provided u < v. We have Z ⊆ F a(Z,W) ⊆ F (X,W). By virtue of
Proposition 11, Nρ(c) + Nρ(c

−1) > 0 for each c ∈ F a(Z,W). Since b ∈ F a(Z,W),
0 < Nρ(b) +Nρ(b

−1) = d(x, y) + d(y, x) ≤ ρ̂(x, y) + ρ̂(y, x). The assertions 1, (2a),
(2b) and (2c) are proved. The assertion (2d) follows from the assertion (2c). The
proof is complete. �

10 Free groups of quasi-uniform spaces

A quasi-uniformity on a set X is a family U of entourages of the diagonal ∆(X) =
{(x, x) : x ∈ X} and a family P of the pseudo-quasi-metrics on X, which satisfies
the following conditions:

(QU1) If V ∈ U and V ⊆W ⊆ X ×X, then V ∈ U.

(QU2) If V,W ∈ U, then V ∩W ∈ U.

(QU3) If V ∈ U, then there exist ρ ∈ P and r > 0 such that {(x, y) ∈
X ×X : ρ(x, y) < r} ⊆ V .

(QU4) {(x, y) ∈ X ×X : ρ(x, y) < r} ∈ U for all ρ ∈ P and r > 0.

(QU5) If ρ1, ρ2 ∈ P, then there exists ρ ∈ P such that max{ρ1(x, y), ρ2(x, y)} ≤
ρ(x, y) for all x, y ∈ X.

(QU6) If x, y ∈ X and x 6= y, then ρ(x, y) + ρ(y, x) > 0 for some ρ ∈ P.

Obviously, the quasi-uniformity U is generated by a family of pseudo-quasi-
metrics P.

Fix a non-trivial Ip-complete quasi-variety W of paratopological groups.

Let G ∈ W. Denote by QP (G) the family of all continuous pseudo-quasi-metrics
on the space G, LQP (G) = {d ∈ QP (G) : d is left invariant}, RQP (G) = {d ∈
QP (G) : d is right invariant} and IQP (G) = LQP (G) ∩RQP (G).

The pseudo-quasi-metrics LQP (G) generate the left quasi-uniformity Ul on G

and the pseudo-quasi-metrics RQP (G) generate the left quasi-uniformity Ur on G.
These quasi-uniformities generate the topology of the space G. If G is a paratopo-
logical group with the invariant base at the identity e, then Ul = Ur.

Assume that W is not a Burnside quasi-variety. Fix a quasi-uniformity pointed
space (X,U) generated by the pseudo-quasi-metrics P. For any ρ ∈ P denote by ρ̂
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its maximal extension on F (X,W). We put P̂ = {ρ̂ : ρ ∈ P}. The family P̂ generates
an invariant quasi-uniformity on F (X,W).

11 Free quasitopological groups

A class V of quasitopological groups is called a C-complete quasi-variety of qua-
sitopological groups if:

(QF1) the class V is multiplicative;

(QF2) if G ∈ V and A is a subgroup of G, then A ∈ V;

(QF3) every space G ∈ V is a T0-space;

(QF4) if G ∈ V, T is a compact T0-topology on G and (G,T) is a quasitopological
group, then (G,T) ∈ V.

Lemma 6.Let G be a quasitopological group. If G is a T0-space, then G is a T1-space.

Proof. It is obvious. �

On any set X there exists the profinite topology Tpf (X) = {X, ∅} ∪ {X \ F : F
is a finite set}. The space (X,Tpf (X)) is a compact T1-space.

Lemma 7. Let G be a group. Then (G,Tpf (G)) is a quasitopological group.

Proof. It is obvious. �

Theorem 3. Let W be a non-trivial C-complete quasi-variety of quasitopological
groups. For any T1-space X the free group F (X,W) is abstract free and eX : X →
F (X,W) is an embedding.

Proof. For any infinite cardinal τ we fix a group Gτ ∈ W of the cardinality τ with
the profinite topology Tpf (Gτ ). Further we fix an infinite group G0 ∈ W. Let F be
a non-empty closed subset of the space X and b 6∈ F .

Case 1. The set X \ F is finite.

In this case the sets F and X \ F are open-and-closed. There exists a mapping
g : X −→ G0 such that g(pX) = e, g(F ) and g(X\F ) are singletons and g−1(g(F )) =
F . Then the mapping g is continuous and g(b) 6∈ clG0g(F ) = g(F ).

Case 2. The set X \ F is infinite.

Let τ = |X \ F |. There exists a mapping g : X −→ G such that g(X) = Gτ ,
g−1(g(F )) = F , g(F ) is a singleton g(pX) = e and g(x) 6= g(y) for distinct points
x, y ∈ X \ F . Since X is a T1-space, the mapping g is continuous and g(b) 6∈
clG0g(F ) = g(F ).

Therefore the mapping eX : X → F (X,W) is an embedding. Thus we can
assume that e = pX ∈ X ⊆ F (X,W).

Assume that e = pX ∈ X ⊆ F a(X,W). On F (X,W) we consider the profinite
topology Tpf (F a(X,W)). Then the mapping aX : X −→ F a(X,W) is a continu-
ous injection. Therefore there exists a continuous homomorphism ψ : F (X,W) →
F a(X,W) such that ψ(x) = x for any x ∈ X. Hence ψ is an isomorphism. The
proof is complete. �
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12 Free left topological groups

A group G with topology is called a left (respectively, right) topological group
if the left translation La(x) = ax (respectively, the right translation Ra(x) = xa) is
continuous for any a ∈ G.

A class V of left topological groups is called an LI-complete quasi-variety of left
topological groups if:

(LF1) the class V is multiplicative;

(LF2) if G ∈ V and A is a subgroup of G, then A ∈ V;

(LF3) every space G ∈ V is a T0-space;

(LF4) if G ∈ V, T is a compact T0-topology on G and (G,T) is a left topological
group, then (G,T) ∈ V;

(SF5) if G ∈ V, T is a T0-topology on G and (G,T) is a paratopological group
with an invariant base, then (G,T) ∈ V.

From Theorem 2 it follows

Corollary 8. Let W be a non-trivial LI-complete quasi-variety of left topological
groups and Z ∈ W. Then for any pointed space X the free left topological group
(F (X,W), eX ) is abstract free and the mapping eX is an embedding.

From Theorem 3 it follows

Corollary 9. Let W be a non-trivial LI-complete quasi-variety of left topological
groups, n ∈ N and xn = e for any x ∈ G and G ∈ W. Then for any pointed T1-space
X the free left topological group (F (X,W), eX ) is abstract free and the mapping eX
is an embedding.

The following assertion completes Corollary 9.

Lemma 8. Let G be a left topological group and for any x ∈ G there exists n(x) ∈ N

such that xn(x) = e. Then G is a T1-space.

Proof. Any finite T0-space contains a closed one-point subset. Thus any finite left
topological group is a T1-space. By conditions, any point a ∈ G is contained in a
finite subgroup G(a) = {ai : 0 ≤ i ≤ n(a)}. Thus {e} is a closed subset of the group
G and G is a T1-space. �

Remark 3. The similar assertions are true for classes of right topological groups.

13 Free semitopological groups

A class V of semitopological groups is called a CI-complete quasi-variety of semi-
topological groups if:

(SF1) the class V is multiplicative;

(SF2) if G ∈ V and A is a subgroup of G, then A ∈ V;
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(SF3) every space G ∈ V is a T0-space;

(SF4) if G ∈ V, T is a compact T0-topology on G and (G,T) is a quasitopological
group, then (G,T) ∈ V;

(SF5) if G ∈ V, T is a T0-topology on G and (G,T) is a paratopological group
with an invariant base, then (G,T) ∈ V.

From Theorem 2 it follows

Corollary 10. Let W be a non-trivial CI-complete quasi-variety of semitopolog-
ical groups and Z ∈ W. Then for any pointed space X the free topological group
(F (X,W), eX ) is abstract free and the mapping eX is an embedding.

From Theorem 3 it follows

Corollary 11. Let W be a non-trivial CI-complete quasi-variety of semitopological
groups, n ∈ N and xn = e for any x ∈ G and G ∈ W. Then for any pointed T1-space
X the free topological group (F (X,W), eX ) is abstract free and the mapping eX is
an embedding.

Lemma 6 completes Corollary 11.
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