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Functional compactifications of Tj-spaces and
bitopological structures

Mitrofan M. Choban, Laurentiu I. Calmutchi

Abstract. We study the compactifcation of Tp-spaces generated by families of
special continuous mappings into a given standard space E. In this context we have
introduced the notions of E-thin and E-rough g-compactifications. The maximal E-
thin and E-rough g-compactifications are constructed.
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1 Introduction

In functional analysis and related areas of mathematics different dual pairs of
topologies are used. A bitopological structure on a set X is called a pair of topologies
{T,7% on X. In this case (X,7,7%) is a bitopological space. The general concept
of a bitopological structure was introduced by J. C.Kelly [7] and applied in distinct
domains by many authors (see [8, 9]).

If (X,7,7%) is a bitopological space, then we put 7/ = max{7,7%} and say
that 7 is the initial topology, 7@ is the dual topology and 7" is the final topology.
In many constructions the final topology is a Hausdorff topology.

Example 1. Let X be a set and Q = {p, : @ € A} be a family of functions on
X x X with the next properties:

— sup{pa(z,y) + pa(y,x) : a € A} =0 if and only if z = y;

— pa(z,y) + pa(y, 2) > palz,z) for all z,y,z € X and o € A.

Then we say that Q is a family of pseudo-quasimetrics on X. We put
V(z,pa,r) ={y € X : polz,y) < r}forall z € X, « € Aand r > 0. The in-
tersections of finite elements of the family {V (z, po,7) : 2 € X, a0 € A,r > 0} form a
base of the topology 7(Q) on X. The functions Q¢ = {pd(x,y) = pa(y, ) : a € A}
form the dual family of pseudo-quasimetrics on X and the dual topology 7 (Q%). The
functions Q° = {p%(z,y) = 27 (pa(z,y) + pa(y,r)) : @ € A} form the final fam-
ily of pseudo-metrics on X and the final topology 7(Q°) = sup{7(Q),7 (9%} =
T(QUQY). Then (X,T(Q),7T(Q%) is a bitopological space with the initial topology
T(Q), the dual topology 7(Q%) and the completely regular final topology 7 (Q%).

The first examples of bitopological spaces were constructed in this way [7-9]. In
many cases the family Q is a singleton set, i.e. is a quasimetric on X.
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For our aim the initial and the final topologies on X are important. From this
point of view, in the present article we suppose that any bitopological structure
{T,T'} on X has the following properties:

~-TCT;

— any compact subspace of the space (X,7") is Hausdorff and closed;

— the space (X, 7) is a Ty-space.

In this case we say that 7 is the initial or weak topology on X and 7" is the
final or strong topology on X. For any subset A of X consider two closures: the
initial closure clA = cl(x 7)A and the strong closure s — clA = cl(x 71 A.

We use the terminology from [5, 6].

Definition 1. A g-compactification of a space X is a pair (Y, f), where Y is a
compact Ty-space, f : X — Y is a continuous mapping, the set f(X) is dense in
Y. If the set {y} is closed in'Y for any pointy € Y \ f(X), then (Y, f) is called a
g-compactification of a space X with a T1-remainder. If f is an embedding, then we
say that Y is a compactification of X and consider that X C Y, where f(x) = x for
any x € X.

Let (Y, f) and (Z,g) be two g-compactifications of the space X. We consider
that (Y, f) < (Z,g) if there exists a continuous mapping ¢ : Z — Y such that
f=pog, ie [(x) = plg()) for cach x € X. If (Y, ) < (Z.g) and (X, f) < (¥,g),
then we say that g-compactifications (Y, f) and (Z,g) are equivalent. If ¢ is a
homeomorphism of Z onto Y, then we say that the g-compactifications (Y, f) and
(Z,g) are identical. We identify the identical g-compactifications.

The class of all compactifications of a given non-empty space is not a set
(see [3]).

A family £ of subsets of a space X is called a WS-ring if L is a family of closed
subsets of X, X € L, 0 e Land FNH,FUH € L for any F,H € L.

For any family £ of closed subsets of a space X denote by r£ the minimal
W S-ring of sets containing L.

Fix a family £ of closed subsets of X. Let £’ = {X} U L. Denote by M (L, X)
the family of all £'-ultrafilters £ € L. We put &p(x) = {H € L' : © € H}. Let
weX = M(ﬁ,X) U{fg X € X}

Consider the mapping w, : X — w, X, where we(z) = &2 (x) for any x € X. On
wre X consider the topology generated by the closed semibase wl = {< H >= {¢ €
weX:He&:He '} If LisaWS-ring, then wl is a closed base.

The pair (wz X, wr) is a g-compactification of the space X with a 7}-remainder.

If £ is a closed base of the space X, then (wsX,w,) is a compactification of the
space X with a Tj-remainder.

By virtue of the following theorem, it is sufficient to consider the g-compactifi-
cations w, X for W S-rings L.

Theorem 1 (see [3]). wyrX = w,X.

Definition 2. A g-compactification (Y, f) of a space X is called a Wallman-Shanin
g-compactification of the space X if (X,f) = (weX,wg) for some
WS-ring L.
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If £ is the family of all closed subsets of a space X, then wX = w,/X is the
Wallman compactification of the space X and wx : X — wX is the identical
mapping (see [3, 5]).

The compactifications of the Wallman-Shanin type were introduced by
N. A. Shanin [10] and studied by many authors (see [1-4, 11-13]). There exist Haus-
dorff compactifications of discrete spaces which are not Wallman—Shanin compacti-
fications [13].

2 Functional compactifications

A space E with the topology 7 is called a standard space if it has the next
properties:

— F is a commutative additive topological semigroup with the zero element 0 € E;

— there exist a point 1 € E and an open subset U of F such that 0 € U and
1¢U;

— on FE a topology 7’ is given such that the pair of topologies {7,7'} is a
bitopological structure on E.

In particular, 7 C 7’ and any compact subspace of the space (E,7T") is Hausdorff
and closed.

Fix a standard space E. Let E be the set F with the initial topology 7 and
Es be the set E with the final topology 7’. Denote by Cy(X, E) the space of
all continuous mappings f of a space X into the space (E,7) for which the set
s —clf(X) is a compact subset of the space (E,7"). Since 7 C 7', we consider that
Cy(X, By) C Cy(X, E).

We say that a space X is E-regular if for each closed subset B of X and any
point xg € X \ B there exists a mapping g € Cy(X, E) such that f(x¢) & clpg(B).
A space X is E-completely reqular if for each closed subset B of X and any point
xg € X \ B there exists a mapping g € Cy(X, Es) such that f(xg) € clgg(B) (in this
case f(xg) ¢ clp,g(B) too).

If the space X is E-completely regular, then the space X is a Tychonoff space.
Really, £y = s — cl f(X) is a Hausdorff compact subspace of the space E, and X is
a subspace of the Hausdorff compact space II{E; : f € Cy(X, Es)}.

Fix a non-empty space X.

Any non-empty set F C Cy(X, E) generates two mappings lr : X — E7 and
eF,x) 1 X — E7 where ex(z) = lr(x) = (f(z) : f € F) for any point z € X, and
the identical mapping ¢ : Esf — E¥. Now we put ex = €(F,X)-

Consider the family Br = {f~'(H) : S\ H € T} of closed subsets of X, the
compact space rxX which is the closure of the set ex(X) in Ef , the compact space
crX which is the closure of the set [x(X) in £/ and the compact space srX =
ir(rrX). Let (wrX,wr) = (wp,X,wB,).

The pairs (cx X, ex) are called the E-rough functional g-compactifications of the
space X. The pairs (sxX,ex) are called the E-thin functional g-compactifications
of the space X.
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By construction, (cxX,er) < (szgX,er) and sxX is a dense subspace of the
space crX.

If F = Cy(X,E), then we put (RgX,eg) = (crX,er) and (fpX,eg) =
(Sj:X, 6]-‘).

Theorem 2. Let ) # Fy C Fo C Co(X, E). Then (cr, X, ex) < cr,X,ex,) and
(spX,er) <spX,er).

Proof. Let p: E*2 — E71 and ¢ : E/2 — E7 be the natural projections. Then
p(er,X) Ccr X and q(rg,X) = rg, X. These facts complete the proof. O

Theorem 3. Let (Y, f) be a compactification of a space X and F C {go f : g €
Cy(Y,E)}. Then:

1. (crX,er) < (Y, f)).

2. If F ={gof:g€ CyY,E)} and the space Y is E-completely reqular, then
(srX,er) = (Y, f)).

3. IfH ={gof:g€CyY,Es)} and the space Y is E-completely reqular, then
(snX,exr) = (Y, f)).

Proof. By virtue of Theorem 2, we can assume that F = {gof : g € C3(Y, E)}. Then
there exists a continuous mapping h : Y — E7 such that ex = ho f: X — E7.
Thus h(Y) C ¢z X. The assertion 1 is proved. O

If the space Y is E-completely regular, then we put H = {go f : g € Cp(Y, Es)}.
Obviously, H C F and h is an embedding.

In this case ly(X) = iy (en (X)) C iy (en(h(Y))) and iy (e (h(Y)) is a com-
pact set. Then Y = ryX = i/ (en(h(Y))) and (sgX,ex) > (suX,en) > (Y, f).
The proof is complete.

Remark 1. The pair (RgpX,eg) is the unique maximal element of the set of g-
compactifications {(crX,er) : F C Cp(X, E)}.

Remark 2. The pair (BpX,ep) is the unique maximal element of the set of g-
compactifications {(szX,ex) : F C Cp(X,E)} U{(crX,ex) : F C Cp(X, E)}.

We say that a space X is an FE-extensible (respectively, a strong E-extensible)
space if for each mapping f € Cy(X, E) there exists a (respectively, exists a unique)
mapping wf € Cyp(wX, E) such that f = wf|X.

Theorem 4. Let ) # F C Cyo(X,E), (wrX,wr) < (wX,wx) and X is an E-
extensible space. Then (crX,er) < (wrX,wr).

Proof. By definition, ex(z) = (f(z) : f € F) € E¥ and czX is the closure of the
set ex(X) in B, Fix f € F and the continuous extension wf : wX — E of f.

We put Q = {II{U; : f € F} : Uy is open in E and the set {f : Uy # E} is
finite}. By construction, (2 is the standard open base of the space EZ. Moreover,
UNVeQforall U,V e If L = {X \wz'(H): HeQ}, then wrX = weX.

Consider the continuous mapping ¢ : wX — E7, where ¥(2) = (wf(z) : f € F)
for each z € wX. Obviously, ¥|X = er.
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There exists a continuous mapping ¢ : wX — wxX such that ¢(z) = wr(x)
for each x € X. In this case, for < H > = {{ € w, X : H € £} we have p~}(< H >)
= clyx(H) for each H € L. If z €= wr X\ = wr(X), then ¥(¢~1(2)) is a singleton
set and we put h(z) = (o~ 1(2)). The mapping h : ws(X) — (czX is continuous
and h(wg(x) = ex(x) for all x € X. The proof is complete. O

Remark 3. (RpX,ep) < wX for any F-extensible space X and each standard
space F.

Remark 4. Let Y be a non-empty subspace of a space X, H C Cy(X,E) and
F={g|Y : g € H}. Then:

1. FC G(Y, E).

2. (S}'Y - ClsHXeH(Y) - C]:Y = CchXeH(Y) - CHX.

3. 6(]:7y) = e(].—7X)|X.
Theorem 5. Let f: X — Y be a continuous mapping of a space X into a space Y .
Then there exist a continuous mapping wf : ReX — RpY and a unique continuous

mapping Bf : BpX — BrY such that Bf = wf|BeX and Bf o eEx) =€ery)°f.

Proof. By virtue of Remark 4, we can assume that Y = f(X). In this case:

1. For any E-thin compactification (Z, ) of the space Y the pair (Z,p o f) is
a F-thin compactification of the space X. Thus we can consider that any E-thin
compactification (Z, ¢) of the space Y is a E-thin compactification of the space X.
Then (BeY,ery)) < (BeX, er x))-

2. For any E-rough compactification (Z,¢) of the space Y the pair (Z,p o f) is
a E-rough compactification of the space X. Thus we can consider that any E-rough
compactification (Z,¢) of the space Y is a E-rough compactification of the space
X. Then (RgY, G(E’y)) < (RpX, e(E,X))-

The proof is complete. O

Example 2. Let F; be an infinite countable set 0 ¢ E; and E = E; U {0}.
Consider that 0+x =2+ 0 =0 for each x € F and x +y = « for all z,y € F;. On
E consider the topology 7 = {E,0} U{E \ F : F is a finite set} and the topology
7' =TU{H C Ey}. Then (E,T’) is the Alexandroff one-point compactification
of the discrete space Ej. Let X = {rq,rs,...} be the space of all rational numbers
in the usual topology. The space X is metrizable and wX = 3X is the Stone-Cech
compactification of the space X. Fix a countable subset A = {aj,as,...} of E; and
we suppose that a, # a;, for n % m. Then the mapping g : X — FE, where
g(rn) = ay, is continuous. Since the space E is countable, the mapping g is not
continuous extendable on wX. Thus the space X is not E-extensible. If F = {g},
then (crX,er) = (E,g) and sz X = {0} U A. In particular, (RgX,er) £ wX.

Example 3. Let Ej be an infinite set 0 ¢ E; and E = Ey U {0}. Consider that
0+x=x4+0=0foreach r € EF and x+y = «x for all z,y € F;. On E consider the
topology 7 = {E,0}U{E\F : F is a finite set} and the topology 7' = TU{H C F1}.
Then (E,7") is the Alexandroff one-point compactification of the discrete space Ej.
Assume that the cardinality |E| > exp(exp(Rg)). Let X = {ry,r2,...} be the space
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of all rational numbers in the usual topology. Obviously |wX| < |E|. Thus the space
X is E-extensible and not strong E-extensible. For each mapping f € Cy(X, E) we
fix a mapping wf : wX — FE such that wf(z) = f(x) forx € X and wf(y) # wf(z)
for distinct points y, 2z € wX \ X. Then wf is a continuous extension of f. There
exist many extensions of this kind. Hence (RgpX,ep) < wX. Since the space X is
countable, (fpX,ep) £ wX.

3 Examples

For any space X with a topology 7 denote by X} the set X with the topology
generated by the open semibase 7 U{X\ : U C X, U is an open compact subset}.

A space X is called a spectral space if the space X}, is compact and on X there
exists an open base B of open compact subsets and U NV € B for all U,V € B [3].

Definition 3. A g-compactification (Y, f) of a space X is called a spectral
g-compactification of the space X if Y is a spectral space and the set f(X) is dense
in the space Yy,.

Example 4. Denote by F the set {0,1} by the initial topology 7 = {0, {0},F}
and by the final discrete topology 7" = {0, {0}, {1},F}. On F consider the additive
operation 0+ 0=0and 0+1=1+0=1+1= 1. Then (F,7,7’) is a standard
space. Any Tp-space is F-regular and F-extensible. A space X is a F-completely
regular space if and only if indX = 0, i.e. X has a family of open-and-closed
sets which form an open base. In this case any zero-dimensional g-compactification
(Y, f) of a Ty-space X is a F-thin g-compactification. A g-compactification (Y, f) of
a space X is a F-thin g-compactification if and only if the g-compactification (Y, f)
is a spectral g-compactification. If the space X is not discrete, then the maximal
F-thin compactification GpX is not completely regular. If H C Cy(X,F), ¢ € X,
go € H, go(X) = {0}, f(xo) = 0 for any fH and er : X — F"* is an embedding
of X, then the F-rough compactification cyX is not F-thin. In this case
SHX 75 CHX = FH.

Example 5. Denote by D the set {0,1} by the initial and final discrete topologies
7 =T = {0,{0},{1}, F'}. On F consider the additive operation 0+0=1+1=0
and 0+1 =140 = 1. Then (D,7,7’) is a standard space. A space X is a
D-regular space if and only if indX = 0, i.e. X has a family of open-and-closed
sets which form an open base. A g-compactification (Y, f) of a space X is a D-thin
g-compactification if and only if the g-compactification (Y, f) is zero-dimensional.
Any D-rough g-compactification is D-thin.

Example 6. Denote by R the space of reals in the usual topology 7’ and by
R, the space of reals in the topology 7 generated by the open base {(—o0,t) :
t € R}. Then (Ry,7,7") is a standard space with the initial topology 7 and the
final topology 7’. Any Tpy-space is R,-regular space and R,-extensible. A space
X is a completely regular space if and only if X is a R,-completely regular space.
In this case any Hausdorff g-compactification (Y, f) of a Ty-space X is a R,-thin
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g-compactification. Any F-thin g-compactification is R,-thin. If (Y, f) is a Hausdorff
g-compactification of a Ty-space X and indY > 0, then (Y f) is a R,-thin and not
spectral g-compactification of the space X.

Example 7. Denote by R the space of reals in the usual topology 7’ = 7. Then
(R,7,7") is a standard space with the initial topology 7 and the final topology 7.
A space X is a completely regular space if and only if X is a R-regular space. In
this case only the Hausdorff g-compactifications (Y, f) of a Tp-space X are R-thin.
Any R-rough g-compactification is R-thin.

From the above examples it follows that the notions of thinness and roughness
depend on the standard space E and its initial and final topologies.

4 General case

In the present section we suppose that the bitopological structure {7,7'} on a
given standard space E has the following property: (F,7) is a subspace of the space
(E,T).

Theorem 6. Any F-thin g-compactification (syX,en) of a space X is an E-thin
g-compactification of X.

Proof. 1f H C Cy(X,F), then H C Cy(X, E). Obviously, F’* C E™ D" = F¥* C
EX clpn(Iy(X)) = clpn (X)) and clpr(en (X)) C clpr(en(X)). The proof is
complete. O
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