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Functional compactifications of T0-spaces and

bitopological structures

Mitrofan M.Choban, Laurenţiu I. Calmuţchi

Abstract. We study the compactifcation of T0-spaces generated by families of
special continuous mappings into a given standard space E. In this context we have
introduced the notions of E-thin and E-rough g-compactifications. The maximal E-
thin and E-rough g-compactifications are constructed.
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1 Introduction

In functional analysis and related areas of mathematics different dual pairs of
topologies are used. A bitopological structure on a set X is called a pair of topologies
{T ,T d} on X. In this case (X,T ,T d) is a bitopological space. The general concept
of a bitopological structure was introduced by J.C.Kelly [7] and applied in distinct
domains by many authors (see [8, 9]).

If (X,T ,T d) is a bitopological space, then we put T ′ = max{T ,T d} and say
that T is the initial topology, T d is the dual topology and T ′ is the final topology.
In many constructions the final topology is a Hausdorff topology.

Example 1. Let X be a set and Q = {ρα : α ∈ A} be a family of functions on
X ×X with the next properties:

– sup{ρα(x, y) + ρα(y, x) : α ∈ A} = 0 if and only if x = y;

– ρα(x, y) + ρα(y, z) ≥ ρα(x, z) for all x, y, z ∈ X and α ∈ A.

Then we say that Q is a family of pseudo-quasimetrics on X. We put
V (x, ρα, r) = {y ∈ X : ρα(x, y) < r} for all x ∈ X, α ∈ A and r > 0. The in-
tersections of finite elements of the family {V (x, ρα, r) : x ∈ X,α ∈ A, r > 0} form a
base of the topology T (Q) on X. The functions Qd = {ρd

α(x, y) = ρα(y, x) : α ∈ A}
form the dual family of pseudo-quasimetrics onX and the dual topology T (Qd). The
functions Qs = {ρs

α(x, y) = 2−1(ρα(x, y) + ρα(y, x)) : α ∈ A} form the final fam-
ily of pseudo-metrics on X and the final topology T (Qs) = sup{T (Q),T (Qd)} =
T (Q∪Qd). Then (X,T (Q),T (Qd)) is a bitopological space with the initial topology
T (Q), the dual topology T (Qd) and the completely regular final topology T (Qs).

The first examples of bitopological spaces were constructed in this way [7–9]. In
many cases the family Q is a singleton set, i. e. is a quasimetric on X.
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For our aim the initial and the final topologies on X are important. From this
point of view, in the present article we suppose that any bitopological structure
{T ,T ′} on X has the following properties:

– T ⊆ T ′;
– any compact subspace of the space (X,T ′) is Hausdorff and closed;
– the space (X,T ) is a T0-space.
In this case we say that T is the initial or weak topology on X and T ′ is the

final or strong topology on X. For any subset A of X consider two closures: the
initial closure clA = cl(X,T )A and the strong closure s− clA = cl(X,T ′)A.

We use the terminology from [5, 6].

Definition 1. A g-compactification of a space X is a pair (Y, f), where Y is a

compact T0-space, f : X → Y is a continuous mapping, the set f(X) is dense in

Y . If the set {y} is closed in Y for any point y ∈ Y \ f(X), then (Y, f) is called a

g-compactification of a space X with a T1-remainder. If f is an embedding, then we

say that Y is a compactification of X and consider that X ⊆ Y , where f(x) = x for

any x ∈ X.

Let (Y, f) and (Z, g) be two g-compactifications of the space X. We consider
that (Y, f) ≤ (Z, g) if there exists a continuous mapping ϕ : Z −→ Y such that
f = ϕ ◦ g, i.e. f(x) = ϕ(g(x)) for each x ∈ X. If (Y, f) ≤ (Z, g) and (X, f) ≤ (Y, g),
then we say that g-compactifications (Y, f) and (Z, g) are equivalent. If ϕ is a
homeomorphism of Z onto Y , then we say that the g-compactifications (Y, f) and
(Z, g) are identical. We identify the identical g-compactifications.

The class of all compactifications of a given non-empty space is not a set
(see [3]).

A family L of subsets of a space X is called a WS-ring if L is a family of closed
subsets of X, X ∈ L, ∅ ∈ L and F ∩H,F ∪H ∈ L for any F,H ∈ L.

For any family L of closed subsets of a space X denote by rL the minimal
WS-ring of sets containing L.

Fix a family L of closed subsets of X. Let L′ = {X} ∪ L. Denote by M(L,X)
the family of all L′-ultrafilters ξ ∈ L. We put ξL(x) = {H ∈ L′ : x ∈ H}. Let
ωLX = M(L,X) ∪ {ξL : x ∈ X}.

Consider the mapping ωL : X → ωLX, where ωL(x) = ξL(x) for any x ∈ X. On
ωLX consider the topology generated by the closed semibase ωL = {< H >= {ξ ∈
ωLX : H ∈ ξ} : H ∈ L′}. If L is a WS-ring, then ωL is a closed base.

The pair (ωLX,ωL) is a g-compactification of the space X with a T1-remainder.
If L is a closed base of the space X, then (ωLX,ωL) is a compactification of the

space X with a T1-remainder.
By virtue of the following theorem, it is sufficient to consider the g-compactifi-

cations ωLX for WS-rings L.

Theorem 1 (see [3]). ωrLX = ωLX.

Definition 2. A g-compactification (Y, f) of a space X is called a Wallman-Shanin

g-compactification of the space X if (X, f) = (ωLX,ωL) for some

WS-ring L.
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If L is the family of all closed subsets of a space X, then ωX = ωLX is the
Wallman compactification of the space X and ωX : X −→ ωX is the identical
mapping (see [3, 5]).

The compactifications of the Wallman-Shanin type were introduced by
N.A. Shanin [10] and studied by many authors (see [1–4, 11–13]). There exist Haus-
dorff compactifications of discrete spaces which are not Wallman–Shanin compacti-
fications [13].

2 Functional compactifications

A space E with the topology T is called a standard space if it has the next
properties:

– E is a commutative additive topological semigroup with the zero element 0 ∈ E;

– there exist a point 1 ∈ E and an open subset U of E such that 0 ∈ U and
1 6∈ U ;

– on E a topology T ′ is given such that the pair of topologies {T ,T ′} is a
bitopological structure on E.

In particular, T ⊆ T ′ and any compact subspace of the space (E,T ′) is Hausdorff
and closed.

Fix a standard space E. Let E be the set E with the initial topology T and
Es be the set E with the final topology T ′. Denote by Cb(X,E) the space of
all continuous mappings f of a space X into the space (E,T ) for which the set
s− clf(X) is a compact subset of the space (E,T ′). Since T ⊆ T ′, we consider that
Cb(X,Es) ⊆ Cb(X,E).

We say that a space X is E-regular if for each closed subset B of X and any
point x0 ∈ X \ B there exists a mapping g ∈ Cb(X,E) such that f(x0) 6∈ clEg(B).
A space X is E-completely regular if for each closed subset B of X and any point
x0 ∈ X \B there exists a mapping g ∈ Cb(X,Es) such that f(x0) 6∈ clEg(B) (in this
case f(x0) /∈ clEs

g(B) too).

If the space X is E-completely regular, then the space X is a Tychonoff space.
Really, Ef = s− clf(X) is a Hausdorff compact subspace of the space Es and X is
a subspace of the Hausdorff compact space Π{Ef : f ∈ Cb(X,Es)}.

Fix a non-empty space X.

Any non-empty set F ⊆ Cb(X,E) generates two mappings lF : X −→ EF
s and

e(F ,X) : X −→ EF , where eF (x) = lF (x) = (f(x) : f ∈ F) for any point x ∈ X, and

the identical mapping iF : EF
s −→ EF . Now we put eF = e(F ,X).

Consider the family BF = {f−1(H) : S \ H ∈ T } of closed subsets of X, the
compact space rFX which is the closure of the set eF (X) in EF

s , the compact space
cFX which is the closure of the set lF (X) in EF and the compact space sFX =
iF (rFX). Let (ωFX,ωF ) = (ωBF

X,ωBF
).

The pairs (cFX, eF ) are called the E-rough functional g-compactifications of the
space X. The pairs (sFX, eF ) are called the E-thin functional g-compactifications

of the space X.
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By construction, (cFX, eF ) ≤ (sFX, eF ) and sFX is a dense subspace of the
space cFX.

If F = Cb(X,E), then we put (REX, eE) = (cFX, eF ) and (βEX, eE) =
(sFX, eF ).

Theorem 2. Let ∅ 6= F1 ⊆ F2 ⊆ Cb(X,E). Then (cF1X, eF1) ≤ cF2X, eF2) and

(sF1X, eF1) ≤ sF2X, eF2).

Proof. Let p : EF2 −→ EF1 and q : EF2
s −→ EF1

s be the natural projections. Then
p(cF2X) ⊆ cF1X and q(rF2X) = rF1X. These facts complete the proof. �

Theorem 3. Let (Y, f) be a compactification of a space X and F ⊆ {g ◦ f : g ∈
Cb(Y,E)}. Then:

1. (cFX, eF ) ≤ (Y, f)).

2. If F = {g ◦ f : g ∈ Cb(Y,E)} and the space Y is E-completely regular, then

(sFX, eF ) ≥ (Y, f)).

3. If H = {g ◦ f : g ∈ Cb(Y,Es)} and the space Y is E-completely regular, then

(sHX, eF ) = (Y, f)).

Proof. By virtue of Theorem 2, we can assume that F = {g◦f : g ∈ Cb(Y,E)}. Then
there exists a continuous mapping h : Y −→ EF such that eF = h ◦ f : X −→ EF .
Thus h(Y ) ⊆ cFX. The assertion 1 is proved. �

If the space Y is E-completely regular, then we put H = {g ◦ f : g ∈ Cb(Y,Es)}.
Obviously, H ⊆ F and h is an embedding.

In this case lH(X) = i−1
H

(eH(X)) ⊆ i−1
H

(eH(h(Y ))) and i−1
H

(eH(h(Y )) is a com-
pact set. Then Y = rHX = i−1

H
(eH(h(Y ))) and (sFX, eF ) ≥ (sHX, eH) ≥ (Y, f).

The proof is complete.

Remark 1. The pair (REX, eE) is the unique maximal element of the set of g-
compactifications {(cFX, eF ) : F ⊆ Cb(X,E)}.

Remark 2. The pair (βEX, eE) is the unique maximal element of the set of g-
compactifications {(sFX, eF ) : F ⊆ Cb(X,E)} ∪ {(cFX, eF ) : F ⊆ Cb(X,E)}.

We say that a space X is an E-extensible (respectively, a strong E-extensible)
space if for each mapping f ∈ Cb(X,E) there exists a (respectively, exists a unique)
mapping ωf ∈ Cb(ωX,E) such that f = ωf |X.

Theorem 4. Let ∅ 6= F ⊆ Cb(X,E), (ωFX,ωF ) ≤ (ωX,ωX) and X is an E-

extensible space. Then (cFX, eF ) ≤ (ωFX,ωF ).

Proof. By definition, eF (x) = (f(x) : f ∈ F) ∈ EF and cFX is the closure of the
set eF (X) in EF . Fix f ∈ F and the continuous extension ωf : ωX → E of f .

We put Ω = {Π{Uf : f ∈ F} : Uf is open in E and the set {f : Uf 6= E} is

finite}. By construction, Ω is the standard open base of the space EF . Moreover,
U ∩ V ∈ Ω for all U, V ∈ Ω. If L = {X \ ω−1

F
(H) : H ∈ Ω}, then ωFX = ωLX.

Consider the continuous mapping ψ : ωX → EF , where ψ(z) = (ωf(z) : f ∈ F)
for each z ∈ ωX. Obviously, ψ|X = eF .
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There exists a continuous mapping ϕ : ωX −→ ωFX such that ϕ(x) = ωF (x)
for each x ∈ X. In this case, for < H > = {ξ ∈ ωLX : H ∈ ξ} we have ϕ−1(< H >)
= clωX(H) for each H ∈ L. If z ∈= ωFX\ = ωL(X), then ψ(ϕ−1(z)) is a singleton
set and we put h(z) = ψ(ϕ−1(z)). The mapping h : ωL(X) −→ (cFX is continuous
and h(ωL(x) = eF (x) for all x ∈ X. The proof is complete. �

Remark 3. (REX, eE) ≤ ωX for any E-extensible space X and each standard
space E.

Remark 4. Let Y be a non-empty subspace of a space X, H ⊆ Cb(X,E) and
F = {g|Y : g ∈ H}. Then:

1. F ⊆ Cb(Y,E).
2. (sFY ⊆ clsHXeH(Y ) ⊆ cFY = clcHXeH(Y ) ⊆ cHX.
3. e(F ,Y ) = e(F ,X)|X.

Theorem 5. Let f : X −→ Y be a continuous mapping of a space X into a space Y .

Then there exist a continuous mapping ωf : REX −→ REY and a unique continuous

mapping βf : βEX −→ βEY such that βf = ωf |βEX and βf ◦ e(E,X) = e(E,Y ) ◦ f .

Proof. By virtue of Remark 4, we can assume that Y = f(X). In this case:
1. For any E-thin compactification (Z,ϕ) of the space Y the pair (Z,ϕ ◦ f) is

a E-thin compactification of the space X. Thus we can consider that any E-thin
compactification (Z,ϕ) of the space Y is a E-thin compactification of the space X.
Then (βEY, e(E,Y )) ≤ (βEX, e(E,X)).

2. For any E-rough compactification (Z,ϕ) of the space Y the pair (Z,ϕ ◦ f) is
a E-rough compactification of the space X. Thus we can consider that any E-rough
compactification (Z,ϕ) of the space Y is a E-rough compactification of the space
X. Then (REY, e(E,Y )) ≤ (REX, e(E,X)).

The proof is complete. �

Example 2. Let E1 be an infinite countable set 0 6∈ E1 and E = E1 ∪ {0}.
Consider that 0 + x = x+ 0 = 0 for each x ∈ E and x+ y = x for all x, y ∈ E1. On
E consider the topology T = {E, ∅} ∪ {E \ F : F is a finite set} and the topology
T ′ = T ∪ {H ⊆ E1}. Then (E,T ′) is the Alexandroff one-point compactification
of the discrete space E1. Let X = {r1, r2, ...} be the space of all rational numbers
in the usual topology. The space X is metrizable and ωX = βX is the Stone-Čech
compactification of the space X. Fix a countable subset A = {a1, a2, ...} of E1 and
we suppose that an 6= am for n 6= m. Then the mapping g : X −→ E, where
g(rn) = an, is continuous. Since the space E is countable, the mapping g is not
continuous extendable on ωX. Thus the space X is not E-extensible. If F = {g},
then (cFX, eF ) = (E, g) and sFX = {0} ∪A. In particular, (REX, eE) 6≤ ωX.

Example 3. Let E1 be an infinite set 0 6∈ E1 and E = E1 ∪ {0}. Consider that
0+x = x+ 0 = 0 for each x ∈ E and x+ y = x for all x, y ∈ E1. On E consider the
topology T = {E, ∅}∪{E\F : F is a finite set} and the topology T ′ = T ∪{H ⊆ E1}.
Then (E,T ′) is the Alexandroff one-point compactification of the discrete space E1.
Assume that the cardinality |E| ≥ exp(exp(ℵ0)). Let X = {r1, r2, ...} be the space



58 MITROFAN M. CHOBAN, LAURENŢIU I.CALMUŢCHI

of all rational numbers in the usual topology. Obviously |ωX| ≤ |E|. Thus the space
X is E-extensible and not strong E-extensible. For each mapping f ∈ Cb(X,E) we
fix a mapping ωf : ωX −→ E such that ωf(x) = f(x) for x ∈ X and ωf(y) 6= ωf(z)
for distinct points y, z ∈ ωX \X. Then ωf is a continuous extension of f . There
exist many extensions of this kind. Hence (REX, eE) ≤ ωX. Since the space X is
countable, (βEX, eE) 6≤ ωX.

3 Examples

For any space X with a topology T denote by Xh the set X with the topology
generated by the open semibase T ∪ {X\ : U ⊆ X,U is an open compact subset}.

A space X is called a spectral space if the space Xh is compact and on X there
exists an open base B of open compact subsets and U ∩ V ∈ B for all U, V ∈ B [3].

Definition 3. A g-compactification (Y, f) of a space X is called a spectral

g-compactification of the space X if Y is a spectral space and the set f(X) is dense

in the space Yh.

Example 4. Denote by F the set {0, 1} by the initial topology T = {∅, {0},F}
and by the final discrete topology T ′ = {∅, {0}, {1},F}. On F consider the additive
operation 0 + 0 = 0 and 0 + 1 = 1 + 0 = 1 + 1 = 1. Then (F,T ,T ′) is a standard
space. Any T0-space is F-regular and F-extensible. A space X is a F-completely
regular space if and only if indX = 0, i. e. X has a family of open-and-closed
sets which form an open base. In this case any zero-dimensional g-compactification
(Y, f) of a T0-space X is a F-thin g-compactification. A g-compactification (Y, f) of
a space X is a F-thin g-compactification if and only if the g-compactification (Y, f)
is a spectral g-compactification. If the space X is not discrete, then the maximal
F-thin compactification βFX is not completely regular. If H ⊆ Cb(X,F), x0 ∈ X,
g0 ∈ H, g0(X) = {0}, f(x0) = 0 for any fH and eF : X −→ FH is an embedding
of X, then the F-rough compactification cHX is not F-thin. In this case
sHX 6= cHX = F

H.

Example 5. Denote by D the set {0, 1} by the initial and final discrete topologies
T = T ′ = {∅, {0}, {1}, F}. On F consider the additive operation 0 + 0 = 1 + 1 = 0
and 0 + 1 = 1 + 0 = 1. Then (D,T ,T ′) is a standard space. A space X is a
D-regular space if and only if indX = 0, i. e. X has a family of open-and-closed
sets which form an open base. A g-compactification (Y, f) of a space X is a D-thin
g-compactification if and only if the g-compactification (Y, f) is zero-dimensional.
Any D-rough g-compactification is D-thin.

Example 6. Denote by R the space of reals in the usual topology T ′ and by
Ru the space of reals in the topology T generated by the open base {(−∞, t) :
t ∈ R}. Then (Ru,T ,T

′) is a standard space with the initial topology T and the
final topology T ′. Any T0-space is Ru-regular space and Ru-extensible. A space
X is a completely regular space if and only if X is a Ru-completely regular space.
In this case any Hausdorff g-compactification (Y, f) of a T0-space X is a Ru-thin
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g-compactification. Any F-thin g-compactification is Ru-thin. If (Y, f) is a Hausdorff
g-compactification of a T0-space X and indY > 0, then (Y, f) is a Ru-thin and not
spectral g-compactification of the space X.

Example 7. Denote by R the space of reals in the usual topology T ′ = T . Then
(R,T ,T ′) is a standard space with the initial topology T and the final topology T ′.
A space X is a completely regular space if and only if X is a R-regular space. In
this case only the Hausdorff g-compactifications (Y, f) of a T0-space X are R-thin.
Any R-rough g-compactification is R-thin.

From the above examples it follows that the notions of thinness and roughness
depend on the standard space E and its initial and final topologies.

4 General case

In the present section we suppose that the bitopological structure {T ,T ′} on a
given standard space E has the following property: (F,T ) is a subspace of the space
(E,T ).

Theorem 6. Any F-thin g-compactification (sHX, eH) of a space X is an E-thin

g-compactification of X.

Proof. If H ⊆ Cb(X,F), then H ⊆ Cb(X,E). Obviously, F
H ⊆ EH, D

H = F
H
s ⊆

EH
s , clDH(lH(X)) = clEH

s

(lH(X)) and clFH(eH(X)) ⊆ clEH(eH(X)). The proof is
complete. �
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Moldova

E-mail: mmchoban@gmail.com; lcamutchi@gmail.com

Received March 9, 2013


