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Liouville’s theorem for vector-valued functions
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Abstract. It is shown in [2] that any X-valued analytic map on C ∪ {∞} is a
constant map in case when X is a strongly galbed Hausdorff space. In [3] this result
is generalized to the case when X is a topological linear Hausdorff space, the von
Neumann bornology of which is strongly galbed. A new detailed proof for the last
result is given in the present paper. Moreover, it is shown that for several topological
linear spaces the von Neumann bornology is strongly galbed or pseudogalbed.
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In 1847 Joseph Liouville presented in his lecture the following result (which was
published by A. L.Cauchy in 1844 but now is known as Liouville’s theorem): every
bounded entire function f : C → C is a constant function. In the theory of Ba-
nach algebras the following generalization of this result is used (see, for example,
[4, Theorem 3.12]): if X is a complex normed space and f a bounded weakly holo-
morphic X-valued map on C, then f is a constant map.

In 1947 (see [6, Theorem 1]) Richard Arens generalized this result to the case
of a locally convex Hausdorff space X and later on to the case of a topological
linear Hausdorff space X the topological dual of which has nonzero elements. It is
well-known (see, for example, [10, p. 158]) that topological linear spaces which are
not locally convex could not have any nonzero continuous functionals. In this case1

instead of X-valued holomorphic functions the X-valued analytic functions are used.
In 1973 (see [12, Corollary, p. 56]) Philippe Turpin gave the following generaliza-

tion of Liouville’s theorem: if X is an exponentially galbed Hausdorff space and f is
an analytic X-valued map on2

C∞, then f is a constant map. In 2004 (see [2, The-
orem 2.1]) Mati Abel generalized this result to the case of strongly galbed Hausdorff
space X. Moreover, in 2008 he presented in [3, Theorem 3.1] the following result:

Theorem 1. Let X be a topological linear Hausdorff space over C. If the von
Neumann bornology BN of X is strongly galbed, then every X-valued analytic map
on C∞ is a constant map.

c© Mati Abel, 2013
∗Research is in part supported by Estonian Targeted Financing Project SF0180039s08.
1In 1966 Lucien Waelbroeck (see [14]) gave conditions for X-valued holomorphic map f on C

to be constant in case of complete pseudoconvex space X, generalizing for it the integral theory
for such maps. Unfortunately, his results have been presented mostly without complete proofs. He
gave only hints for some parts how to prove.

2Here and later on C∞ = C ∪ {∞}.
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A new detailed proof for this result is given in the present paper. Moreover, it
is shown that for several topological linear spaces the von Neumann bornology is
strongly galbed.

1 Introduction

1. Let X be a topological linear space over K, the field of real numbers R or
complex numbers C. By F -seminorm on X we mean a map q : X → R

+ which has
the following properties:

(1) q(λx) 6 q(x) for each x ∈ X and λ ∈ K with |λ| 6 1;

(2) limn→∞ q
(

1
n
x
)

= 0 for each x ∈ X;

(3) q(x + y) 6 q(x) + q(y) for each x, y ∈ X.

If from q(x) = 0 it follows that x = θX (the zero element of X), then q is an
F -norm on X. In this case d with d(x, y) = q(x − y) for each x, y ∈ X defines a
metric on X such that d(x + z, y + z) = d(x, y) for each x, y, z ∈ X.

It is well-known (see, for example, [9, p. 39, Theorem 3]) that the topology of
any topological linear spaces coincides with the initial topology defined on by a col-
lection of F -seminorms. A topological linear space (X, τ) topology τ of which has
been defined by a F -norm ‖ ‖ and X is complete with respect to ‖ ‖ is an F -space.
Moreover, if X is a locally pseudoconvex space (see, [11, p. 4], or [15, p. 4]), then
X has a base U = {Uλ : λ ∈ Λ} of neighborhoods of zero consisting of balanced
(µUλ ⊂ Uλ when |µ |6 1) and pseudoconvex (Uλ + Uλ ⊂ µUλ for µ > 2) sets.
This base defines a set of numbers {kλ : λ ∈ Λ} in (0, 1] (see, for example,
[10, pp. 161–162] or [15, pp. 3–6]) such that

Uλ + Uλ ⊂ 2
1

kλ Uλ

and

Γkλ
(Uλ) ⊂ 2

1
kλ Uλ

for each λ ∈ Λ, where

Γk(U) =

=
{ n∑

ν=1

µνuν : n ∈ N, u1, . . . , un ∈ U and µ1, . . . , µn ∈ K with
n∑

ν=1

| µν |k6 1
}

for any subset U of X and k ∈ (0, 1]. The set Γk(U) is the absolutely k-convex hull
of U in X. A subset U ⊂ X is absolutely k-convex if U = Γk(U) and is absolutely
pseudoconvex if U = Γk(U) for some k ∈ (0, 1]. In the case when

inf{kλ : λ ∈ Λ} = k > 0,

X is a locally k-convex space and when k = 1, then a locally convex space.
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It is known (see [15, pp. 3–6] or [7, pp. 189 and 195]) that the topology on a
locally pseudoconvex space X can be defined by a family P = {pλ : λ ∈ Λ} of
kλ-homogeneous seminorms (that is, pλ(µa) =| µ |kλ pλ(a) for each λ ∈ Λ, µ ∈ K

and a ∈ E), where the power of homogeneity kλ ∈ (0, 1] for each λ ∈ Λ and every
seminorm pλ is defined by

pλ(a) = inf{|µ |kλ : a ∈ µΓkλ
(Uλ)}

for each a ∈ A.

Let now l be the set of all K-valued sequences (xn) for which
∑∞

k=0 |xn| < ∞,
l0 be the subset of l of sequences with only finite number of nonzero elements and
let l0 = l \ l0.

A topological linear space X is a galbed space (see [2]) if there exists a sequence
(αn) in l0 and for every neighbourhood O of zero in X there is another neighbourhood
U of zero such that3

⋃

n∈N0

{ n∑

k=0

αkuk : u0, . . . , un ∈ U
}

⊂ O.

In particular, when

α0 6= 0 and α = inf
n>0

|αn|
1
n > 0, (1)

a galbed space X is strongly galbed and X is exponentially galbed when αn = 1
2n for

each n ∈ N0. It is known (see [1, Proposition 2] or [3, Corollary 2.2]) that every
locally pseudoconvex space is exponentially galbed (hence strongly galbed too).

2. A bornology on a set X is a collection B of subsets of X which satisfies the
following conditions:

(a) X =
⋃

B∈B
B;

(b) if B ∈ B and C ⊆ B, then C ∈ B;

(c) if B1, B2 ∈ B, then B1 ∪ B2 ∈ B.

If X is a linear space over K, a bornology B on X is called a linear or vector
bornology if the following conditions are satisfied:

(d) if B1, B2 ∈ B, then B1 + B2 ∈ B;

(e) if B ∈ B and λ ∈ K, then λB ∈ B;

(f)
⋃

|λ|61

λB ∈ B for every B ∈ B.

A linear bornology B on a linear space X is convex if Γ1(U) ∈ B for every U ∈ B
and pseudoconvex if there exists a number k ∈ (0, 1] such that Γk(U) ∈ B for every

3Here and later on N0 = {0} ∪ N.
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U ∈ B. Moreover, a bornology B on a linear space X over K is a galbed bornology
(see [3]) if there is a sequence (αn) in l0 such that

S((αn), B) =
⋃

n∈N0

{ n∑

k=0

αkbk : b0, . . . , bn ∈ B
}

∈ B (2)

for all B ∈ B. In particular, when (αn) satisfies the condition (1), B is a strongly
galbed bornology on X, and when αn = 1

2n for each n ∈ N, B is an exponentially galbed
bornology on X (see [5]). Moreover, we shall say that a bornology B is pseudogalbed
if for every B ∈ B there exists a sequence (αn) ∈ l0 such that S((αn), B) ∈ B. In
particular, when (αn) satisfies the condition (1), we shall say that the bornology B
is strongly pseudogalbed.

3. Let X be a topological linear space over C. An X-valued map f on C∞ is
analytic at λ0 ∈ C if there exists a number ε > 0 and a sequence (xn) in X such
that

f(λ0 + λ) =

∞∑

k=0

xkλ
k

whenever |λ| < ε, and is analytic at ∞ if there exists a number R > 0 and a sequence
(yk) in X such that

f(λ) =
∞∑

k=0

yk

λk

whenever |λ| > R.
If X is a topological linear space, then the set of all bounded sets forms a linear

bornology which is called the von Neumann bornology on X or the bornology on X

defined by the topology of X.

2 Topological linear spaces with strongly galbed and pseudogalbed

von Neumann bornology

First we describe these topological linear spaces, the von Neumann bornology
BN of which is strongly galbed4.

Proposition 1 (see [3]). The von Neimann bornology of any strongly galbed space
is strongly galbed.

Proof. Let X be a strongly galbed space. Then there exists a sequence (αn) ∈ l0
which satisfies the condition (1), and for every neighbourhood O of zero in X there
is another neighbourhood U of zero such that S((αn), U) ⊆ O. Moreover, for any
B ∈ BN there is a number µB > 0 such that B ⊆ µBU . Since

S((αn), B) ⊆ S((αn), µBU) ⊆ µBO,

then S((αn), B) ∈ BN for every B ∈ BX . Hence BN is strongly galbed.

4Proposition 1 is proved in [3]. A modified proof for this result is given here.
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Corollary 1. The von Neumann bornology of every exponentially galbed apace is
strongly galbed.

Proposition 2. The von Neumann bornology of any metrizable topological linear
space is pseudogalbed.

Proof. Let X be a metrizable topological linear space. Then X has a countable
base LX = {On : n ∈ N0} of balanced neighbourhoods of zero. We can assume that
On+1 + 0n+1 ⊆ On for each n ∈ N0 (the addition in X is continuous). Let O be an
arbitrary neighbourhood of zero in X. Then there is a number n0 ∈ N0 such that
On0 ⊆ O and

⋃

n>n0

n∑

k=n0

Ok+1 ⊆ On0 ,

because

On0+1 + · · · + On+1 ⊆ On0+1 + · · · + On + On ⊆ On0+1 + · · ·On−1 + On−1 ⊆

⊆ · · · ⊆ On0+1 + On0+1 ⊆ On0

for each n > n0.

Let B ∈ BN be a balanced set. Then for each k ∈ N0 there exists a number
µk = µk(B) > 1 such that B ⊆ µkOn0+k+1. Here µk 6 µk+1 because On+1 ⊆ On for
each n ∈ N0. Put

αn =
1

max{µn, µn
1}

for each n ∈ N0. Then |αn| 6
1

µn

1
for each n ∈ N0. Hence (αn) ∈ l0. Since

n∑

k=0

αkbk ∈

n∑

k=0

( µk

max{µk, µ
k
1}

On0+k+1

)

⊆

n0+n∑

k=n0

Ok+1

⊂
⋃

n>n0

n∑

k=n0

Ok+1 ⊆ On0 ⊆ O

for each n > 0 and each choice of elements b0, b1, . . . , bn ∈ B, then

S((αn), B) =
⋃

n∈N0

{ n∑

k=0

αkbk : b0, . . . , bn ∈ B
}

⊆ O.

Hence, S((αn), B) ∈ BN , because of which BN is pseudogalbed.

Corollary 2. The von Neumann bornology of every F -space is pseudogalbed.
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3 Proof of Theorem 1

Now we give a new and detailed proof for Theorem 1.

Proof. Let X be a topological linear Hausdorff space and f an X-valued analytic
map on C∞. We can assume that X is complete, otherwise we consider X as a dense
subset in X̃, the completion of X, and f as X̃-valued analytic map on C∞.

Let first λ0 ∈ C. Then there is a number r > 0 and a sequence (xn) in X such
that

f(λ0 + λ) =

∞∑

k=0

xkλ
k

whenever |λ| < r. By assumption, the von Neumann bornology BN of X is strongly
galbed. Therefore there exists a sequence (αn) ∈ l0 with α < 1 such that (2) holds
for any B ∈ BN . Take r0 ∈ (0, r

α
). Then the series

∞∑

k=0

xk(αr0)
k

converges in X. Therefore the sequence (xn(αr0)
n) tends to zero in X. Hence, the

set
{
xn(αr0)

n : n ∈ N0

}
is bounded in X. Let Uλ0 = {λ0 + λ : |λ| < α2r0} and

Xλ0 =
⋃

n∈N0

{ n∑

k=0

xk(αr0)
ktk : (tk) is a sequence with |tk| 6 αk for each k

}

.

Then Xλ0 is an absolutely convex and bounded set in A. Indeed, if λ, µ ∈ C with
|λ| + |µ| 6 1 and x, y ∈ Xλ0 , then there exists n1, n2 ∈ N0 and tx0 , . . . , txn1

and
t
y
0, . . . , t

y
n2 such that |txk| 6 αk and |tyk| 6 αk for each k,

x =

n1∑

k=0

xk(αr0)
ktxk

and

y =

n2∑

k=0

xk(αr0)
kt

y
k.

If n1 > n2, then we put
t
y
n2+1 = · · · = tyn1

= 0

(otherwise we act similarly), then

λx + µy =

n1∑

k=0

xk(αr0)
k(λtxk + µt

y
k) ∈ Xλ0 ,

because
|λtxk + µt

y
k| 6 |λ||txk | + |µ||tyk| 6 αk(|λ| + |µ|) 6 αk
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for each k. Thus Xλ0 is an absolutely convex set.
To show that Xλ0 is bounded, let O be an arbitrary balanced neighbourdhood

of zero in X. Because (xn(αr0)
n) is a bounded sequence in X, there is a number

ρ > 0 such that xn(αr0)
n ∈ ρO for each n ∈ N0. Therefore

xn(αr0)
n tn

αn
= xn(αr0)

n tn

αn

αn

αn
∈ ρ

( tn

αn

αn

αn
O

)

⊂ ρO

for all n ∈ N0 and all (tn) with |tn|
αn 6 1 for every n, because αn

|αn|
6 1 and O is

balanced. Hence, the set

B =
{

xn(αr0)
n tn

αn
: n ∈ N0, (tn) is a sequence with |tn| 6 αn for each n

}

∈ BN .

Thus, Xλ0 ⊂ S((αn), B) ∈ BN , because the von Neumann bornology BN is strongly
galbed. Moreover, it is easy to see that (Sn), where

Sn =
n∑

k=0

xk(αr0)
ktk

for each n ∈ N0 and fixed sequence (tn) with |tn| 6 αn for each n, is a Cauchy
sequence in X. To show this, let O be an arbitrary neighbourhood of zero in X and
m ∈ N a fixed number. Then there exists a balanced neighbourhood O1 of zero in
X such that

O1 + · · · + O1
︸ ︷︷ ︸

m summands

⊂ O

and a positive number ρ such that xn(αr0)
n ⊂ ρO1 for all n ∈ N0 because the

sequence (xn(αr0)
n) is bounded. Since α < 1, then the sequence (αn) vanishes.

Hence, there is a number n0 ∈ N0 such that αn < 1
ρ

whenever n > n0. Since

Sn+m − Sn =

n+m∑

k=n+1

xk(αr0)
ktk ∈ ρO1tn+1 + · · · + ρO1tn+m ⊂ O1 + · · · + O1

︸ ︷︷ ︸

m summands

⊂ O

whenever n > n0 for every fixed m ∈ N0, then (Sn) is a Cauchy sequence in X.
Hence, (Sn) converges in X. Therefore

∞∑

k=0

xk(αr0)
ktk ∈ X

for every fixed (tn) such that |tn| 6 αn for each n. It is easy to show that the closure
Kλ0 of the set Xλ0 in X is a closed, bounded and absolutely convex subset of X.
Therefore (see, for example,[8, pp. 8–9]), the linear hull Aλ0 in X, generated by Kλ0 ,
is a normed space with respect to the norm5 pλ0 defined by

pλ0(a) = inf{λ > 0 : a ∈ λKλ0}

5Here pλ0
is a norm on Aλ0

because Kλ0
is bounded.
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for each a ∈ Aλ0 . Taking this into account, we have

f(λ0 + λ) =
∞∑

k=0

xk(αr0)
k
( λ

αr0

)k

∈

∈
{ ∞∑

k=0

xk(αr0)
ktk : (tn) is a sequence with |tk| 6 αk for each k

}

⊂ Kλ0 ⊂ Aλ0

whenever |λ| < α2r0. Consequently, for any point λ ∈ C there is an open neighbour-
hood Uλ of λ and a normed subspace Aλ of X such that the restriction f |Uλ

of f to
Uλ has values in Aλ.

Since f is also analytic at ∞, then there is a sequence (zn) in X and a number
R > 0 such that

f(λ) =

∞∑

k=0

zk

λk

whenever |λ| > R. Let R0 ∈ (αR,∞). Then the series

∞∑

k=0

zkα
k

Rk
0

converges in X. Therefore the sequence ( znαn

Rn
0

) is bounded in X.

Let U∞ = {λ : |λ| > R0
α2 } and

X∞ =
⋃

n∈N0

{ n∑

k=0

zkα
k

Rk
0

tk : (tk) is a sequence with |tk| 6 αk for each k
}

.

Then X∞ is an absolutely convex and bounded set in X. Indeed, if λ, µ ∈ C with
|λ| + |µ| 6 1 and x, y ∈ X∞, then there exist n1, n2 ∈ N0 and tx0 , . . . , txn1

and
t
y
0, . . . , t

y
n2 such that |txk| 6 αk and |tyk| 6 αk for each k,

x =

n1∑

k=0

zkα
k

Rk
0

txk

and

y =

n2∑

k=0

zkα
k

Rk
0

t
y
k.

If n1 > n2, we put again
t
y
n2+1 = · · · = tyn1

= 0

(otherwise we act similarly). Therefore

λx + µy =

n1∑

k=0

zkα
k

Rk
0

(λtxk + µt
y
k) ∈ X∞,
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because
|λtxk + µt

y
k| 6 |λ||txk | + |µ||tyk| 6 αk(|λ| + |µ|) 6 αk

for each k.
Let O be again an arbitrary balanced neighbourhood of zero in X. Because

(
zn

αn

Rn
0

)
is a bounded sequence in X, there is a number π > 0 such that zn

αn

Rn
0
∈ πO

for each n ∈ N0. Therefore

znαn

Rn
0

tn

αn
=

znαn

Rn
0

tn

αn

αn

αn
∈ π

( tn

αn

αn

αn
O

)

⊂ πO

for all n ∈ N0 and all (tn) with |tn|
αn 6 1 for each n, because αn

|αn|
6 1 and O is

balanced. Hence, the set

B′ =
{znαn

Rn
0

tn

αn
: n ∈ N0, (tn) is a sequence with |tn| 6 αn for each n

}

∈ BN .

Hence, X∞ ⊂ S((αn), B′) ∈ BN because the von Neumann bornology BN is strongly
galbed. Thus, the closure K∞ of the set X∞ in X is a closed, bounded and absolutely
convex subset of X. Therefore (similarly as above) the linear hull A∞ in X, gnerated
by K∞, is a normed space with respect to the norm p∞, defined by

p∞(a) = inf{λ > 0 : a ∈ λK∞}

for each a ∈ A∞. The same way as in the first part of the proof,

∞∑

k=0

zkα
k

Rk
0

tk ∈ X

for every fixed (tn) such that |tn| 6 αn for each n. Since

f(λ) =

∞∑

k=0

zkα
k

Rk
0

(R0

αλ

)k

∈

∈
{ ∞∑

k=0

zkα
k

Rk
0

tk : (tk) is a sequence with |tk| 6 αk for each k
}

⊂ K∞ ⊂ A∞

whenever |λ| > R0
α2 , there is an open neighbourhood U∞ of ∞ and a normed subspace

A∞ of X such that the restriction f |U∞
of f to U∞ has values in A∞.

Now {Uλ : λ ∈ C} and U∞ form an open cover of C∞. Since C∞ is compact,
there are numbers n ∈ N and λ1, . . . , λn ∈ C such that

C∞ = U∞ ∪
( n⋃

k=1

Uλk

)

.

Therefore

f(C∞) = f(U∞)
⋃( n⋃

k=1

f(Uλk
)
)

⊂ A1 = A∞

⋃( n⋃

k=1

Aλk

)

⊂ A0,
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where A0 is the linear hull of A1. Without loss of generality we can assume that
every element

x = λ1x1 + · · · + λmxm ∈ A0

has been presented in the form

x = a1 + · · · + an + an+1,

where ak ∈ Aλk
for each k ∈ {1, 2, . . . , n} and an+1 ∈ A∞, denoting by a1 the zero

element if none of elements λ1x1, . . . , λmxm does not belong to Aλ1 or the sum of all
elements from λ1x1, . . . , λmxm which belong to Aλ1 ; by a2 the zero element if none
of remainder elements from λ1x1, . . . , λmxm does not belong to Aλ2 or the sum of
all remainder elements from λ1x1, . . . , λmxm which belong to Aλ2 and so on.

Now, for every x ∈ A0 let

N(x) = {λ ∈ {λ1, . . . , λn,∞} : x ∈ Aλ}

and let p be the map on A0, defined by

p(x) =
n+1∑

k=1

max
λ∈N(ak)

pλ(ak)

for every x = a1 + · · · + an+1 ∈ A0. It is easy to check that p is a norm on A0.
Hence f maps C∞ into the normed space A0. Now, it is easy to show that ϕ ◦ f

is a C-valued analytic function on C∞ for each continuous linear functional ϕ on
A0. Hence ϕ ◦ f is a constant function by the classical Liouville’s Theorem. Since
continuous linear functionals separate the points of any normed space, then f is a
constant map.

Now, by Theorem 1, Propositions 1 and Corollaries 1, we have the result of
Ph.Turpin (see [12]).

Corollary 3. If X is an exponentially galbed (in particular a locally pseudoconvex)
space, then every X-valued analytic map on C∞ is a constant map.

4 Application

Using the classical Liouville’s Theorem, it is easy to prove the Gelfand-Mazur
Theorem, that is, every complex normed division algebra is topologically isomorphic
to C. This result has many generalizations to the case of locally convex and lo-
cally pseudoconvex division algebras. Next we give a characterization of complex
topological division algebras.

Theorem 2. A complex Hausdorff division algebra6 A is topologically isomorphic
to C if and only if

6We assume here that the multiplication in topological algebras is separately continuous.
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a) every element of A is bounded7;
b) the von Neumann bornology of A is strongly galbed.

Proof. Let A be topologically isomorphic to C. Then every element of A has the
form λeA, where λ ∈ C and eA is the unit element of A and every bounded set in
A is in the form KeA, where K is a bounded set in C. Therefore, every element of
A is bounded. To show that the von Neumann bornology of A is strongly galbed,
let (αn) ∈ l0 be such that the condition (1) holds, and let L =

∑

k |αk|, M > 0 and
KM = {λ ∈ C : |λ| < M}. Moreover, let B be an arbitrary bounded set in A. Then
there is a number M > 0 such that B = KMeA. Since

n∑

k=0

αkµkeA =
( n∑

k=0

αkµk

)

eA

for each n and µ1, . . . , µn ∈ KM and

∣
∣
∣

n∑

k=0

αkµk

∣
∣
∣ 6

n∑

k=0

|αk||µk| 6 M

∞∑

k=0

|αk| = ML,

then
⋃

n∈N0

{ n∑

k=0

αkµkeA : µ1, . . . , µn ∈ KM

}

⊆ KMLeA.

Hence, the von Neumann bornology of A is strongly galbed.
Let now A be a complex Hausdorff division algebra. Then (see [3, proof of

Proposition 5.1]) A is topologically isomorphic to C by Theorem 1.

Now by Proposition 1, Corollary 1 and Theorem 2 we have

Corollary 4. Every complex strongly galbed (in particular, exponentially galbed)
division algebra is topologically isomorphic to C if and only if every element in A is
bounded.
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