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Liouville’s theorem for vector-valued functions
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Abstract. It is shown in [2] that any X-valued analytic map on C U {cc} is a
constant map in case when X is a strongly galbed Hausdorff space. In [3] this result
is generalized to the case when X is a topological linear Hausdorff space, the von
Neumann bornology of which is strongly galbed. A new detailed proof for the last
result is given in the present paper. Moreover, it is shown that for several topological
linear spaces the von Neumann bornology is strongly galbed or pseudogalbed.
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In 1847 Joseph Liouville presented in his lecture the following result (which was
published by A.L. Cauchy in 1844 but now is known as Liouville’s theorem): every
bounded entire function f : C — C is a constant function. In the theory of Ba-
nach algebras the following generalization of this result is used (see, for example,
[4, Theorem 3.12]): if X is a complex normed space and f a bounded weakly holo-
morphic X -valued map on C, then f is a constant map.

In 1947 (see [6, Theorem 1]) Richard Arens generalized this result to the case
of a locally convex Hausdorff space X and later on to the case of a topological
linear Hausdorff space X the topological dual of which has nonzero elements. It is
well-known (see, for example, [10, p. 158]) that topological linear spaces which are
not locally convex could not have any nonzero continuous functionals. In this case'
instead of X-valued holomorphic functions the X-valued analytic functions are used.

In 1973 (see [12, Corollary, p. 56]) Philippe Turpin gave the following generaliza-
tion of Liouville’s theorem: if X is an exponentially galbed Hausdorff space and f is
an analytic X -valued map on? Coo, then f is a constant map. In 2004 (see [2, The-
orem 2.1]) Mati Abel generalized this result to the case of strongly galbed Hausdorff
space X. Moreover, in 2008 he presented in [3, Theorem 3.1] the following result:

Theorem 1. Let X be a topological linear Hausdorff space over C. If the von
Neumann bornology By of X is strongly galbed, then every X -valued analytic map
on Cs 18 a constant map.

© Mati Abel, 2013
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Tn 1966 Lucien Waelbroeck (see [14]) gave conditions for X-valued holomorphic map f on C
to be constant in case of complete pseudoconvex space X, generalizing for it the integral theory
for such maps. Unfortunately, his results have been presented mostly without complete proofs. He
gave only hints for some parts how to prove.

?Here and later on Co = C U {o0}.
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A new detailed proof for this result is given in the present paper. Moreover, it
is shown that for several topological linear spaces the von Neumann bornology is
strongly galbed.

1 Introduction

1. Let X be a topological linear space over K, the field of real numbers R or
complex numbers C. By F-seminorm on X we mean a map ¢ : X — RT which has
the following properties:

(1) g(Az) < q(x) for each x € X and A € K with |A\| <1
(2) limy, o q( ) =0 for each =z € X;
(3) q(z+vy) < q(z)+ q(y) for each z,y € X.

If from ¢(z) = 0 it follows that z = 0x (the zero element of X), then ¢ is an
F-norm on X. In this case d with d(z,y) = q(z — y) for each z,y € X defines a
metric on X such that d(z + z,y + z) = d(z,y) for each z,y,z € X.

It is well-known (see, for example, [9, p. 39, Theorem 3|) that the topology of
any topological linear spaces coincides with the initial topology defined on by a col-
lection of F-seminorms. A topological linear space (X, 7) topology 7 of which has
been defined by a F-norm || || and X is complete with respect to || || is an F-space.
Moreover, if X is a locally pseudoconvez space (see, [11, p. 4], or [15, p. 4]), then
X has a base U = {Uy : A € A} of neighborhoods of zero consisting of balanced
(uUy C Uy when |p|< 1) and pseudoconvex (Uy + Uy C pUy for p > 2) sets.
This base defines a set of numbers {kyx : A € A} in (0,1] (see, for example,
[10, pp. 161-162] or [15, pp. 3-6]) such that

?«““H

Uy + Uy C 2k U,y

and
Iy, (Uy) C 20Uy
for each \ € A, where
I (U) =

n n
:{ZuuuyzneN,ul,...,uneU and pi,...,u, € K with Z\MV F< 1}
v=1 v=1

for any subset U of X and k € (0,1]. The set I'y(U) is the absolutely k-convexr hull
of U in X. A subset U C X is absolutely k-convez if U = T'y,(U) and is absolutely
pseudoconver if U = I'y(U) for some k € (0,1]. In the case when

inf{ky: A€ A} =k >0,

X is a locally k-convex space and when k = 1, then a locally conver space.
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It is known (see [15, pp. 3-6] or [7, pp. 189 and 195]) that the topology on a
locally pseudoconvex space X can be defined by a family P = {py : A € A} of
ky-homogeneous seminorms (that is, py(ua) =| p |*pa(a) for each A € A, p € K
and a € E), where the power of homogeneity k) € (0, 1] for each A € A and every
seminorm p) is defined by

pala) = inf{|u|™: a € pl'y, (UN)}

for each a € A.

Let now [ be the set of all K-valued sequences (z,,) for which Y 72 |z,| < o0,
1 be the subset of [ of sequences with only finite number of nonzero elements and
let Ip =1\ 1°.

A topological linear space X is a galbed space (see [2]) if there exists a sequence
() in Iy and for every neighbourhood O of zero in X there is another neighbourhood
U of zero such that?

U {Zn:akukiuo,...,uneU}co,
k=0

n€eNg =

In particular, when
ap#0 and a = inf |an|% > 0, (1)
n>0

a galbed space X is strongly galbed and X is exponentially galbed when o, = 2% for
each n € Ny. It is known (see [1, Proposition 2| or [3, Corollary 2.2]) that every
locally pseudoconvex space is exponentially galbed (hence strongly galbed too).

2. A bornology on a set X is a collection B of subsets of X which satisfies the
following conditions:

(@) X= U B;

BeB
(b) if Be Band C C B, then C € B;
(C) if B1,By € B, then B; U By € B.

If X is a linear space over K, a bornology B on X is called a linear or vector
bornology if the following conditions are satisfied:

(d) if By, By € B, then By + By € B;
(e) if Be Band A € K, then AB € B;

(f) U AB € B for every B € B.
[A<1

A linear bornology B on a linear space X is convez if I'1(U) € B for every U € B
and pseudoconvez if there exists a number k € (0, 1] such that I'y(U) € B for every

3Here and later on No = {0} UN.
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U € B. Moreover, a bornology B on a linear space X over K is a galbed bornology
(see [3]) if there is a sequence (o) in ly such that

S((an),B) = | J {Zakbk:bo,...,bneB}eB 2)

neNg k=0

for all B € B. In particular, when () satisfies the condition (1), B is a strongly
galbed bornology on X, and when «,, = 2% for each n € N, B is an exponentially galbed
bornology on X (see [5]). Moreover, we shall say that a bornology B is pseudogalbed
if for every B € B there exists a sequence (a,) € ly such that S((ay,),B) € B. In
particular, when («,) satisfies the condition (1), we shall say that the bornology B
is strongly pseudogalbed.

3. Let X be a topological linear space over C. An X-valued map f on C,, is
analytic at Ao € C if there exists a number ¢ > 0 and a sequence (z,) in X such
that

e e}
FQo+A) =D apA
k=0
whenever || < €, and is analytic at oo if there exists a number R > 0 and a sequence

(yx) in X such that
o~ Y
N =>"
k=0

whenever || > R.

If X is a topological linear space, then the set of all bounded sets forms a linear
bornology which is called the von Neumann bornology on X or the bornology on X
defined by the topology of X.

2 Topological linear spaces with strongly galbed and pseudogalbed
von Neumann bornology

First we describe these topological linear spaces, the von Neumann bornology
By of which is strongly galbed?.

Proposition 1 (see [3]). The von Neimann bornology of any strongly galbed space
is strongly galbed.

Proof. Let X be a strongly galbed space. Then there exists a sequence (ay,) €
which satisfies the condition (1), and for every neighbourhood O of zero in X there
is another neighbourhood U of zero such that S((ay,),U) € O. Moreover, for any
B € By there is a number pp > 0 such that B C pupU. Since

S((an),B) € S((an), usU) € upO,

then S((ay,), B) € By for every B € Bx. Hence By is strongly galbed. O

4Proposition 1 is proved in [3]. A modified proof for this result is given here.
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Corollary 1. The von Neumann bornology of every exponentially galbed apace is
strongly galbed.

Proposition 2. The von Neumann bornology of any metrizable topological linear
space is pseudogalbed.

Proof. Let X be a metrizable topological linear space. Then X has a countable
base Lx = {O,, : n € Ny} of balanced neighbourhoods of zero. We can assume that
On+1 + 0p11 C O, for each n € Ny (the addition in X is continuous). Let O be an
arbitrary neighbourhood of zero in X. Then there is a number ng € Ny such that
Op, € O and

U Z Ok-‘rl - Onm

n>=>no k=ng

because
On0+1+"'+0n+1 c Ono+1+”’+0n+0n - Ono+1+”’On—l+On—1 -

c...C Ono+1 + Ono+1 C Ono

for each n > ny.
Let B € By be a balanced set. Then for each k € Ny there exists a number
pr = pk(B) > 1 such that B C 3Oy 4k4+1. Here py < pg41 because Opyq C O, for

each n € Ny. Put
1

 max{fn, pf'}

for each n € Ny. Then |a,| < ﬁ for each n € Ny. Hence (ay,) € lp. Since

no+n

Zakbk € Z ( no—l—k—l—l) Z Ok+1
prt P maX{uk i} P
clU X Oomico,co
n>ng k=ng
for each n > 0 and each choice of elements bg, by, ...,b, € B, then
B =J {Zakbk by, by € B} co.
neNg k=0

Hence, S((aw,), B) € By, because of which By is pseudogalbed. O

Corollary 2. The von Neumann bornology of every F-space is pseudogalbed.
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3 Proof of Theorem 1

Now we give a new and detailed proof for Theorem 1.

Proof. Let X be a topological linear Hausdorff space and f an X-valued analytic
map on Co,. We can assume that X is complete, otherwise we consider X as a dense
subset in X, the completion of X, and f as X-valued analytic map on Cu.

Let first Ay € C. Then there is a number r > 0 and a sequence (z,) in X such
that

FOo+A) = ap\F
k=0

whenever |\| < r. By assumption, the von Neumann bornology By of X is strongly
galbed. Therefore there exists a sequence (o) € ly with a < 1 such that (2) holds
for any B € By. Take 79 € (0,%). Then the series

T

(07
o
Z :Ek(ozro)k
k=0

converges in X. Therefore the sequence (z,(arg)™) tends to zero in X. Hence, the
set {:En(oz’r'o)" 'n e No} is bounded in X. Let Uy, = {\o + A : |\ < a®rg} and

n
Xy, = U {Zwk(aro)ktk : (tg) is a sequence with |t;,] < o for each k:}
neNg k=0

Then X, is an absolutely convex and bounded set in A. Indeed, if A, p € C with
Al + |u| < 1 and z,y € X, then there exists n;,ny € Ny and ¢f,...,t; and
th, ..., thy such that [t¥| < of and [t]| < o for each F,

ni
T = Z x(arg)*tE
k=0

and

n2
y = Z . (arg)F Y.
k=0

If ny > no, then we put

ty

=y —
not1 = =1tp, =0

(otherwise we act similarly), then

ni

Mo+ py =Y ap(oro) (M + put]) € X,
k=0

because
IMEE + ] < IR+ [ullt]] < o (1A + |ul) < o
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for each k. Thus X, is an absolutely convex set.

To show that X, is bounded, let O be an arbitrary balanced neighbourdhood
of zero in X. Because (z,(arg)"”) is a bounded sequence in X, there is a number
p > 0 such that z,(arg)™ € pO for each n € Ny. Therefore

t ty ™ o
T (arg)"—= =z, (arg)" == — € p(——O) C pO
Qp o't ay a™ «

n

for all n € Ny and all (¢,) with %ﬁ' < 1 for every n, because Ig—n\ < 1 and O is
balanced. Hence, the set

t
B = {wn(aro)"—" :n € Ny, (t,) is a sequence with |t,| < o™ for each n} € By.
n
Thus, X, C S((an), B) € By, because the von Neumann bornology By is strongly
galbed. Moreover, it is easy to see that (.S;,), where

n
S, = Z :Ek(ozro)ktk
k=0

for each n € Ny and fixed sequence (t,) with |t,| < o™ for each n, is a Cauchy
sequence in X. To show this, let O be an arbitrary neighbourhood of zero in X and
m € N a fixed number. Then there exists a balanced neighbourhood O; of zero in
X such that
O1+---+0,CO
m summands
and a positive number p such that x,(arg)” C pO; for all n € Ny because the

sequence (z,(arg)™) is bounded. Since o < 1, then the sequence (a™) vanishes.
Hence, there is a number ng € Ny such that o” < % whenever n > ng. Since

n+m
Sntm = Sn =Y wglarg)’ty € pOrtni1 + -+ pOrtpsm C O1 4 -+ 0y C O
N———
k=n+1

m summands

whenever n > ng for every fixed m € Ny, then (S,) is a Cauchy sequence in X.
Hence, (S;,) converges in X. Therefore

)
Zxk(()ﬂ‘o)ktk e X
k=0

for every fixed (t,) such that |t,| < o™ for each n. It is easy to show that the closure
K, of the set X, in X is a closed, bounded and absolutely convex subset of X.
Therefore (see, for example,[8, pp. 8-9]), the linear hull Ay, in X, generated by K,
is a normed space with respect to the norm® D), defined by

Pro(a) =inf{A > 0:a € AK),}

= B .
°Here p», is a norm on Ay, because K, is bounded.
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for each a € A),. Taking this into account, we have

o0
€ {Zxk(aro)ktk : (tn) is a sequence with |t;| < o for each k‘} C Ky, C Ay,

whenever |\| < a?rg. Consequently, for any point A € C there is an open neighbour-
hood Uy of A and a normed subspace Ay of X such that the restriction f|y, of f to
U) has values in Ay.

Since f is also analytic at oo, then there is a sequence (z,) in X and a number

R > 0 such that -
2
k=0

whenever |\| > R. Let Ry € (aR,c0). Then the series
Sa
R§

k=0

converges in X. Therefore the sequence (Z’I‘%‘fin) is bounded in X.
0
Let Uso = {\: |\ > g%} and

2k
Xoo = U {Z i : (tg) is a sequence with [tg| < < aF for each k‘}
n&€Np =

Then X, is an absolutely convex and bounded set in X. Indeed, if A\, u € C with
Al + |p] < 1 and z,y € X, then there exist ni,ny € No and ¢§,...,t and

s bmq

th, ..., th, such that [t¥| < of and [t} < of for each k,
- ny Zkozk tz
- k
k=0 g
and
2 zpal
_ y
y= Z Rk bk
k=0 ~0
If ny > no, we put again
v _
tn2+1—---—t%1 0

(otherwise we act similarly). Therefore

ni k
ZEQ
k=0 0
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because
I+ ] < IMEE]+ [elltE] < o (A] + |ul) < o®
for each k.
Let O be again an arbitrary balanced neighbourhood of zero in X. Because
(zn%—g) is a bounded sequence in X, there is a number m > 0 such that zn%—g e w0
for each n € Ngy. Therefore

zpa t tn t, o
n@" tn Q" tn Q" 77(_"0‘_0> c 70
Ry Ry am oy, am ap
for all n € Ny and all (¢,) with % < 1 for each n, because ﬁ 1 and O is

balanced. Hence, the set

zna™ t
B = { }L% X :n € Ny, (t,) is a sequence with |¢,| < o™ for each n} € By.
0 %n

Hence, Xoo C S((a), B') € By because the von Neumann bornology By is strongly
galbed. Thus, the closure K, of the set X, in X is a closed, bounded and absolutely
convex subset of X. Therefore (similarly as above) the linear hull A, in X, gnerated
by K, is a normed space with respect to the norm p.,, defined by

Poo(a) =inf{A >0:a € \K}

for each a € Ay. The same way as in the first part of the proof,

sza tr € X

k=0 g

for every fixed (t,) such that |¢,| < o™ for each n. Since

ZZ'”‘( 2

k— 0
2z ak
€ {Z l;%k : (tg) is a sequence with |tz < o for each k‘} C Koo C Ao
k=0
whenever || > £ there is an open neighbourhood Uy of 0o and a normed subspace

As of X such that the restriction f|y_ of f to Uy has values in Ay
Now {U) : A € C} and Uy form an open cover of C. Since C is compact,
there are numbers n € N and Aq,..., A, € C such that

et (o).

Therefore

F(Co) = U(CJ UAk>cA1:AOOU(CJAAk>CAO,
k=1 k=1
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where Ag is the linear hull of A;. Without loss of generality we can assume that
every element
T=Mx1+ -+ Anxm € Ag

has been presented in the form

T=a1+ -+ ap+ any1,

where a, € Ay, for each k € {1,2,...,n} and ap41 € A, denoting by a; the zero
element if none of elements \iz1, ..., A2y, does not belong to Ay, or the sum of all
elements from Ay, ..., Ay, which belong to Ay, ; by as the zero element if none
of remainder elements from A\izy,..., A\, 2y, does not belong to Ay, or the sum of
all remainder elements from Ay, ..., A2y, which belong to Ay, and so on.

Now, for every x € Ay let
N(z)={ e {A\,..., \p,00} 1z € Ay}

and let p be the map on Ay, defined by

for every z = a1 + -+ + anpy1 € Ag. It is easy to check that p is a norm on Aj.
Hence f maps C, into the normed space Ag. Now, it is easy to show that ¢ o f
is a C-valued analytic function on C,, for each continuous linear functional ¢ on
Ap. Hence ¢ o f is a constant function by the classical Liouville’s Theorem. Since
continuous linear functionals separate the points of any normed space, then f is a
constant map. O

Now, by Theorem 1, Propositions 1 and Corollaries 1, we have the result of
Ph. Turpin (see [12]).

Corollary 3. If X is an exponentially galbed (in particular a locally pseudoconvex)
space, then every X -valued analytic map on C is a constant map.

4 Application

Using the classical Liouville’s Theorem, it is easy to prove the Gelfand-Mazur
Theorem, that is, every complex normed division algebra is topologically isomorphic
to C. This result has many generalizations to the case of locally convex and lo-
cally pseudoconvex division algebras. Next we give a characterization of complex
topological division algebras.

Theorem 2. A complex Hausdorff division algebra® A is topologically isomorphic
to C if and only if

SWe assume here that the multiplication in topological algebras is separately continuous.
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a) every element of A is bounded" ;
b) the von Neumann bornology of A is strongly galbed.

Proof. Let A be topologically isomorphic to C. Then every element of A has the
form Aey, where A € C and ey is the unit element of A and every bounded set in
A is in the form Ke4, where K is a bounded set in C. Therefore, every element of
A is bounded. To show that the von Neumann bornology of A is strongly galbed,
let (ay,) € lp be such that the condition (1) holds, and let L =", |oy|, M > 0 and
Ky ={X € C: |\ < M}. Moreover, let B be an arbitrary bounded set in A. Then
there is a number M > 0 such that B = Kjse4. Since

n n
Z QEHEEA = ( Z Oékuk) €A
k=0 k=0

for each n and uq, ..., u, € Kjr and

n n o
> | <D Nl < MY oyl = ML,
k=0 k=0 k=0

then

n
U {Z%MEA Ly P € KM} C Kyrea.
neNg k=0
Hence, the von Neumann bornology of A is strongly galbed.
Let now A be a complex Hausdorff division algebra. Then (see [3, proof of
Proposition 5.1]) A is topologically isomorphic to C by Theorem 1. O

Now by Proposition 1, Corollary 1 and Theorem 2 we have

Corollary 4. Every complex strongly galbed (in particular, exponentially galbed)
division algebra is topologically isomorphic to C if and only if every element in A is
bounded.
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