Infinitely many maximal primitive positive clones in a diagonalizable algebra

Andrei Rusu

Abstract. We present a rather simple example of infinitely many maximal primitive positive clones in a diagonalizable algebra, which serve as an algebraic model for the provability propositional logic GL.

Mathematics subject classification: 03F45, 03G25, 06E25. Keywords and phrases: Primitive positive clones, Provability logic, Diagonalizable algebra.

1 Introduction

The present paper deals with clones of operations of a diagonalizable algebra which are closed under definitions by existentially quantified systems of equations. Such clones are called *primitive positive clones* [1] (in [2] they are referred to as *clones acting bicentrally*, and are also called *parametrically closed classes* in [3, 4]). Diagonalizable algebras [5] are known to be algebraic models for the propositional provability logic GL [6].

The proof that there are finitely many primitive positive clones in any k-valued logic was given in [1]. In the case of 2-valued boolean functions, i.e. card(A) = 2, A. V. Kuznetsov stated there are 25 primitive positive clones [3], and A. F. Danil'čenco proved there are 2986 primitive positive clones among 3-valued functions [4]. In the present paper we construct a diagonalizable algebra, generated by its least element, which has infinitely many primitive positive clones, moreover, these primitive positive clones are maximal.

2 Definitions and notations

Diagonalizable algebras. A diagonalizable algebra [5] \mathfrak{D} is a boolean algebra $\mathfrak{A} = (A; \&, \lor, \supset, \neg, \emptyset, \mathbb{1})$ with an additional operator Δ satisfying the following relations:

$$\begin{split} \Delta(x \supset y) &\leq \Delta x \supset \Delta y, \\ \Delta x &\leq \Delta \Delta x, \\ \Delta(\Delta x \supset x) &= \Delta x, \\ \Delta \mathbb{1} &= \mathbb{1}, \end{split}$$

[©] Andrei Rusu, 2013

where 1 is the unit of \mathfrak{A} .

We consider the diagonalizable algebra $\mathfrak{M} = (M; \&, \lor, \supset, \neg, \Delta)$ of all infinite binary sequences of the form $\alpha = (\mu_1, \mu_2, \ldots), \ \mu_i \in \{0, 1\}, \ i = 1, 2, \ldots$ The boolean operations $\&, \lor, \supset, \neg$ over elements of M are defined component-wise, and the operation Δ over element α is defined by the equality $\Delta \alpha = (1, \nu_1, \nu_2, \ldots)$, where $\nu_i = \mu_1 \& \cdots \& \mu_i$. Let \mathfrak{M}^* be the subalgebra of \mathfrak{M} generated by its zero \emptyset element $(0, 0, \ldots)$. Remark the unite $\mathbb{1}$ of the algebra \mathfrak{M}^* is the element $(1, 1, \ldots)$.

As usual, we denote by $x \sim y$ and $\Delta^2 x, \ldots, \Delta^{n+1} x, \ldots$ the corresponding functions $(\neg x \lor y) \& (\neg y \lor x)$ and $\Delta \Delta x, \ldots, \Delta \Delta^n x, \ldots$ Denote by $\Box x$ the function $x \& \Delta x$ and denote by ∇x the function $\Box \neg \Box \neg \Box x$.

Primitive positive clones. The term algebra $\mathcal{T}(\mathfrak{D})$ of \mathfrak{D} is defined as usual, stating from constants 0, 1 and variables and using operations $\&, \lor, \supset, \neg, \Delta$. We consider the set *Term* of all term operations of \mathfrak{M}^* , which obviously forms a clone [7].

Let us recall that a *primitive positive formula* Φ over a set of operations Σ of \mathfrak{D} is of the form

$$\Phi(x_1, \dots, x_m) = (\exists x_{m+1}) \dots (\exists x_n)((f_1 = g_1) \& \dots \& (f_s = g_s)),$$

where $f_1, g_1, \ldots, f_s, g_s \in \mathcal{T}(\mathfrak{D}) \cup Id_A$ and the formula $(f_1 = g_1) \& \cdots \& (f_s = g_s)$ contains variables only from x_1, \ldots, x_n . An *n*-ary term operation f of $\mathcal{T}(\mathfrak{D})$ is (primitive positive) definable over Σ if there is a primitive positive formula $\Phi(x_1, \ldots, x_n, y)$ over Σ of $\mathcal{T}(\mathfrak{D})$ such that for any $a_1, \ldots, a_n, b \in \mathfrak{D}$ we have $f(a_1, \ldots, a_n) = b$ if and only if $\Phi(a_1, \ldots, a_n, b)$ on \mathfrak{D} [8]. Denote by $[\Sigma]$ all term operations of \mathfrak{D} which are primitive positive definable over Σ of \mathfrak{D} . They say also $[\Sigma]$ is a primitive positive clone on \mathfrak{D} generated by Σ . If $[\Sigma]$ contains $\mathcal{T}(\mathfrak{D})$ then it is referred to as a complete primitive positive clone on \mathfrak{D} . A primitive positive clone C of \mathfrak{D} is maximal in \mathfrak{D} if $\mathcal{T}(\mathfrak{D}) \not\subseteq C$ and for any $f \in \mathcal{T}(\mathfrak{D}) \setminus C$ we have $\mathcal{T}(\mathfrak{D}) \subseteq [C \cup \{f\}]$.

Let $\alpha \in \mathfrak{D}$. They say $f(x_1, \ldots, x_n) \in \mathcal{T}(\mathfrak{D})$ conserves the relation $x = \alpha$ on \mathfrak{D} if $f(\alpha, \ldots, \alpha) = \alpha$. According to [9] the set of all functions that preserves the relation $x = \alpha$ on an arbitrary k-element set is a primitive positive clone.

3 Preliminary results

We start by presenting some useful properties of the term operations Δ, \Box and ∇ of \mathfrak{M}^* .

Proposition 1. Let x, y be arbitrary elements of \mathfrak{M}^* . Then:

$$\Box x \ge \Delta 0 \text{ if and only if } \nabla x = 1 \tag{1}$$

$$\Box x = 0 \text{ if and only if } \nabla x = 0 \tag{2}$$

For any
$$x, y$$
, either $\Box x \le \Box y$ or $\Box y \le \Box x$ (3)

$$\Delta x = \Delta \Box x \tag{4}$$

$$\nabla 0 = 0, \ \nabla 1 = 1 \tag{5}$$

$$\Box x \ge \Delta 0 \text{ if and only if } \Box \neg x = 0 \tag{6}$$

$$\Box x = 0 \text{ if and only if } \Box \neg x \ge \Delta 0 \tag{7}$$

Proof. The proof is almost obvious by construction of the algebra \mathfrak{M}^* .

Let us mention the following

Remark 1. Any function f of $\mathcal{T}(\mathfrak{D})$ is primitive positive definable on \mathfrak{D} via the system of functions $x \& y, x \lor y, x \supset y, \neg x, \Delta y$.

Let us consider on \mathfrak{D} the following functions (8) and (9) of $\mathcal{T}(\mathfrak{D})$, denoted by $f_{\neg}(x,y)$ and $f_{\Delta}(x,y)$ correspondingly, where $\alpha_i, \xi \in \mathfrak{D}, \ \alpha_i = \neg \Delta^i \mathfrak{O}$, where $\xi \neq \alpha_i$ and $\eta \neq \alpha_i$:

$$(\nabla \neg (x \sim y) \& ((\neg x \sim y) \sim \xi)) \lor (\nabla (x \sim y) \& \alpha_i), \tag{8}$$

$$(\nabla y \& ((\Delta x \sim y) \sim \eta)) \lor (\neg \nabla y \& \alpha_i).$$
(9)

Proposition 2. Let arbitrary $\alpha, \beta \in \mathfrak{M}^*$. If $\neg \alpha = \beta$ on \mathfrak{M}^* , then

$$f_{\neg}(\alpha,\beta) = \xi$$

 $on \ \mathfrak{M}^*.$

Proof. Since $\neg \alpha = \beta$ we get $\alpha \sim \beta = 0$, $\neg(\alpha \sim \beta) = 1$ and by (5) we have

$$\nabla(\alpha \sim \beta) = 0, \ \nabla \neg (\alpha \sim \beta) = \mathbb{1},$$

which implies

$$f_{\neg}(\alpha,\beta) = (\mathbb{1} \& (\mathbb{1} \sim \xi)) \lor (\mathbb{0} \& \alpha_i) = \xi.$$

Proposition 3. Let arbitrary $\alpha, \beta \in \mathfrak{M}^*$. If $\neg \alpha \neq \beta$ on \mathfrak{M}^* , then

$$f_{\neg}(\alpha,\beta) \neq \xi$$

 $on \ \mathfrak{M}^*.$

Proof. Since $\neg \alpha \neq \beta$ we get $\neg \alpha \sim \beta \neq 1, \alpha \sim \beta \neq 0$. We distinguish two cases: 1) $\Box(\alpha \sim \beta) = 0$, and 2) $\Box(\alpha \sim \beta) \geq \Delta 0$.

In the case 1) by (7), (1) and (2) we get $\Box \neg (\alpha \sim \beta) \geq \Delta 0$, $\nabla \neg (\alpha \sim \beta) = 1$, and $\nabla (\alpha \sim \beta) = 0$, which implies

$$f_{\neg}(\alpha,\beta) = (\nabla \neg (\alpha \sim \beta) \& ((\neg \alpha \sim \beta) \sim \xi)) \lor (\nabla (\alpha \sim \beta) \& \alpha_i)$$
$$= (\mathbb{1} \& ((\neg \alpha \sim \beta) \sim \xi) \lor (\mathbb{0} \& \alpha_i) = (\neg \alpha \sim \beta) \sim \xi \neq \xi,$$

Thus the first case has already been examined.

Now consider the second case, when $\Box x \ge \Delta 0$. Again, since $\neg \alpha \ne \beta$ by (1), (2) and (6) we obtain $\Box \neg (\alpha \sim \beta) = 0$, $\nabla \neg (\alpha \sim \beta) = 0$, $\nabla (\alpha \sim \beta) = 1$. Then,

$$f_{\neg}(\alpha,\beta) = (\nabla \neg (\alpha \sim \beta) \& ((\neg \alpha \sim \beta) \& \xi)) \lor (\nabla (\alpha \sim \beta) \& \alpha_i)$$
$$= (0 \& ((\neg \alpha \sim \beta) \& \xi)) \lor (1 \& \alpha_i) = \alpha_i \neq \xi.$$

Proposition 4. Let arbitrary $\alpha, \beta \in \mathfrak{M}^*$ be such that $\Delta \alpha = \beta$. Then

$$f_{\Delta}(\alpha,\beta) = \eta.$$

Proof. Since $\Delta \alpha \geq 0$ and $\Delta \alpha = \beta$ we have $\Box \beta \geq \Delta 0$, $\Delta \alpha \sim \beta = 1$ and by (1) we get $\nabla \beta = 1, \neg \nabla \beta = 0$. These ones imply the following relations:

$$f_{\Delta}(\alpha,\beta) = (\nabla\beta \& ((\Delta\alpha \sim \beta) \sim \eta)) \lor (\neg\nabla\beta \& \alpha_i) \\ = (\mathbb{1} \& (\mathbb{1} \sim \eta)) \lor (\mathbb{0} \& \alpha_i) = \mathbb{1} \sim \eta = \eta.$$

Proposition 5. Let arbitrary $\alpha, \beta \in \mathfrak{M}^*$ be such that $\Delta \alpha \neq \beta$. Then

$$f_{\Delta}(\alpha,\beta) \neq \eta.$$

Proof. We consider 2 cases: 1) $\Box \beta = 0$, and 2) $\Box \beta \ge \Delta 0$.

Suppose $\Box \beta = 0$. In view of (2) we have $\nabla \beta = 0$ and $\neg \nabla \beta = 1$. Subsequently,

$$f_{\Delta}(\alpha,\beta) = (\nabla\beta \& ((\Delta\alpha \sim \beta) \sim \eta)) \lor (\neg\nabla\beta \& \alpha_i) = (0 \& ((\Delta\alpha \sim \beta) \sim \eta)) \lor (1 \& \alpha_i) = 0 \lor \alpha_i = \alpha_i \neq \eta.$$

Suppose now $\Box \beta \geq \Delta 0$. Let us note $\Delta \alpha \sim \beta \neq 1$. Then considering (1) we get

$$f_{\Delta}(\alpha,\beta) = (\nabla\beta \& ((\Delta\alpha \sim \beta) \sim \eta)) \lor (\neg\nabla\beta \& \alpha_i) = (\mathbb{1} \& ((\Delta\alpha \sim \beta) \sim \eta)) \lor (\mathbb{0} \& \alpha_i) = (\Delta\alpha \sim \beta) \sim \eta \neq \eta.$$

Proposition 6. Let arbitrary $\alpha \in \mathfrak{M}^*$. Then

$$f_{\neg}(\alpha,\alpha) = \alpha_i.$$

Proof. Let us calculate $f_{\neg}(\alpha, \alpha)$. By (5) we obtain immediately:

$$f_{\neg}(\alpha, \alpha) = (\nabla \neg (\alpha \sim \alpha) \& ((\neg \alpha \sim \alpha) \& \xi)) \lor (\nabla (\alpha \sim \alpha) \& \alpha_i)$$
$$= (0 \& (0 \& \xi)) \lor (1 \& \alpha_i) = \alpha_i.$$

Proposition 7. Let arbitrary $\alpha \in \mathfrak{M}^*$ and $\Box \alpha = 0$. Then

$$f_{\Delta}(\alpha, \alpha) = \alpha_i.$$

Proof. Taking into account (2) we have

$$f_{\Delta}(\alpha, \alpha) = (\nabla \alpha \& ((\Delta \alpha \sim \alpha) \sim \eta)) \lor (\neg \nabla \alpha \& \alpha_i)$$

= $(0 \& ((\Delta \alpha \sim \alpha) \sim \eta)) \lor (1 \& \alpha_i) = 0 \lor \alpha_i = \alpha_i.$

4 Important properties of some primitive positive clones

Consider an arbitrary value i, i = 1, 2, ... Let K_i be the primitive positive clone of \mathfrak{M}^* consisting of all functions of \mathfrak{M}^* which preserve the relation $x = \neg \Delta^i 0$ on \mathfrak{M}^* . For example, K_1 is defined by the relation x = (0, 1, 1, 1, ...).

Remark 2. The functions $\Box x, x \& y, x \lor y, \neg \Delta^i \emptyset \in K_i$, and $\neg x, \Delta x \notin K_i$.

Remark 3. Since K_i is a primitive positive clone it follows from the above statement the functions $\neg x$ and Δx are not primitive positive definable via functions of K_i on \mathfrak{M}^* , so $\mathcal{T}(\mathfrak{M}^*) \not\subseteq K_i$ and thus the clone K_i is not complete in \mathfrak{M}^* .

Remark 4. By Propositions 6 and 7 we have the earlier defined functions $f_{\neg}(x, y)$ and $f_{\Delta}(x, y)$ are in K_i .

Lemma 1. Suppose an arbitrary $f(x_1, \ldots, x_k) \in \mathcal{T}(\mathfrak{M}^*)$ and $f \notin K_i$. Then the functions Δx and $\neg x$ are primitive positive definable via functions of $K_i \cup \{f(x_1, \ldots, x_k)\}$.

Proof. Let us note since $f \notin K_i$ we have $f(\neg \Delta^i \mathbb{O}, \ldots, \neg \Delta^i \mathbb{O}) \neq \neg \Delta^i \mathbb{O}$. Now consider the next term operations f'_{\neg} and f'_{Δ} defined by terms (10) and (11):

$$(\nabla \neg (x \sim y) \& ((\neg x \sim y) \sim f(\neg \Delta^i \mathbb{0}, \dots, \neg \Delta^i \mathbb{0}))) \lor (\nabla (x \sim y) \& \neg \Delta^i \mathbb{0})$$
(10)

$$(\nabla y \& ((\Delta x \sim y) \sim f(\neg \Delta^i \mathbb{O}, \dots, \neg \Delta^i \mathbb{O}))) \lor (\neg \nabla y \& \neg \Delta^i \mathbb{O})$$
(11)

and examine the primitive positive formulas containing only functions from $K_i \cup \{f\}$:

$$(f'_{\neg}(x,y) = f(\neg \Delta^i \mathbb{O}, \dots, \neg \Delta^i \mathbb{O}))$$
 and $(f'_{\Delta}(x,y) = f(\neg \Delta^i \mathbb{O}, \dots, \neg \Delta^i \mathbb{O}))$.

Let us note by Propositions 2 and 3 we have $(\neg x = y)$ if and only if $(f'_{\neg}(x,y) = f(\neg \Delta^i \mathbb{O}, \ldots, \neg \Delta^i \mathbb{O}))$ and according to Propositions 4 and 5 we get $(\Delta x = y)$ if and only if $(f'_{\Delta}(x,y) = f(\neg \Delta^i \mathbb{O}, \ldots, \neg \Delta^i \mathbb{O})).$

Lemma is proved.

5 Main result

Theorem 1. There are infinitely many maximal primitive positive clones in the diagonalizable algebra \mathfrak{M}^* .

Proof. The theorem is based on the example of an infinite family of maximal primitive positive clones presented below.

Example 1. The classes K_1, K_2, \ldots of term operations of $\mathcal{T}(\mathfrak{M}^*)$, which preserve on algebra \mathfrak{M}^* the corresponding relations $x = \neg \Delta 0, x = \neg \Delta^2 0, \ldots$, constitute a numerable collection of maximal primitive positive clones in \mathfrak{M}^* .

Really, it is known [9] that these classes of functions represent primitive positive clones. According to Remark 3 each clone K_i is not complete in \mathfrak{M}^* . In virtue of Lemma 1 these primitive positive clones are maximal. It remains to show these clones are different. The last thing is obvious since

$$\neg \Delta^{j} \mathbb{0} \in K_{i}$$
 and $\neg \Delta^{j} \mathbb{0} \notin K_{i}$, when $i \neq j$.

The theorem is proved.

6 Conclusions

We can consider the logic $L\mathfrak{M}^*$ of \mathfrak{M}^* , which happens to be an extension of the propositional provability logic GL, and consider primitive positive classes of formulas M_1, M_2, \ldots of the propositional provability calculus of GL preserving on \mathfrak{M}^* the corresponding relations $x = \neg \Delta 0, x = \neg \Delta^2 0, \ldots$

Theorem 2. The classes of formulas M_1, M_2, \ldots constitute an infinite collection of primitive positive classes of formulas in the extension $L\mathfrak{M}^*$ of the propositional provability logic GL.

Proof. The statement of the theorem is just another formulation of the Theorem 1 above in terms of formulas of the calculus of GL, which follows the usual terminology of [3].

References

- BURRIS S., WILLARD R. Finitely many primitive positive clones. Proceedings of the American Mathematical Society, 1987, 101, No. 3, 427–430.
- [2] SZABO L. On the lattice of clones acting bicentrally. Acta Cybernet., 1984, 6, 381–388.
- KUZNETSOV A. V. On detecting non-deducibility and non-expressibility. Locical deduction. Nauka, Moscow, 1979, 5–33 (in Russian).
- [4] DANIL'ČENCO A. F. Parametric expressibility of functions of three-valued logic. Algebra i Logika, 1977, 16, 397–416 (in Russian).
- [5] MAGARI R. The diagonalizable algebras (the algebraization of the theories which express Theor.: II). Boll. Unione Mat. Ital., 1975, 12, (suppl. fasc 3), 117–125.
- [6] SOLOVAY R. M. Provability interpretations of modal logic. Israel J. Math., 1975, 25, 287–304.
- [7] SZENDREI Á. Clones in universal algebra. Séminaire de Mathématiques Supérieures, 99, Les Presses de l'Université de Montréal, 1986.
- [8] SZABÓ L. On algebras with primitive positive clones. Acta Sci. Math. (Szeged), 2007, 73, 463–470.
- [9] DANIL'ČENCO A. F. On parametrical expressibility of the functions of k-valued logic. Colloq. Math. Soc. Janos Bolyai, 28, North-Holland, 1981, 147–159.

ANDREI RUSU Ovidius University of Constanța bd. Mamaia 124, Constanța, România Information Society Development Institute str. Academiei 5a, Chișinău, Moldova

E-mail: agrusu@univ-ovidius.ro andrei.rusu@idsi.md Received February 18, 2013