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On the number of metrizable group topologies
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Abstract. If a countable group G admits a non-discrete metrizable group topology
τ0, then in the group G, there are:
- Continuum of non-discrete metrizable group topologies stronger than τ0, and any
two of these topologies are incomparable;
- Continuum of non-discrete metrizable group topologies stronger than τ0, and any
two of these topologies are comparable.
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1 Introduction

Researches on the possibility of the definition of a Hausdorff, group topologies
on countable groups were started in [1]. In this work also a method to define such
group topologies on any countable group was given.

Later, in [2] it was proved that any infinite Abelian group admits a non-discrete
Hausdorff group topology, and in [3] an example of a countable group which does
not admit non-discrete Hausdorff group topologies was constructed.

This article is a continuation of the research in this direction. The main results
of this article are Theorems 13 and 14.

2 Basic results

To highlight the main results we need the following well-known result (see [4],
p. 203, Proposition 1, and p. 205, Corollary):

Theorem 1. A set Ω of subsets of a group G is a basis of the filter of neighborhoods
of the unity element of a Hausdorff group topology on G if and only if the following
conditions are satisfied:

1)
⋂

V ∈Ω
V = {e};

2) For any V1 and V2 ∈ Ω, there exists V3 ∈ Ω such that V3 ⊆ V1
⋂

V2;

3) For any V1 ∈ Ω, there exists V2 ∈ Ω such that V2 · V2 ⊆ V1;

4) For any V1 ∈ Ω, there exists V2 ∈ Ω such that V −1
2 ⊆ V1;
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5) For any V1 ∈ Ω and any element g ∈ G, there exists V2 ∈ Ω such that
g · V2 · g

−1 ⊆ V1.

Remark 2. From Theorem 1 it easily follows that if a countable group G admits a
non-discrete group topology τ0 such that the topological space (G, τ0) is a Hausdorff
space, then the group G admits a non-discrete group topology τ1 such that the
topological space (G, τ1) is a Hausdorff space, and it has a countable basis of the
filter of neighborhoods of the unity element.

Remark 3. From ([5], Theorem 8.1.21) it easily follows that a topology τ of topo-
logical group (G, τ) is given by a metric if and only if the topological space (G, τ) is
a Hausdorff space, and it has a countable basis of the filter of neighborhoods of the
unity element.

Such a topology is called a metrizable topology.

Notations 4. If V1, V2, . . . and S1, S2, . . . are some sequences of non-empty symmet-
ric subsets of a group G, then for each natural number k by induction we define a

subset Fk

(

V1, . . . , Vk;S1, . . . , Sk

)

of G as follows: take F1

(

V1;S1

)

=
{

g ·V1 ·g
−1|g ∈

S1

}

⋃

V1 · V1 and Fk+1 = F1

(

V1
⋃

Fk

(

V2, . . . , Vk+1;S2, . . . , Sk+1

)

;S1

)

.

Proposition 5. For subsets Fk

(

V1, . . . , Vk;S1, . . . , Sk

)

the following statements

are true:

5.1. If e ∈ V1, then V1 ⊆ V1 ·V1 ⊆ F1(V1;S1) and g ·V1 · g
−1 ⊆ F1(V1;S1) for any

g ∈ S1;

5.2. If k ∈ N and the sets Si and Vi are finite for 1 ≤ i ≤ k, then

Fk

(

V1, . . . , Vk;S1, . . . , Sk

)

is a finite symmetric set;

5.3. Fk

(

{e}, . . . , {e};S1, . . . , Sk

)

= {e} for any k ∈ N ;

5.4. If Ui ⊆ Vi and Ti ⊆ Si for any 1 ≤ i ≤ k, then Fk

(

U1, . . . , Uk;T1, . . . , Tk

)

⊆

Fk

(

V1, . . . , Vk;S1, . . . , Sk

)

;

5.5. If k,p ∈ N and e ∈ Vi for all i ≤ k and Vk+j = {e} for 1 ≤ j ≤ p, then

Fk

(

V1, . . . , Vk;S1, . . . , Sk

)

= Fk+p

(

V1, . . . , Vk+p;S1, . . . , Sk+p

)

;

5.6. For k ≥ 2 the equality Fk

(

V1, . . . , Vk; S1, . . . , Sk

)

=

Fk

(

V1
⋃

Fk−1

(

V2, . . . , Vk;S2, . . . , Sk

)

, . . . , Vk−1
⋃

F1(Vk;Sk), Vk;S1, . . . , Sk

)

is true;

5.7. If e ∈ Vi for any 1 ≤ i ≤ k, then Vt ⊆ Fk

(

V1, . . . , Vk;S1, . . . , Sk

)

for any

1 ≤ t ≤ k;

5.8. If e ∈ Vi for any 1 ≤ i ≤ k, then Fk+1

(

Vs, . . . , Vk+s;Ss, . . . , Sk+s

)

⊆

Fk+s−t+1

(

Vt, . . . , Vk+s;S1, . . . , Sk+s

)

for any k, s, t ∈ N and t ≤ s.
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Proof. Statement 5.1 follows easily from the definition of the set F1

(

V1;S1

)

.

Statements 5.2, 5.3 and 5.4 can be easily proved by induction on k, using
that the sets Si and Vi for i ∈ N are symmetric and the definition of the set

Fk

(

V1, . . . , Vk;S1, . . . , Sk

)

.

We prove Statement 5.5 by induction on k.

If k = 1, then using Statement 5.3 we get F1+p

(

V1, {e}, . . . , {e};S1, . . . , S1+p

)

=

F1

(

V1
⋃

Fp({e}, . . . , {e};S2, . . . , S1+p);S1

)

= F1

(

V1
⋃

{e};S1

)

= F1

(

V1;S1

)

for

any p ∈ N .
Assume that the equality is proved for the number k and all p ∈ N . Then

Fk+1+p

(

V1, . . . , Vk+1, {e}, . . . , {e};S1, . . . , Sk+1+p

)

=

F1

(

V1

⋃

Fk+p(V2, . . . , Vk+1, {e}, . . . , {e};S2, . . . , Sk+1+p);S1

)

=

F1

(

V1

⋃

Fk(V2, . . . , Vk+1;S2, . . . , Sk+1);S1

)

=

Fk+1

(

V1, V2, . . . , Vk+1;S1, S2, . . . , Sk+1

)

.

Statement 5.5 is proved for the number k+1, and hence, Statement 5.5 is proved
for any natural number.

We prove Statement 5.6 by induction on k.

If k = 2, then F2

(

V1, V2; S1, S2

)

= F1

(

V1
⋃

F1

(

V2; S2

)

; S1

)

=

F1

(

V1
⋃

F1

(

V2;S2

)

⋃

F1

(

V2;S2

)

;S1

)

= F2

(

V1
⋃

F1

(

V2;S2

)

, V2;S1, S2

)

.

Assume that the equality holds for the number k ≥ 2. Then

Fk+1

(

V1, . . . , Vk+1;S1, . . . , Sk+1

)

= F1

(

V1

⋃

Fk

(

V2, . . . , Vk;S2, . . . , Sk

)

;S1

)

=

F1

((

V1

⋃

Fk

(

V2, . . . , Vk;S2, . . . , Sk

))

⋃

Fk

(

V2, . . . , Vk;S2, . . . , Sk

))

;S1

)

=

F1

((

V1

⋃

Fk

(

V2

⋃

Fk−1

(

V3, . . . , Vk+1;S3, . . . , Sk+1

))

, . . . , Vk−1

⋃

Fk

(

V2

⋃

Fk−1

(

V3, . . . , Vk+1;S3, . . . , Sk+1

)

, . . . , Vk−1

⋃

F1(Vk;Sk), Vk;S2, . . . , Sk

))

;S1

)

= Fk+1

(

V1

⋃

Fk

(

V2, . . . , Vk+1;S2, . . . , Sk+1

)

, . . . , Vk

⋃

F1(Vk+1;Sk+1), Vk+1;S1 . . . Sk+1

)

.

Statement 5.6 is proved for the number k+1, and hence, Statement 5.6 is proved
for any integer k ≥ 2.

We prove Statement 5.7 by induction on k.
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If k = 1, then t = 1. Then, by Proposition 2.1, F1

(

V1;S1

)

⊇ V1.

Assume that the required inclusion is proved for the number k and all 1 ≤ t ≤ k,
and let t ≤ k + 1.

If t > 1, then considering the induction assumption, we get that

Fk+1

(

V1, . . . , Vk+1;S1, . . . , Sk+1

)

⊇ F1

(

V1

⋃

Fk

(

V2, . . . , Vk+1;

S2, . . . , Sk+1

)

;S1

)

⊇ F1

(

V1

⋃

Vt;S1

)

⊇ V1

⋃

Vt ⊇ Vt.

If t = 1, then applying Statements 5.4 and 5.3, and the induction assumption,
we see that

Fk+1

(

V1, . . . , Vk+1;S1, . . . , Sk+1

)

⊇

F1

(

V1

⋃

Fk

(

V2, . . . , Vk+1;S2, . . . , Sk+1

)

;S1

)

⊇

F1

(

V1

⋃

Fk

(

{e}, . . . , {e};S2, . . . , Sk+1

)

;S1

)

= F1

(

V1;S1

)

⊇ V1.

By this Statement 5.7 is proved.
We prove Statement 5.8 by induction on the number s − t.

If s − t = 0, then t = s, and hence, Fk+1

(

Vs, . . . , Vk+s;Ss, . . . , Sk+s

)

=

Fk+s−t+1

(

Vt, . . . , Vk+s;St, . . . , Sk+s

)

.

Assume that the required inclusion is proved for s − t = n and any k ∈ N , and
let s − t = n + 1. Then, by the inductive assumption and Statement 5.7,

Fk+1

(

Vs, . . . , Vk+s;Ss, . . . , Sk

)

⊆ Fk+(s−t−1)+1

(

V2, . . . , Vk+s;S2, . . . , Sk+s

)

⊆

V1

⋃

Fk+(s−t−1)+1

(

V2, . . . , Vk+s;S2, . . . , Sk+s

)

⊆

F1(V1

⋃

Fk+s−t

(

V2, . . . , Vk+s;S2, . . . , Sk+s

)

;S1) =

Fk+s−t+1

(

V1, . . . , Vk+s;S1, . . . , Sk+s

)

for all s, k ∈ N.
By this Statement 5.8 is proved, and hence, Proposition 5 is proved.

Definition 6. Let G be a group and let x be a variable. An expression of the form
g1 · x

k1 · g2 · x
k2 · . . . · gs · x

ks · gs+1, where gi ∈ G for 1 ≤ i ≤ s + 1 and kj are integers
for 1 ≤ j ≤ s, is called a word on the variable x over the group G.

The set of all words on the variable x over the group G will be denoted by G(x).

Remark 7. If we assume that x0 = e, then the set G(x) is a group under the
multiplication of words.

Adding, if it is necessary, the unity element of the group in the expression
g1 · x

k1 · g2 · x
k2 · . . . · gs · x

ks · gs+1 we can assume that ki ∈ {−1, 0, 1}.



ON THE NUMBER OF METRIZABLE GROUP TOPOLOGIES ... 21

Definition 8. If f(x) is a word on the variable x over the group G, then an
expression of the form f(x) = g, where g ∈ G, is called an equation over a group G.

Definition 9. An element b of a group G is called a root of the equation f(x) = g
over the group G if f(b) = g.

Notations 10. Let G be a countable group, and let G =
{

e, g±1
1 , g±1

2 , . . .
}

be a
numbering of elements of the group G (this numbering will follow throughout the
article).

For each natural number k, we put Sk =
{

g±1
1 , g±1

2 , . . . , g±1
k

}

, for each pair of
natural numbers (i, j) we define subsets V(i,j) and S(i,j) of the group G, and for each
triple of natural numbers (i, j, k) such that 1 ≤ k ≤ j we define the set Φ(i,j,k)(x) of
the equations on the variable x over the group G as follows: V(1,j) = {e}, S(1,j) = Sj ,
and Φ(1,j,k)(x) =

{

x = c | c ∈ Sk

}

for all j, k ∈ N and k ≤ j.

Assume that the sets V(i,j), S(i,j) and Φ(i,j,k)(x) for i ≤ p and all j, k ∈ N and
k ≤ j are defined for a natural number p.

If p + 1 is even, then we take:

V(p+1,j) = {e} for any j ≥ p + 1;

V(p+1,j) = V(p,j)

⋃

{g, g−1}, where g is an element of the set G\
j
⋃

s=1
S(p,j)

1 for any

j < p + 1;

Φ(p+1,j,k)(x) = Φ(p,j,k)(x) for all k < j ∈ N ;

S(p+1,j) =
{

g ∈ G | g is a root of an equation from
j
⋃

k=1

Φ(p+1,j,k)

}

for all j ∈ N .

If p + 1 is odd, then we take:

V(p+1,j) = {e} for j ≥ p + 1;

V(p+1,j) = Fp+1−j

(

V(p,j+1), . . . , V(p,p+1);Sj+1, . . . , Sp+1

)
⋃

V(p,j) for j < p + 1;

Φ(p+1,j,j)(x) =
{

x = g | g ∈ Sj

}

for all j ∈ N and Φ(p+1,j,k)(x) =
{

f(x) = g | f(x) ∈ Fj−k

(

V(p+1,k+1), . . . , V(p+1,j−1), V(p,j)

⋃
{

x, x−1
}

; Sk+1, . . . , Sj

)

and g ∈ Sk

}

for all k < j ∈ N ;

S(p+1,j) = S(p,j) for any j ∈ N .

So, we have identified the subsets V(i,j) and S(i,j) of the group G for each pair
of natural numbers (i, j) and the set Φ(i,j,k)(x) of equations over a group G for each
triple of natural numbers (i, j, k), such that 1 ≤ k ≤ j, respectively.

Theorem 11. If a countable group G admits a non-discrete Hausdorff group
topology τ, then for any finite set M =

{

f1(x) = a1, . . . , fm(x) = am

}

of equations
over the group G for which the unity element e of the group G is not a root of any
of these equations, in the topological group (G, τ) there exists a neighborhood W of
the unity element such that its any element is not a root of any of these equations.

1If G\
j
⋃

s=1

S(p,j) = ∅, then we take V(p+1,j) = V(p,j).
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Proof. For each positive integer 1 ≤ i ≤ m of the mapping fi : (G, τ) → (G, τ) is
a continuous mapping. Since the topological group is a Hausdorff space, then the
set {g} is a closed set in the topological group (G, τ) for any element g ∈ G. Then

Vi = G\f−1
i (ai) is an open set, and e ∈ Vi . If V =

m
⋂

j=1
Vj , then V is a neighborhood

of the unity element and ai /∈ fi(V ) for any 1 ≤ i ≤ m, and hence any element from
V is not a root of any equation fi(x) = ai for any 1 ≤ i ≤ m.

By this the theorem is proved.

Proposition 12. (see the example 3.6.18 in [5]) There exists a set Ñ of cardinality
continuum of infinite subsets of the set N of natural numbers such that A

⋂

B is a
finite set for any distinct A,B ∈ Ñ

Theorem 13. If a countable group G admits a non-discrete metrizable group topol-
ogy τ0, then G admits continuum of non-discrete metrizable group topologies stronger
than τ0, and any two of these topologies are incomparable.

Proof. Let G =
{

e, g±1
1 , . . .

}

be a numbering of elements of the group G and Sn =
{

g±1
1 , . . . , g±1

n

}

for any n ∈ N . There exists a countable basis
{

V1, V2, . . .
}

of the

filter of neighborhoods of the unity element in the topological group (G, τ0) such
that V −1

k = Vk, Vk

⋂

Sk = ∅ and g · Vk+1 · g
−1 ⊆ Vk for any g ∈ Sk, k ∈ N .

By induction on k one can easily prove that Fk

(

Vi+1, . . . , Vi+k;Si+1, . . . , Si+k

)

⊆

Vi for all i, k ∈ N .
Further proof of the theorem will be realized in several steps.

Step I. Construction of an auxiliary sequence of elements and a sequence of
natural numbers.

By induction, we construct a sequence k1, k2, . . . of natural numbers such
that ki ≥ i for all i ∈ N , and a sequence h1, h2, . . . of elements of the set
G\{e} such that {e, hi, h

−1
i } ⊆ Vki

and hi /∈ Fk

(

{e, h1, h
−1
1 }, . . . , {e, hi−1, h

−1
i−1},

{

e
}

, {e, hi+1, h
−1
i+1}, . . . , {e, hk, h−1

k };S1, . . . , Sk

)

for any integers 1 ≤ i < k.
We take k1 = 1, and as h1 we take an arbitrary element of the set V1\{e}.
Suppose that we have already defined natural numbers k1, k2, . . . , kn

such that ki ≥ i and elements h1, h2, . . . , hn from the set G\{e} such
that

{

e, hi, h−1
i

}

⊆ Vki
and hi /∈ Fn

(

{e, h1, h−1
1 }, . . . , {e, hi−1, h−1

i−1},
{

e
}

,

{e, hi+1, h
−1
i+1}, . . . , {e, hn, h−1

n };S1, . . . , Sn

)

for any i ∈ N , 1 ≤ i < n and

hn /∈ Fn−1

(

{e, h1, h
−1
1 }, . . . , {e, hn−1, h

−1
n−1};S1, . . . , Sn−1

)

.

For any i ∈ N , i < n + 1 we consider the set Ω(n+1, i)(x) =

Fn+1

(

{e, h1, h−1
1 }, . . . , {e, hi−1, h−1

i−1}, {e}, {e, hi+1, h−1
i+1}, . . . , {e, hn, h−1

n },

{x, x−1};S1, . . . , Sn+1

)

of words on the variable x over the group G and the

set of equations Φ′
n+1(x) =

n
⋃

i=1

{

f(x) = g | f(x) ∈ Ω(n+1,i), g ∈ {hi, h
−1
i }

}

over the

group G.
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Since (see Statement 5.5) Fn+1

(

{e, h1, h−1
1 }, . . . , {e, hi−1, h−1

i−1}, {e},

{e, hi+1, h−1
i+1}, . . . , {e, hn, h−1

n }, {e}; S1, . . . , Sn+1

)

= Fn

(

{e, h1, h−1
1 }, . . . ,

{e, hi−1, h
−1
i−1}, {e}, {e, hi+1 , h

−1
i+1}, . . . , {e, hn, h−1

n };S1, . . . , Sn

)

, and by the induc-

tion assumption, hi /∈ Fn

(

{e, h1, h
−1
1 }, . . . , {e, hi−1, h

−1
i−1}, {e}, {e, hi+1 , h

−1
i+1}, . . . ,

{e, hn, h−1
n };S1, . . . , Sn

)

, then f(e) /∈ {hi, h
−1
i } for any i ≤ n and for any word

f(x) of the set Ω(n+1,i)(x). Hence, the unity element e of the group G is not a root
of any equation of the set Φ′

n+1(x).

So, we have proved that Φ′
n+1(x) is a finite set of equations over the group G and

the unity element e of the group G is not a root of any equation of the set Φ′
n+1(x).

Since the topology τ0 is a non-discrete Hausdorff group topology, then by The-
orem 11, the topological group (G, τ) has a neighborhood W of the unity element
such that any its element is not a root of any equation of the set Φ′

n+1(x).

The finiteness of the set Fn({e, h1, h
−1
1 }, . . . , {e, hn, h−1

n };S1, . . . , Sn) and the fact
that τ0 is a Hausdorff topology imply that there exists a number n + 1 < kn+1 ∈ N
such that Wkn+1 ⊆ W and

Fn({e, h1, h
−1
1 }, . . . , {e, hn, h−1

n };S1, . . . , Sn)
⋂

Wkn+1 = {e}.

We take as hn+1 any element of the set Wkn+1\{e}.
We show that these conditions are statisfied for numbers k1, k2, . . . , kn+1 and for

elements h1, h2, . . . , hn+1 of the group G.

Since hn+1 ∈ Wkn+1\{e}, then hn+1 /∈ Fn

(

{e, h1, h−1
1 }, . . . , {e, hn, h−1

n };

S1, . . . , Sn

)

. Moreover, by the inductive assumption, hi /∈ Fn

(

{e, h1, h
−1
1 }, . . . ,

{e, hi−1, h−1
i−1}, {e}, {e, hi+1, h−1

i+1}, . . . , {e, hn, h−1
n }; S1, . . . , Sn

)

=

Fn+1

(

{e, h1, h−1
1 }, . . . , {e, hi−1, h−1

i−1}, {e}, {e, hi+1, h−1
i+1}, . . . , {e, hn, h−1

n }, {e};

S1, . . . , Sn+1

)

.

Since the element hn+1 is not a root of any equation of the set Φ′
n+1(x) =

n
⋃

j=1

{

f(x) = g | f(x) ∈ Ω′

(n+1,j), g ∈ {hj , h
−1
j }

}

, then hi /∈ Fn+1

(

{e, h1, h
−1
1 }, . . . ,

{e, hi−1, h
−1
i−1}, {e}, {e, hi+1 , h

−1
i+1}, . . . , {e, hn+1, h

−1
n+1};S1, . . . , Sn+1

)

.

Thus, we have constructed the sequence of natural numbers k1, k2, . . . and the
sequence h1, h2, . . . of elements of the group G such that ki ≥ i, {e, hi, h

−1
i } ⊆ Wki

for any i ∈ N and hi /∈ Fk

(

{e, h1, h
−1
1 }, . . . , {e, hi−1, h

−1
i−1}, {e}, {e, hi+1 , h

−1
i+1}, . . . ,

{e, hk, h−1
k };S1, . . . , Sk

)

for any natural numbers 1 ≤ i < k.

Step II. Construction of a metrizable group topology τ(A) for any infinite set
A of of natural numbers.

For any natural number i we consider the set Ui,A = {e} if i /∈ A, and
Ui,A = {e, hi, h

−1
i } if i ∈ A, and for any pair (i, j) of natural numbers we con-
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sider the set U(i,j),A = Fj(Ui+1,A, . . . , Ui+j,A;Si+1, . . . , Si+j). We will show that for
the sets U(i,j),A the following inclusions are true:

1. From Statements 5.3 and 5.4 it follows that e ∈ U(i,j),A for any i, j ∈ N .

2. From Statement 5.5 it follows that U(k,j),A ⊆ U(k,n),A for any j ≤ n.

3. From Statement 5.8 it follows that U(i,j),A ⊆ U(k,j),A for any k ≤ i.

4. From Statement 5.2 it follows that U(i,j),A is a symmetric set, i. e.
(

U(i,j),A

)−1
= U(i,j),A for any i, j ∈ N .

5. By induction on j, we prove that U(i+1,j),A · U(i+1,j),A ⊆ U(i,j),A and
g · U(i+1,j),A · g−1 ⊆ U(i,j),A for any i, j ∈ N , j > 1 and g ∈ Si+1.

In fact, if j = 2, then, applying in succession the definition of the sets U(i,j),A,
Statements 5.1, 3.4 and 3.6, we obtain:

U(i+1,2),A · U(i+1,2),A =

F1(Ui+2,A;Si+2) · F1(Ui+2,A;Si+2) ⊆ F1(F1(Ui+2,A;Si+2);Si+1) ⊆

F1(Ui+1,A

⋃

F1(Ui+2,A;Si+2);Si+1) = F2(Ui+1,A, Ui+2,A;Si+1, Si+2) = U(i,2),A =

U(i,j),A and g · U(i+1,2),A · g−1 = g · F1

(

Ui+2,A;Si+2

)

· g−1 ⊆

F1

(

F1(Ui+2,A;Si+2

)

;Si+1) ⊆ F1

(

Ui+1,A

⋃

F1

(

Ui+2,A;Si+2

)

;Si+1

)

=

F2

(

Ui+1,A, Ui+2,A;Si+1, Si+2

)

= U(i,2),A

for any i ∈ N .
Assume that the required inclusion is proved for j = n ≥ 2 and any i ∈ N .
Then

U(i+1,i+n+1),A · U(i+1,i+n+1),A = Fn

(

Ui+2,A, . . . , Ui+n+1,A;

Si+2, . . . , Si+n+1

)

· Fn

(

Ui+2,A, . . . , Ui+n+1,A;Si+2, . . . , Si+n+1

)

⊆

F1

(

Fn

(

Ui+2,A, . . . , Ui+n+1,A;Si+2, . . . , Si+n+1

)

;Si+1

)

⊆

F1(Ui+1,A

⋃

Fn(Ui+2,A, . . . , Ui+n+1,A;Si+2, . . . , Si+n+1);Si+1) =

Fn+1(Ui+1,A, . . . , Ui+n+1,A;Si+1, . . . , Si+n+1) = U(i,n+1),A

and

g · U(i+1,i+n+1),A · g−1 = g · Fn(Ui+2,A, . . . , Ui+n+1,A;Si+2, . . . , Si+n+1) · g
−1 ⊆

F1(Fn(Ui+2,A, . . . , Ui+n+1,A;Si+2, . . . , Si+n+1);Si+1) ⊆

F1

(

Ui+1,A

⋃

Fn

(

Ui+2,A, . . . , Ui+n+1,A;Si+2, . . . , Si+n+1

)

;Si+1

)

=
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Fn+1

(

Ui+1,A, . . . , Ui+n+1,A;Si+1, . . . , Si+n+1

)

= U(i,n+1),A.

So, we have proved that U(i+1,j),A · U(i+1,j),A ⊆ U(i,j),A and g · U(i+1,j),A · g−1 ⊆
U(i,j),A for any i, j ∈ N , j > 1 and g ∈ Si+1.

Using the inclusions 1–5 proven above, one can prove that the set
{

Ûi(A) =
∞
⋃

j=1
U(i,j),A | i ∈ N

}

satisfies the conditions of Theorem 1, and hence, this set is

a basis of the filter of neighborhoods of the unity element for a metrizable group
topology τ(A) in the group G.

Step III. Construction of the continuum of group topologies.
For any subset A ∈ Ñ (for definition of the set Ñ, see Proposition 12) we consider

the group topology τ(A), constructed in the proof of this Theorem, step II.
Since the set Ñ has the cardinality of the continuum, then to complete the proof,

it remains to show that for any sets A,B ∈ Ñ the topologies τ(A) and τ(B) are
incomparable.

Suppose the contrary, for definiteness assume that τ(A) ≤ τ(B).

Let n ∈ A. Since τ(A) ≤ τ(B) and Ûn,A is a neighborhood of the unity element
in the topological group (G, τ(A)), then there exists a natural number k ∈ B such
that Ûk,B ⊆ Ûn,A, and since A

⋂

B is a finite set, then there exists a natural number
s ∈ B\A, such that s > k and s > n. Then

hs ∈ Fk−s

(

Uk+1,B, . . . , Us,B;Sk+1, . . . , Ss

)

⊆ Ûk,B ⊆ Ûn,A.

From the construction of the elements hi (see step I of this proof) we have

hs /∈ Ft

(

{e, h1, h−1
1 }, . . . , {e, hs−1, h−1

s−1}, {e}, {e, hs+1, h−1
s+1}, {e, hs+t, h−1

s+t};

S1, . . . , Ss+t

)

for any t ∈ N .

Since s /∈ A, then Us,A = {e}, and hence, hs /∈ Ft

(

Un+1,A, . . . , Un+t,A;

Sn+1, . . . , Sn+t

)

= U(n,t),A for any t ∈ N . Then hs /∈
∞
⋃

t=1
U(n,t),A = Ûn,A.

We have arrived at a contradiction, so the topologies τ(A) and τ(B) are incom-
parable.

By this the theorem is proved.

Theorem 14. Let a countable group G admit a non-discrete metrizable group topol-
ogy τ0, then there exists the continuum of non-discrete metrizable group topologies
on G stronger than τ0, and any two of these topologies are comparable.

Proof. Let P be the set of all prime numbers, let Q be the set of all rational numbers,
and let R be the set of all real numbers. Then there exists a bijection ξ : Q → P .

For each positive real number r ∈ R we consider the set Ar = ξ({q ∈ Q | r ≤ q})
of prime numbers, and let τ(Ar) be group topology on the group G, constructed in
the proof of Theorem 13, step II.
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We will show that the set {τ(Ar) | r ∈ R} is the required set of group topologies.

Since the set
{

Ûi(Ar) | i ∈ N
}

is a basis of the filter of neighborhoods of the

unity element for the group topology τ(Ar), then the topological group
(

G, τ(Ar)
)

has a countable basis of the filter of neighborhoods of the unity element.
We show that for any distinct real numbers r, r′ ∈ R the topologies τ(Ar) and

τ(Ar′) are different and comparable.
In fact, if r < r′, then Ar\Ar′ is an infinite set. Then, similarly as in the

proof of Theorem 13, step III we show that τ(Ar) 6= τ(Ar′), and hence, the set
{τ(Ar) | r ∈ R} has the cardinality of the continuum.

To finish the proof of the Theorem it remains to show that any two topologies
from the set {τ(Ar) | r ∈ R} are comparable.

Let r, r′ ∈ R and suppose (for definiteness) that r < r′. Since

Ar′ = ξ({q ∈ Q | r′ ≤ q} ⊆ ξ({q ∈ Q | r ≤ q} = Ar,

then (see the definition of the sets U(i,j),A in the proof of Theorem 13 step II)

U(i,j),Ar′
⊆ U(i,j),Ar

for any i, j ∈ N. Then Ûn,Ar′
⊆ Ûn,Ar

for any n ∈ N , and , the
sets {Un,Ar′

| n ∈ N} and {Un,Ar
| n ∈ N} are basis of the filter of neighborhoods of

the unity element in topological groups (G, τ(Ar′)) and (G, τ(Ar)), respectively. As
any group topology is determined by the basis of the filter of neighborhoods of the
unity element, then τ(Ar) < τ(Ar′).

By this the theorem is proved.
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