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Abstract. If a countable group G admits a non-discrete metrizable group topology
70, then in the group G, there are:

- Continuum of non-discrete metrizable group topologies stronger than 7o, and any
two of these topologies are incomparable;

- Continuum of non-discrete metrizable group topologies stronger than 79, and any
two of these topologies are comparable.
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1 Introduction

Researches on the possibility of the definition of a Hausdorff, group topologies
on countable groups were started in [1]. In this work also a method to define such
group topologies on any countable group was given.

Later, in [2] it was proved that any infinite Abelian group admits a non-discrete
Hausdorff group topology, and in [3] an example of a countable group which does
not admit non-discrete Hausdorff group topologies was constructed.

This article is a continuation of the research in this direction. The main results
of this article are Theorems 13 and 14.

2 Basic results

To highlight the main results we need the following well-known result (see [4],
p. 203, Proposition 1, and p. 205, Corollary):

Theorem 1. A set Q) of subsets of a group G is a basis of the filter of neighborhoods
of the unity element of a Hausdorff group topology on G if and only if the following
conditions are satisfied:

1) N V=A{e}
Ve
2) For any Vi and Va € Q, there exists V3 € Q such that V3 C Vi (| Va;

3) For any Vy € Q, there exists Vo € Q such that Vo - Vo C Vi;
4) For any Vi € Q, there exists Vo € Q such that V2_1 c Wy
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5) For any Vi € Q and any element g € G, there exists Vo € ) such that
g-Va-gotC V.

Remark 2. From Theorem 1 it easily follows that if a countable group G admits a
non-discrete group topology 7y such that the topological space (G, 7p) is a Hausdorff
space, then the group G admits a non-discrete group topology 71 such that the
topological space (G, 1) is a Hausdorff space, and it has a countable basis of the
filter of neighborhoods of the unity element.

Remark 3. From ([5], Theorem 8.1.21) it easily follows that a topology 7 of topo-
logical group (G, ) is given by a metric if and only if the topological space (G, T) is
a Hausdorff space, and it has a countable basis of the filter of neighborhoods of the
unity element.

Such a topology is called a metrizable topology.

Notations 4. If V1, V5, ... and S1, .59, ... are some sequences of non-empty symmet-
ric subsets of a group G, then for each natural number k by induction we define a

subset Fk<V1,...,Vk;Sl,...,Sk> of G as follows: take Fj <V1;Sl> = {g-Vl'g_1|g €
51}UV1'V1 and Fj1q :Fl(‘/lUFk(V%---aVk+l§S2,---aSk+l)§Sl)-

Proposition 5. For subsets Fj, <V1, ey Vi S, . ,Sk) the following statements
are true:

5.1. Ife € Vy, then Vi C V1 -V C F1(V1;81) and g-Vy - g~ ' C F1(Vy;81) for any
g €51

5.2. If k € N and the sets S; and V; are finite for 1 < i < k, then
F <V1, ey Vi S, .0 ,Sk> is a finite symmetric set;

5.3. Fk<{e},...,{e};Sl,...,Sk> = {e} for any k € N;

54. If U; CVyand T; C S; forany 1 < i <k, thean<U1,...,Uk;Tl,...,Tk> C
Fk(‘/l)avlmslvask)a

55. If ke N and e € V; for all i < k and Viy; = {e} for 1 < j < p, then
Fk(‘/l)avkvslaask) :Fk-‘:—p(‘/lv"'avk-i-p;slv"'aSk-i-p);

5.6. For k > 2 the equality Fk<V1,...,Vk; 51,...,Sk> =
Fe(ViU Fior (Varo o Vis S,y Sk ) Viet U FL (Vi S), Vi S, S ) s trues

5.7. If e € V; for any 1 <1 <k, then V; C Fk<V1,...,Vk;Sl,...,Sk> for any
1<t <k

5.8. If e € V; for any 1 < i < k, then Fk+1(‘/;,...,Vk+s;55,...,5k+s> -
Fristy1 (Vt, co oy Vs S1, - .,Sk+5> for any k,s,t € N and t < s.
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Proof. Statement 5.1 follows easily from the definition of the set F} (Vl; Sl>.

Statements 5.2, 5.3 and 5.4 can be easily proved by induction on k, using
that the sets S; and V; for i € N are symmetric and the definition of the set

Fk<V1,...,Vk;Sl,...,Sk>.

We prove Statement 5.5 by induction on k.
If k = 1, then using Statement 5.3 we get F (Vl, {e},....{e};S1,... ,Sl+p> =

Fl(V1UFp({e},...,{e};SQ,...,SHp);Sl) - F1<V1 U{e};Sl) — Fl(Vl;Sl) for

any p € N.
Assume that the equality is proved for the number k£ and all p € N. Then

Fk-ﬁ-l—i—p(‘/h- . -7Vk+17{e}7’ ey {6};51,. .. 7Sk+1+p> =

Fl (‘/1 UFk—I—p(‘/Q7 ey Vk+17 {6}7 ey {6};527 e 7Sk+1+p); Sl) =
i) <V1 UB Vs Vigni o, Sea)i $1) =

Fk‘-i—l (‘/17‘/27' .. 7Vk‘+1;517527 s aSk‘-i-l)'

Statement 5.5 is proved for the number £+ 1, and hence, Statement 5.5 is proved
for any natural number.

We prove Statement 5.6 by induction on k.
If k& = 2, then F2<V1, Va; S, 52) = Fl(V1UF1(V2; 52); 51) =

Fy (Vl U (Vz; 52> U <V2; 52); 51) = I (Vl U (Vz; S2>, Va; 51, S2>.
Assume that the equality holds for the number k£ > 2. Then

Bt (Vi Vi St Sk ) = B (A B (Voo Vi o, 84)581 ) =

F((MUR (Vo Vis S 8) Y U (Voo Vi o, 80) )i 81) =
F1<(V1UFk<\/'2UFk_1<V§,,...,Vk+1;53,...,5k+1>),...,Vk_lu
Fk<V2UFk_1<V3,...,Vk+1;53,...,Sk+1),...,Vk_1U
Fy (Vi Sk), Vs S2, -+ k) )3.51) = B (Vi |

Fy <V2, ooy Vi1 Sz, ,Sk+1),- oy Vi UF1(Vk+1; Ska1)s Var1;51 - - Sk-l—l)-

Statement 5.6 is proved for the number k+ 1, and hence, Statement 5.6 is proved
for any integer k > 2.

We prove Statement 5.7 by induction on k.
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If kK =1, then t = 1. Then, by Proposition 2.1, F} (V1;51> o V.

Assume that the required inclusion is proved for the number k and all 1 < ¢ < k,
and let t < kK + 1.

If t > 1, then considering the induction assumption, we get that

Fra <V1, oo Vi 13515 ,Sk+1) 2B <V1 UFk(V% o Virns

527---7Sk+1>§51> QFl(V1UVt;51) 2V1UVt2Vt-

If t = 1, then applying Statements 5.4 and 5.3, and the induction assumption,
we see that
Frtq <V1, oo Veg1; 51, - aSk+1) 2

F (Vl UFk<V27---7Vk+13527---;Sk+1)§Sl) 2

By <V1 Uﬂ({e}a R {6};527---75k+1>;51> =B <V1;51> 2V

By this Statement 5.7 is proved.
We prove Statement 5.8 by induction on the number s — ¢.

If s—t = 0, then ¢t = s, and hence, Fk+1<Vs,...,Vk+5;53,...,5k+5) =

Frys—t41 <Vt, ooy Virs; Sty oo aSk-i-s)-
Assume that the required inclusion is proved for s —t = n and any k € N, and
let s —t =mn+ 1. Then, by the inductive assumption and Statement 5.7,

Fk+1(x@,...,vk+s;55,...,sk) C Fro(omt—1)11 (Vg,...,Vk+s;52,...,5k+s> c

ViU B oornin (Voo Viewss S, Sk ) €
Py (Vi | Frgs—t (V2, ooy Vieysi Sz, - ,Sk+s); S1) =

Frts—t+1 (Vl, ooy Viersi S1, - ,Sk+s)

for all s,k € N.
By this Statement 5.8 is proved, and hence, Proposition 5 is proved. O

Definition 6. Let G be a group and let x be a variable. An expression of the form
g1k gk oggafs - gey, where g; € G for 1 <i < s+1and k; are integers
for 1 < j <s, is called a word on the variable x over the group G.

The set of all words on the variable  over the group G will be denoted by G(z).

Remark 7. If we assume that 2 = e, then the set G(z) is a group under the
multiplication of words.

Adding, if it is necessary, the unity element of the group in the expression
gr-xf gy k2. gs-afs - go  we can assume that k; € {—1,0,1}.
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Definition 8. If f(z) is a word on the variable z over the group G, then an
expression of the form f(z) = g, where g € G, is called an equation over a group G.

Definition 9. An element b of a group G is called a root of the equation f(x) =g
over the group G if f(b) = g.

Notations 10. Let G be a countable group, and let G = {e,gfl,gécl, . } be a
numbering of elements of the group G (this numbering will follow throughout the
article).

For each natural number k, we put Si = {gfl,géd, e ,g,fl}, for each pair of

natural numbers (7, j) we define subsets V(; ;) and S, ;) of the group G, and for each
triple of natural numbers (i, j, k) such that 1 <k < j we define the set ®; j () of
the equations on the variable x over the group G as follows: V(; ;) = {e}, Sa,j) = Sjs
and @y ) (z) = {x =clce Sk} for all j,k € N and k < j.

Assume that the sets V{; j), Si; ;) and ®(; ;1) (z) for i < p and all j,k € N and
k < j are defined for a natural number p.

If p+ 1 is even, then we take:

Vipt1,j) = {e} for any j > p+1;

J
Vip1,5) = Vip.j) U{g, 971}, where g is an element of the set G\ SL:Jl S(pj) * for any

j<p+L
q>(p+l,j,k)(x) = q>(p,j,k)($) for all £ < j € N;

J
Sp41) = {g € G | g is a root of an equation from | <I>(p+1,j7k)} for all j € N.
k=1

If p+ 1 is odd, then we take:

Vip+1,4) = {e} for j 2 p+1; '

Vips1.) = Fpr15 (Vipjsns - Vippn)i Sivts -5 Spin) U Vi) for j <p+ 15

D) = {z =gl ge s} for all j €N and Py p(z) =
{f(.’,l') =g ’ f(x) € Fj—k(‘/(p—l—l,k+1)7 SRR ‘/(p—l—l,j—l)a ‘/(p,j) U {xax_l}; Sk—l-h e 75])
andgeSk} for all k < j € N;

Sp+1,5) = S(py) for any j € N.

So, we have identified the subsets V(; ;) and S(; ;) of the group G for each pair

of natural numbers (i, j) and the set ®; ; 1) () of equations over a group G for each
triple of natural numbers (i, j, k), such that 1 < k < j, respectively.

Theorem 11. If a countable group G admits a non-discrete Hausdorff group
topology T, then for any finite set M = {fl(az) =ay,..., fm(x) = am} of equations
over the group G for which the unity element e of the group G is not a root of any
of these equations, in the topological group (G,T) there exists a neighborhood W of
the unity element such that its any element is not a root of any of these equations.

J
f G\ U Sp.j) =0, then we take V11,5 = Vip.j)-
s=1
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Proof. For each positive integer 1 < i < m of the mapping f; : (G,7) — (G, 1) is
a continuous mapping. Since the topological group is a Hausdorff space, then the
set {g} is a closed set in the topological group (G, ) for any element g € G. Then

m
Vi = G\ f; " (a;) is an open set, and e € V; . If V.= (] V}, then V' is a neighborhood
j=1
of the unity element and a; ¢ f;(V') for any 1 < i < m, and hence any element from
V is not a root of any equation f;(x) = a; for any 1 <1i < m.
By this the theorem is proved. O

Proposition 12. (see the example 3.6.18 in [5]) There exists a set N of cardinality
continuum of infinite subsets of the set N of natural numbers such that ANB is a
finite set for any distinct A,B € N

Theorem 13. If a countable group G admits a non-discrete metrizable group topol-
ogy 1o, then G admits continuum of non-discrete metrizable group topologies stronger
than 1o, and any two of these topologies are incomparable.

Proof. Let G = {e,gfl, .. } be a numbering of elements of the group G and S, =

glﬂ, . ,g,jfl} for any n € N. There exists a countable basis {Vl,Vg, . } of the
filter of neighborhoods of the unity element in the topological group (G, 7y) such

that Vk_1 =Vi, ViN Sk =0 and g- Vi1 - g~ C V; for any g € Sk, k € N.
By induction on k one can easily prove that Fj, (Vi+1, vy Vi Sty -0y Si+k> -

V; for all i,k € N.
Further proof of the theorem will be realized in several steps.

STEP I. Construction of an auxiliary sequence of elements and a sequence of
natural numbers.

By induction, we construct a sequence ki,ks2,... of natural numbers such
that k; > 4 for all ¢ € N, and a sequence hi,ho,... of elements of the set
G\{e} such that {e,hi,hi_l} C Vg, and h; ¢ Fk({e,hl,hfl},...,{e, hi_l,hi__ll},
{e}, {e,hHl,h;_ll}, e {e,hk,hlzl};Sl, . ,Sk) for any integers 1 <1i < k.

We take k1 = 1, and as h; we take an arbitrary element of the set Vi\{e}.

Suppose that we have already defined natural numbers ky, ko, ...k,
such that k; > 4 and elements hi,ho,...,h, from the set G\{e} such
that {e, hy hi' } C Vi, and  h; ¢ Fo({e, ha, hi'} oo {eshict, b} {el,
{e,hi+1,hi_+11},..., {e,hn,h,jl};Sl,...,Sn) for any i € N, 1 < i < n and
hn Qé Fn—l ({6, hl, hl_l}, ey {6, hn_l, h;&l}; Sl, ce ,Sn_l) .

For any i€ N, i<n+1 we consider the set Qg1 5(7)=

Fn+1<{€, h17 h1_1}7"'7{67 h’i—17 hi__ll}a{e}a{e7 hi+17 hi__|_11}7"'7{e7 hna h;1}7

{x,x_l};Sl,...,SnH) of words on the variable z over the group G and the

set of equations @], ,(z) = |J {f(:z:) =g f(x) € Qny1,),9 € {hy h;l}} over the
i=1
group G.
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Since (see Statement 5.5) Fn+1({e, hi, hl_l},...,{e, hi—1, hi__ll},{e},
fes hivrs Wik e bbb dels St San) = Fa(fe, b AT
{e,hi_l,hi__ll},{e},{e, hi+1,hi_+11},...,{e,hn,hrjl};Sl,...,Sn>, and by the induc-
tion assumption, h; ¢ Fn({e,hl,hl_l},...,{e,hi_l,hi__ll},{e},{e,hHl,h;_ll},...,

{e,hn,hgl};Sl,...,Sn), then f(e) ¢ {hi,h;'} for any i < n and for any word

(3

f(z) of the set Q11 4)(x). Hence, the unity element e of the group G is not a root
of any equation of the set ®;, ().

So, we have proved that @], ;(z) is a finite set of equations over the group G' and
the unity element e of the group G is not a root of any equation of the set ®;,_,,(z).

Since the topology 7y is a non-discrete Hausdorff group topology, then by The-
orem 11, the topological group (G, 7) has a neighborhood W of the unity element
such that any its element is not a root of any equation of the set ®,_;(x).

The finiteness of the set F,,({e, h1, hl_l}, oo {e b, hi by 81, ..., Sy) and the fact
that 79 is a Hausdorff topology imply that there exists a number n 4+ 1 < kyy1 € N
such that Wy, ., € W and

Fo({e,ha, by 'Y e b, by} 1, Sn) () Wi = {e)-

We take as hj41 any element of the set Wy . \{e}.
We show that these conditions are statisfied for numbers kq, ks, .. ., ky+1 and for
elements hi, ho, ..., hyy1 of the group G.

Since hpy1 € Wi, \{e}, then h,q1 ¢ Fn<{e, hi, hl_l},...,{e,hn,hgl};
Sl,...,Sn). Moreover, by the inductive assumption, h; ¢ Fn<{e, hl,hl_l},...,

{6, hi—17 hl__ll}u {6}, {67 hi+17 hy,_4_11}7 vy {6, hna hr_Ll}a Sl7 cee Sn) =
Fn+1 ({6, h17 h1_1}7 "'7{67 h’i—17 hZ__ll}7 {6}, {67 hi+17 hi__|}1}7"'7{67 hna hgl}a{e}v
Slu"'asn-i-l)-

Since the element hyy; is not a root of any equation of the set @] (x) =
]L:Jl{f(:n) =g | f(ﬂj‘) € Q,(n+1’j)7g € {h]7h]_1}}7 then hl ¢ FTL—I—I <{€, h17h1_1}7"'>
feshi b b Aek es i Bt b e Bt by 1 St S )

Thus, we have constructed the sequence of natural numbers k1, ks, ... and the
sequence hy, ho, ... of elements of the group G such that k; > i, {e, h;, hi_l} C Wi,
for any i« € N and h; ¢ Fk({e,hl,hl_l},...,{e, hi_l,hi__ll},{e},{e,hHl,h;}l},...,
{e, hg, h,;l}; S1,- .. ,Sk) for any natural numbers 1 <1i < k.

STEP II. Construction of a metrizable group topology 7(A) for any infinite set
A of of natural numbers.

For any natural number i we consider the set U; 4 = {e} if i ¢ A, and
Uia = {e, hi,hi_l} if i € A, and for any pair (4,7) of natural numbers we con-
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sider the set U(i,j),A = Fj(Ui—i-l,Ay RN Ui+j,A§ Sit1y e Si+j)- We will show that for
the sets U(; j) 4 the following inclusions are true:

1. From Statements 5.3 and 5.4 it follows that e € U(; j) 4 for any i,j € N.
2. From Statement 5.5 it follows that U j) 4 C Ug,n),a for any j < n.
3. From Statement 5.8 it follows that U jy 4 C Uy j),.4 for any k <.

4. From Statement 5.2 it follows that Uy ;) 4 is a symmetric set, i. e.

-1
(U(ivj)vA) = Ulij),a for any i,j € N.

5. By induction on j, we prove that Uj;iqj)a - Uitrj),4 S Ugyjy,a and
g- U(i+17j)7A . g_1 - U(M),A for any i,5 € N, j>1and g € S;41.

In fact, if j = 2, then, applying in succession the definition of the sets Uy, j 4,
Statements 5.1, 3.4 and 3.6, we obtain:

Ugis1,2),4 - Ulit1,2),4 =
F1(Uito.4; Sit2) - F1 (Uit2,4; Siv2) C Fi(Fi(Uiya.a; Siva); Sit1) C
Fi(Uit1,4 UFl(Uz’+2,A§ Si42); Sis1) = Fa(Uip1.a Usyans Sigts Siva) = Uioya =
Uigra and g-Ugiia-g " =g Fi(Uir2,45Sir2) 9" C
A (FiUia.4; Sisa)i Si) € i <Ui+17A U F1(Uit2,4; Sit2); Si-i-l) —

F3(Uig1,4,Uiga,4; Siz1, Siv2) = Uii2).4

for any 7 € N.
Assume that the required inclusion is proved for j =n > 2 and any i € N.
Then

Ulir1,itnt1),4 - Ulitiens1),a = Fn (Ui+2,Aa ooy Uipnt1, A

Siy2,. .. 7Si+n+1> -, <Ui+2,A7 oy Uiyng1,45 Sigo, - - 7Si+n+1> -
F <Fn(Uz’+27A7 o Uibng1,43 Si2, -5 Signt1); Si+1> -

Fi(Uis1,4 U Fo(Uis2,4, - Uitnt1,45 Si425 - - -, Signt1); Sig1) =

For1(Uis1,a, -+ Uigna1,45 Sivts - -+ 5 Signt1) = Uing1),4

and
9 Ustitnina-9 " =9 Fo(Uis2,a, -, Uigng1,4; Sivas - - Signg1) -9~ C
By (Fn(Uit2,45 - -+ Uigng1,4; Siv2, - - 5 Signt1); Siv1) C

Fy <Ui+1,A U Fo(Uig2,4, -, Uitng1,45 Sig2, -+ s Sidns1); Si+1> =
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Fri (Ui-i-l,Aa ooy Uigng1,45 i1, -+ 7Si+n+1) = Ulint1),4

So, we have proved that Ugit1 )4 Utip1,).4 € Uigy.a and g-Ugpr a9~ €
U(i,j),A for any ZJJ € N; ] > 1 and g € S’i—‘rl'

Using the inclusions 1-5 proven above, one can prove that the set {UZ(A) =

o0
U Ui,j),A | i e N } satisfies the conditions of Theorem 1, and hence, this set is
j=1

a basis of the filter of neighborhoods of the unity element for a metrizable group
topology 7(A) in the group G.

STEP I1I. Construction of the continuum of group topologies.

For any subset A € N (for definition of the set N, see Proposition 12) we consider
the group topology 7(A), constructed in the proof of this Theorem, step II.

Since the set N has the cardinality of the continuum, then to complete the proof,
it remains to show that for any sets A, B € N the topologies 7(A) and 7(B) are
incomparable.

Suppose the contrary, for definiteness assume that 7(A4) < 7(B).

Let n € A. Since 7(A) < 7(B) and U, 4 is a neighborhood of the unity element
in the topological group (G,7(A)), then there exists a natural number k£ € B such
that Uk B C Un A, and since A () B is a finite set, then there exists a natural number
s € B\A, such that s > k and s > n. Then

hsEFk—s<Uk+1,B7"'7US7B;S/€+17"'7SS> CU gU

From the construction of the elements h; (see step I of this proof) we have
ho & Fi({es by b7 e homy bl b e fechorn b {es hoves Bk
Sl,...,SS+t) for any t € N.

Since s ¢ A, then Usa = {e}, and hence, hs ¢ E( Unt1,4, - Unyt,A;

Sntls---y Sn+t) Un,),a for any t € N. Then hg ¢ U Un,p),a = UmA-

We have arrived at a contradiction, so the topologles 7(A) and 7(B) are incom-
parable.
By this the theorem is proved. O

Theorem 14. Let a countable group G admit a non-discrete metrizable group topol-
ogy 1o, then there exists the continuum of non-discrete metrizable group topologies
on G stronger than Ty, and any two of these topologies are comparable.

Proof. Let P be the set of all prime numbers, let Q be the set of all rational numbers,
and let R be the set of all real numbers. Then there exists a bijection £ : Q — P.

For each positive real number r € R we consider the set A, =¢({g € Q| r < ¢})
of prime numbers, and let 7(A,) be group topology on the group G, constructed in
the proof of Theorem 13, step II.
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We will show that the set {7(A,) | r € R} is the required set of group topologies.
Since the set {UZ(AT) | i€ N} is a basis of the filter of neighborhoods of the

unity element for the group topology 7(A4;), then the topological group (G, T(Ar))
has a countable basis of the filter of neighborhoods of the unity element.

We show that for any distinct real numbers 7,7’ € R the topologies 7(A,) and
7(A,s) are different and comparable.

In fact, if » < 7/, then A,\A,  is an infinite set. Then, similarly as in the
proof of Theorem 13, step III we show that 7(A,) # 7(A4,), and hence, the set
{7(A;) | € R} has the cardinality of the continuum.

To finish the proof of the Theorem it remains to show that any two topologies
from the set {7(A,) | » € R} are comparable.

Let 7,7" € R and suppose (for definiteness) that r < 7’. Since

Ay ={{qeQ|r<qt Cé{qeQlr=q} =4,

then (see the definition of the sets U jy 4 in the proof of Theorem 13 step II)
Uiijy,a,, € Ugig),a, for any 4,5 € N. Then 0n,AT, C Un,Ar for any n € N, and , the
sets {Un,a,, | n € N} and {U, 4, | n € N} are basis of the filter of neighborhoods of
the unity element in topological groups (G, 7(A4,/)) and (G, 7(A,)), respectively. As
any group topology is determined by the basis of the filter of neighborhoods of the
unity element, then 7(A,) < 7(A4,/).

By this the theorem is proved. O
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