On the number of metrizable group topologies on countable groups

V. I. Arnautov, G. N. Ermakova

Abstract. If a countable group G admits a non-discrete metrizable group topology τ_0 , then in the group G, there are:

- Continuum of non-discrete metrizable group topologies stronger than τ_0 , and any two of these topologies are incomparable;

- Continuum of non-discrete metrizable group topologies stronger than τ_0 , and any two of these topologies are comparable.

Mathematics subject classification: 22A05.

Keywords and phrases: Countable group, group topology, Hausdorff topology, basis of the filter of neighbourhoods, number of group topologies, metrizable group topology.

1 Introduction

Researches on the possibility of the definition of a Hausdorff, group topologies on countable groups were started in [1]. In this work also a method to define such group topologies on any countable group was given.

Later, in [2] it was proved that any infinite Abelian group admits a non-discrete Hausdorff group topology, and in [3] an example of a countable group which does not admit non-discrete Hausdorff group topologies was constructed.

This article is a continuation of the research in this direction. The main results of this article are Theorems 13 and 14.

2 Basic results

To highlight the main results we need the following well-known result (see [4], p. 203, Proposition 1, and p. 205, Corollary):

Theorem 1. A set Ω of subsets of a group G is a basis of the filter of neighborhoods of the unity element of a Hausdorff group topology on G if and only if the following conditions are satisfied:

1)
$$\bigcap V = \{e\};$$

 $V \in \Omega$

2) For any V_1 and $V_2 \in \Omega$, there exists $V_3 \in \Omega$ such that $V_3 \subseteq V_1 \bigcap V_2$;

- 3) For any $V_1 \in \Omega$, there exists $V_2 \in \Omega$ such that $V_2 \cdot V_2 \subseteq V_1$;
- 4) For any $V_1 \in \Omega$, there exists $V_2 \in \Omega$ such that $V_2^{-1} \subseteq V_1$;

[©] V. I. Arnautov, G. N. Ermakova, 2013

5) For any $V_1 \in \Omega$ and any element $g \in G$, there exists $V_2 \in \Omega$ such that $g \cdot V_2 \cdot g^{-1} \subseteq V_1$.

Remark 2. From Theorem 1 it easily follows that if a countable group G admits a non-discrete group topology τ_0 such that the topological space (G, τ_0) is a Hausdorff space, then the group G admits a non-discrete group topology τ_1 such that the topological space (G, τ_1) is a Hausdorff space, and it has a countable basis of the filter of neighborhoods of the unity element.

Remark 3. From ([5], Theorem 8.1.21) it easily follows that a topology τ of topological group (G, τ) is given by a metric if and only if the topological space (G, τ) is a Hausdorff space, and it has a countable basis of the filter of neighborhoods of the unity element.

Such a topology is called a metrizable topology.

Notations 4. If V_1, V_2, \ldots and S_1, S_2, \ldots are some sequences of non-empty symmetric subsets of a group G, then for each natural number k by induction we define a subset $F_k(V_1, \ldots, V_k; S_1, \ldots, S_k)$ of G as follows: take $F_1(V_1; S_1) = \{g \cdot V_1 \cdot g^{-1} | g \in S_1\} \bigcup V_1 \cdot V_1$ and $F_{k+1} = F_1(V_1 \bigcup F_k(V_2, \ldots, V_{k+1}; S_2, \ldots, S_{k+1}); S_1)$.

Proposition 5. For subsets $F_k(V_1, \ldots, V_k; S_1, \ldots, S_k)$ the following statements are true:

5.1. If $e \in V_1$, then $V_1 \subseteq V_1 \cdot V_1 \subseteq F_1(V_1; S_1)$ and $g \cdot V_1 \cdot g^{-1} \subseteq F_1(V_1; S_1)$ for any $g \in S_1$;

5.2. If $k \in N$ and the sets S_i and V_i are finite for $1 \leq i \leq k$, then $F_k(V_1, \ldots, V_k; S_1, \ldots, S_k)$ is a finite symmetric set;

5.3.
$$F_k(\{e\}, \dots, \{e\}; S_1, \dots, S_k) = \{e\}$$
 for any $k \in N$;
5.4. If $U_i \subseteq V_i$ and $T_i \subseteq S_i$ for any $1 \le i \le k$, then $F_k(U_1, \dots, U_k; T_1, \dots, T_k) \subseteq F_k(V_1, \dots, V_k; S_1, \dots, S_k)$;

5.5. If $k, p \in N$ and $e \in V_i$ for all $i \leq k$ and $V_{k+j} = \{e\}$ for $1 \leq j \leq p$, then $F_k(V_1, \ldots, V_k; S_1, \ldots, S_k) = F_{k+p}(V_1, \ldots, V_{k+p}; S_1, \ldots, S_{k+p});$

5.6. For $k \ge 2$ the equality $F_k(V_1, ..., V_k; S_1, ..., S_k) = F_k(V_1 \bigcup F_{k-1}(V_2, ..., V_k; S_2, ..., S_k), ..., V_{k-1} \bigcup F_1(V_k; S_k), V_k; S_1, ..., S_k)$ is true;

5.7. If $e \in V_i$ for any $1 \le i \le k$, then $V_t \subseteq F_k(V_1, \ldots, V_k; S_1, \ldots, S_k)$ for any $1 \le t \le k$;

5.8. If $e \in V_i$ for any $1 \le i \le k$, then $F_{k+1}(V_s, ..., V_{k+s}; S_s, ..., S_{k+s}) \subseteq F_{k+s-t+1}(V_t, ..., V_{k+s}; S_1, ..., S_{k+s})$ for any $k, s, t \in N$ and $t \le s$.

Proof. Statement 5.1 follows easily from the definition of the set $F_1(V_1; S_1)$.

Statements 5.2, 5.3 and 5.4 can be easily proved by induction on k, using that the sets S_i and V_i for $i \in N$ are symmetric and the definition of the set $F_k(V_1, \ldots, V_k; S_1, \ldots, S_k)$.

We prove Statement 5.5 by induction on k.

If k = 1, then using Statement 5.3 we get $F_{1+p}(V_1, \{e\}, \dots, \{e\}; S_1, \dots, S_{1+p}) = F_1(V_1 \bigcup F_p(\{e\}, \dots, \{e\}; S_2, \dots, S_{1+p}); S_1) = F_1(V_1 \bigcup \{e\}; S_1) = F_1(V_1; S_1)$ for any $p \in N$.

Assume that the equality is proved for the number k and all $p \in N$. Then

$$F_{k+1+p}\Big(V_1, \dots, V_{k+1}, \{e\}, \dots, \{e\}; S_1, \dots, S_{k+1+p}\Big) =$$

$$F_1\Big(V_1 \bigcup F_{k+p}(V_2, \dots, V_{k+1}, \{e\}, \dots, \{e\}; S_2, \dots, S_{k+1+p}); S_1\Big) =$$

$$F_1\Big(V_1 \bigcup F_k(V_2, \dots, V_{k+1}; S_2, \dots, S_{k+1}); S_1\Big) =$$

$$F_{k+1}\Big(V_1, V_2, \dots, V_{k+1}; S_1, S_2, \dots, S_{k+1}\Big).$$

Statement 5.5 is proved for the number k+1, and hence, Statement 5.5 is proved for any natural number.

We prove Statement 5.6 by induction on k. If k = 2, then $F_2(V_1, V_2; S_1, S_2) = F_1(V_1 \cup F_1(V_2; S_2); S_1) = F_1(V_1 \cup F_1(V_2; S_2) \cup F_1(V_2; S_2); S_1) = F_2(V_1 \cup F_1(V_2; S_2), V_2; S_1, S_2).$ Assume that the equality holds for the number $k \ge 2$. Then

$$\begin{aligned} F_{k+1}\Big(V_1, \dots, V_{k+1}; S_1, \dots, S_{k+1}\Big) &= F_1\Big(V_1\bigcup F_k\Big(V_2, \dots, V_k; S_2, \dots, S_k\Big); S_1\Big) = \\ F_1\Big(\Big(V_1\bigcup F_k\Big(V_2, \dots, V_k; S_2, \dots, S_k\Big)\Big)\bigcup F_k\Big(V_2, \dots, V_k; S_2, \dots, S_k\Big)\Big); S_1\Big) &= \\ F_1\Big(\Big(V_1\bigcup F_k\Big(V_2\bigcup F_{k-1}\Big(V_3, \dots, V_{k+1}; S_3, \dots, S_{k+1}\Big)\Big), \dots, V_{k-1}\bigcup \\ F_k\Big(V_2\bigcup F_{k-1}\Big(V_3, \dots, V_{k+1}; S_3, \dots, S_{k+1}\Big), \dots, V_{k-1}\bigcup \\ F_1(V_k; S_k), V_k; S_2, \dots, S_k\Big)\Big); S_1\Big) &= F_{k+1}\Big(V_1\bigcup \\ F_k\Big(V_2, \dots, V_{k+1}; S_2, \dots, S_{k+1}\Big), \dots, V_k\bigcup F_1(V_{k+1}; S_{k+1}), V_{k+1}; S_1\dots S_{k+1}\Big).\end{aligned}$$

Statement 5.6 is proved for the number k+1, and hence, Statement 5.6 is proved for any integer $k \ge 2$.

We prove Statement 5.7 by induction on k.

If k = 1, then t = 1. Then, by Proposition 2.1, $F_1(V_1; S_1) \supseteq V_1$.

Assume that the required inclusion is proved for the number k and all $1 \le t \le k$, and let $t \le k + 1$.

If t > 1, then considering the induction assumption, we get that

$$F_{k+1}\Big(V_1,\ldots,V_{k+1};S_1,\ldots,S_{k+1}\Big) \supseteq F_1\Big(V_1\bigcup F_k\Big(V_2,\ldots,V_{k+1};S_2,\ldots,S_{k+1}\Big);S_1\Big) \supseteq F_1\Big(V_1\bigcup V_t;S_1\Big) \supseteq V_1\bigcup V_t \supseteq V_t.$$

If t = 1, then applying Statements 5.4 and 5.3, and the induction assumption, we see that

$$F_{k+1}(V_1, \dots, V_{k+1}; S_1, \dots, S_{k+1}) \supseteq$$

$$F_1(V_1 \bigcup F_k(V_2, \dots, V_{k+1}; S_2, \dots, S_{k+1}); S_1) \supseteq$$

$$F_1(V_1 \bigcup F_k(\{e\}, \dots, \{e\}; S_2, \dots, S_{k+1}); S_1) = F_1(V_1; S_1) \supseteq V_1$$

By this Statement 5.7 is proved.

We prove Statement 5.8 by induction on the number s - t.

If s - t = 0, then t = s, and hence, $F_{k+1}(V_s, \dots, V_{k+s}; S_s, \dots, S_{k+s}) = F_{k+s-t+1}(V_t, \dots, V_{k+s}; S_t, \dots, S_{k+s}).$

Assume that the required inclusion is proved for s - t = n and any $k \in N$, and let s - t = n + 1. Then, by the inductive assumption and Statement 5.7,

$$F_{k+1}(V_s, \dots, V_{k+s}; S_s, \dots, S_k) \subseteq F_{k+(s-t-1)+1}(V_2, \dots, V_{k+s}; S_2, \dots, S_{k+s}) \subseteq V_1 \bigcup F_{k+(s-t-1)+1}(V_2, \dots, V_{k+s}; S_2, \dots, S_{k+s}) \subseteq F_1(V_1 \bigcup F_{k+s-t}(V_2, \dots, V_{k+s}; S_2, \dots, S_{k+s}); S_1) = F_{k+s-t+1}(V_1, \dots, V_{k+s}; S_1, \dots, S_{k+s})$$

for all $s, k \in N$.

By this Statement 5.8 is proved, and hence, Proposition 5 is proved.

Definition 6. Let G be a group and let x be a variable. An expression of the form $g_1 \cdot x^{k_1} \cdot g_2 \cdot x^{k_2} \cdot \ldots \cdot g_s \cdot x^{k_s} \cdot g_{s+1}$, where $g_i \in G$ for $1 \leq i \leq s+1$ and k_j are integers for $1 \leq j \leq s$, is called a word on the variable x over the group G.

The set of all words on the variable x over the group G will be denoted by G(x).

Remark 7. If we assume that $x^0 = e$, then the set G(x) is a group under the multiplication of words.

Adding, if it is necessary, the unity element of the group in the expression $g_1 \cdot x^{k_1} \cdot g_2 \cdot x^{k_2} \cdot \ldots \cdot g_s \cdot x^{k_s} \cdot g_{s+1}$ we can assume that $k_i \in \{-1, 0, 1\}$.

Definition 8. If f(x) is a word on the variable x over the group G, then an expression of the form f(x) = g, where $g \in G$, is called an equation over a group G.

Definition 9. An element b of a group G is called a root of the equation f(x) = g over the group G if f(b) = g.

Notations 10. Let G be a countable group, and let $G = \{e, g_1^{\pm 1}, g_2^{\pm 1}, \ldots\}$ be a numbering of elements of the group G (this numbering will follow throughout the article).

For each natural number k, we put $S_k = \{g_1^{\pm 1}, g_2^{\pm 1}, \ldots, g_k^{\pm 1}\}$, for each pair of natural numbers (i, j) we define subsets $V_{(i,j)}$ and $S_{(i,j)}$ of the group G, and for each triple of natural numbers (i, j, k) such that $1 \le k \le j$ we define the set $\Phi_{(i,j,k)}(x)$ of the equations on the variable x over the group G as follows: $V_{(1,j)} = \{e\}, S_{(1,j)} = S_j$, and $\Phi_{(1,j,k)}(x) = \{x = c \mid c \in S_k\}$ for all $j, k \in N$ and $k \le j$.

Assume that the sets $V_{(i,j)}$, $S_{(i,j)}$ and $\Phi_{(i,j,k)}(x)$ for $i \leq p$ and all $j, k \in N$ and $k \leq j$ are defined for a natural number p.

If p + 1 is even, then we take:

 $V_{(p+1,j)} = \{e\}$ for any $j \ge p+1$;

 $V_{(p+1,j)} = V_{(p,j)} \bigcup \{g, g^{-1}\}$, where g is an element of the set $G \setminus \bigcup_{s=1}^{J} S_{(p,j)}^{-1}$ for any j < p+1;

$$\Phi_{(p+1,j,k)}(x) = \Phi_{(p,j,k)}(x) \text{ for all } k < j \in N;$$

$$S_{(p+1,j)} = \left\{ g \in G \mid g \text{ is a root of an equation from } \bigcup_{k=1}^{j} \Phi_{(p+1,j,k)} \right\} \text{ for all } j \in N.$$

If p + 1 is odd, then we take: $V_{(p+1,j)} = \{e\}$ for $j \ge p + 1$; $V_{(p+1,j)} = F_{p+1-j}(V_{(p,j+1)}, \dots, V_{(p,p+1)}; S_{j+1}, \dots, S_{p+1}) \bigcup V_{(p,j)}$ for j ; $<math>\Phi_{(p+1,j,j)}(x) = \{x = g \mid g \in S_j\}$ for all $j \in N$ and $\Phi_{(p+1,j,k)}(x) = \{f(x) = g \mid f(x) \in F_{j-k}(V_{(p+1,k+1)}, \dots, V_{(p+1,j-1)}, V_{(p,j)} \bigcup \{x, x^{-1}\}; S_{k+1}, \dots, S_j)$ and $g \in S_k\}$ for all $k < j \in N$; $S_{(p+1,j)} = S_{(p,j)}$ for any $j \in N$.

So, we have identified the subsets $V_{(i,j)}$ and $S_{(i,j)}$ of the group G for each pair of natural numbers (i, j) and the set $\Phi_{(i,j,k)}(x)$ of equations over a group G for each triple of natural numbers (i, j, k), such that $1 \le k \le j$, respectively.

Theorem 11. If a countable group G admits a non-discrete Hausdorff group topology τ , then for any finite set $M = \{f_1(x) = a_1, \ldots, f_m(x) = a_m\}$ of equations over the group G for which the unity element e of the group G is not a root of any of these equations, in the topological group (G, τ) there exists a neighborhood W of the unity element such that its any element is not a root of any of these equations.

¹If $G \setminus \bigcup_{s=1}^{j} S_{(p,j)} = \emptyset$, then we take $V_{(p+1,j)} = V_{(p,j)}$.

Proof. For each positive integer $1 \leq i \leq m$ of the mapping $f_i : (G, \tau) \to (G, \tau)$ is a continuous mapping. Since the topological group is a Hausdorff space, then the set $\{g\}$ is a closed set in the topological group (G, τ) for any element $g \in G$. Then $V_i = G \setminus f_i^{-1}(a_i)$ is an open set, and $e \in V_i$. If $V = \bigcap_{j=1}^m V_j$, then V is a neighborhood of the unity element and $a_i \notin f_i(V)$ for any $1 \leq i \leq m$, and hence any element from V is not a root of any equation $f_i(x) = a_i$ for any $1 \leq i \leq m$.

By this the theorem is proved.

Proposition 12. (see the example 3.6.18 in [5]) There exists a set $\tilde{\mathbb{N}}$ of cardinality continuum of infinite subsets of the set \mathbb{N} of natural numbers such that $A \cap B$ is a finite set for any distinct $A, B \in \tilde{\mathbb{N}}$

Theorem 13. If a countable group G admits a non-discrete metrizable group topology τ_0 , then G admits continuum of non-discrete metrizable group topologies stronger than τ_0 , and any two of these topologies are incomparable.

Proof. Let $G = \{e, g_1^{\pm 1}, \ldots\}$ be a numbering of elements of the group G and $S_n = \{g_1^{\pm 1}, \ldots, g_n^{\pm 1}\}$ for any $n \in N$. There exists a countable basis $\{V_1, V_2, \ldots\}$ of the filter of neighborhoods of the unity element in the topological group (G, τ_0) such that $V_k^{-1} = V_k, V_k \bigcap S_k = \emptyset$ and $g \cdot V_{k+1} \cdot g^{-1} \subseteq V_k$ for any $g \in S_k, k \in N$.

By induction on k one can easily prove that $F_k(V_{i+1}, \ldots, V_{i+k}; S_{i+1}, \ldots, S_{i+k}) \subseteq V_i$ for all $i, k \in N$.

Further proof of the theorem will be realized in several steps.

STEP I. Construction of an auxiliary sequence of elements and a sequence of natural numbers.

By induction, we construct a sequence k_1, k_2, \ldots of natural numbers such that $k_i \geq i$ for all $i \in N$, and a sequence h_1, h_2, \ldots of elements of the set $G \setminus \{e\}$ such that $\{e, h_i, h_i^{-1}\} \subseteq V_{k_i}$ and $h_i \notin F_k(\{e, h_1, h_1^{-1}\}, \ldots, \{e, h_{i-1}, h_{i-1}^{-1}\}, \{e\}, \{e, h_{i+1}, h_{i+1}^{-1}\}, \ldots, \{e, h_k, h_k^{-1}\}; S_1, \ldots, S_k)$ for any integers $1 \leq i < k$. We take $k_1 = 1$, and as h_1 we take an arbitrary element of the set $V_1 \setminus \{e\}$.

Suppose that we have already defined natural numbers $k_1, k_2, ..., k_n$ such that $k_i \ge i$ and elements $h_1, h_2, ..., h_n$ from the set $G \setminus \{e\}$ such that $\{e, h_i, h_i^{-1}\} \subseteq V_{k_i}$ and $h_i \notin F_n(\{e, h_1, h_1^{-1}\}, ..., \{e, h_{i-1}, h_{i-1}^{-1}\}, \{e\}, \{e, h_{i+1}, h_{i+1}^{-1}\}, ..., \{e, h_n, h_n^{-1}\}; S_1, ..., S_n)$ for any $i \in N$, $1 \le i < n$ and $h_n \notin F_{n-1}(\{e, h_1, h_1^{-1}\}, ..., \{e, h_{n-1}, h_{n-1}^{-1}\}; S_1, ..., S_{n-1}).$

For any $i \in N$, i < n+1 we consider the set $\Omega_{(n+1, i)}(x) = F_{n+1}(\{e, h_1, h_1^{-1}\}, \dots, \{e, h_{i-1}, h_{i-1}^{-1}\}, \{e\}, \{e, h_{i+1}, h_{i+1}^{-1}\}, \dots, \{e, h_n, h_n^{-1}\}, \{x, x^{-1}\}; S_1, \dots, S_{n+1})$ of words on the variable x over the group G and the set of equations $\Phi'_{n+1}(x) = \bigcup_{i=1}^n \{f(x) = g \mid f(x) \in \Omega_{(n+1,i)}, g \in \{h_i, h_i^{-1}\}\}$ over the group G.

Since (see Statement 5.5) $F_{n+1}(\{e, h_1, h_1^{-1}\}, \dots, \{e, h_{i-1}, h_{i-1}^{-1}\}, \{e\}, \{e, h_{i+1}, h_{i+1}^{-1}\}, \dots, \{e, h_n, h_n^{-1}\}, \{e\}; S_1, \dots, S_{n+1}) = F_n(\{e, h_1, h_1^{-1}\}, \dots, \{e, h_{i-1}, h_{i-1}^{-1}\}, \{e\}, \{e, h_{i+1}, h_{i+1}^{-1}\}, \dots, \{e, h_n, h_n^{-1}\}; S_1, \dots, S_n), \text{ and by the induction assumption, } h_i \notin F_n(\{e, h_1, h_1^{-1}\}, \dots, \{e, h_{i-1}, h_{i-1}^{-1}\}, \{e\}, \{e, h_{i+1}, h_{i+1}^{-1}\}, \dots, \{e, h_n, h_n^{-1}\}; S_1, \dots, S_n), \text{ then } f(e) \notin \{h_i, h_i^{-1}\} \text{ for any } i \leq n \text{ and for any word } f(x) \text{ of the set } \Omega_{(n+1,i)}(x). \text{ Hence, the unity element } e \text{ of the group } G \text{ is not a root of any equation of the set } \Phi'_{n+1}(x).$

So, we have proved that $\Phi'_{n+1}(x)$ is a finite set of equations over the group G and the unity element e of the group G is not a root of any equation of the set $\Phi'_{n+1}(x)$.

Since the topology τ_0 is a non-discrete Hausdorff group topology, then by Theorem 11, the topological group (G, τ) has a neighborhood W of the unity element such that any its element is not a root of any equation of the set $\Phi'_{n+1}(x)$.

The finiteness of the set $F_n(\{e, h_1, h_1^{-1}\}, \ldots, \{e, h_n, h_n^{-1}\}; S_1, \ldots, S_n)$ and the fact that τ_0 is a Hausdorff topology imply that there exists a number $n + 1 < k_{n+1} \in N$ such that $W_{k_{n+1}} \subseteq W$ and

$$F_n(\{e, h_1, h_1^{-1}\}, \dots, \{e, h_n, h_n^{-1}\}; S_1, \dots, S_n) \bigcap W_{k_{n+1}} = \{e\}.$$

We take as h_{n+1} any element of the set $W_{k_{n+1}} \setminus \{e\}$.

We show that these conditions are statisfied for numbers $k_1, k_2, \ldots, k_{n+1}$ and for elements $h_1, h_2, \ldots, h_{n+1}$ of the group G.

Since $h_{n+1} \in W_{k_{n+1}} \setminus \{e\}$, then $h_{n+1} \notin F_n(\{e, h_1, h_1^{-1}\}, \dots, \{e, h_n, h_n^{-1}\};$ $S_1, \dots, S_n)$. Moreover, by the inductive assumption, $h_i \notin F_n(\{e, h_1, h_1^{-1}\}, \dots, \{e, h_{i-1}, h_{i-1}^{-1}\}, \{e\}, \{e, h_{i+1}, h_{i+1}^{-1}\}, \dots, \{e, h_n, h_n^{-1}\}; S_1, \dots, S_n) =$ $F_{n+1}(\{e, h_1, h_1^{-1}\}, \dots, \{e, h_{i-1}, h_{i-1}^{-1}\}, \{e\}, \{e, h_{i+1}, h_{i+1}^{-1}\}, \dots, \{e, h_n, h_n^{-1}\}, \{e\}; S_1, \dots, S_{n+1}).$

Since the element h_{n+1} is not a root of any equation of the set $\Phi'_{n+1}(x) = \bigcup_{j=1}^{n} \left\{ f(x) = g \mid f(x) \in \Omega'_{(n+1,j)}, g \in \{h_j, h_j^{-1}\} \right\}$, then $h_i \notin F_{n+1}(\{e, h_1, h_1^{-1}\}, \dots, \{e, h_{i-1}, h_{i-1}^{-1}\}, \{e\}, \{e, h_{i+1}, h_{i+1}^{-1}\}, \dots, \{e, h_{n+1}, h_{n+1}^{-1}\}; S_1, \dots, S_{n+1}).$

Thus, we have constructed the sequence of natural numbers k_1, k_2, \ldots and the sequence h_1, h_2, \ldots of elements of the group G such that $k_i \ge i$, $\{e, h_i, h_i^{-1}\} \subseteq W_{k_i}$ for any $i \in N$ and $h_i \notin F_k(\{e, h_1, h_1^{-1}\}, \ldots, \{e, h_{i-1}, h_{i-1}^{-1}\}, \{e\}, \{e, h_{i+1}, h_{i+1}^{-1}\}, \ldots, \{e, h_k, h_k^{-1}\}; S_1, \ldots, S_k)$ for any natural numbers $1 \le i < k$.

STEP II. Construction of a metrizable group topology $\tau(A)$ for any infinite set A of of natural numbers.

For any natural number i we consider the set $U_{i,A} = \{e\}$ if $i \notin A$, and $U_{i,A} = \{e, h_i, h_i^{-1}\}$ if $i \in A$, and for any pair (i, j) of natural numbers we con-

sider the set $U_{(i,j),A} = F_j(U_{i+1,A}, \ldots, U_{i+j,A}; S_{i+1}, \ldots, S_{i+j})$. We will show that for the sets $U_{(i,j),A}$ the following inclusions are true:

- 1. From Statements 5.3 and 5.4 it follows that $e \in U_{(i,j),A}$ for any $i, j \in N$.
- 2. From Statement 5.5 it follows that $U_{(k,j),A} \subseteq U_{(k,n),A}$ for any $j \leq n$.
- 3. From Statement 5.8 it follows that $U_{(i,j),A} \subseteq U_{(k,j),A}$ for any $k \leq i$.

4. From Statement 5.2 it follows that $U_{(i,j),A}$ is a symmetric set, i. e. $\left(U_{(i,j),A}\right)^{-1} = U_{(i,j),A}$ for any $i, j \in N$.

5. By induction on j, we prove that $U_{(i+1,j),A} \cdot U_{(i+1,j),A} \subseteq U_{(i,j),A}$ and $g \cdot U_{(i+1,j),A} \cdot g^{-1} \subseteq U_{(i,j),A}$ for any $i, j \in N, j > 1$ and $g \in S_{i+1}$.

In fact, if j = 2, then, applying in succession the definition of the sets $U_{(i,j),A}$, Statements 5.1, 3.4 and 3.6, we obtain:

$$U_{(i+1,2),A} \cdot U_{(i+1,2),A} =$$

$$F_1(U_{i+2,A}; S_{i+2}) \cdot F_1(U_{i+2,A}; S_{i+2}) \subseteq F_1(F_1(U_{i+2,A}; S_{i+2}); S_{i+1}) \subseteq$$

$$F_1(U_{i+1,A} \bigcup F_1(U_{i+2,A}; S_{i+2}); S_{i+1}) = F_2(U_{i+1,A}, U_{i+2,A}; S_{i+1}, S_{i+2}) = U_{(i,2),A} =$$

$$U_{(i,j),A} \text{ and } g \cdot U_{(i+1,2),A} \cdot g^{-1} = g \cdot F_1(U_{i+2,A}; S_{i+2}) \cdot g^{-1} \subseteq$$

$$F_1(F_1(U_{i+2,A}; S_{i+2}); S_{i+1}) \subseteq F_1(U_{i+1,A} \bigcup F_1(U_{i+2,A}; S_{i+2}); S_{i+1}) =$$

$$F_2(U_{i+1,A}, U_{i+2,A}; S_{i+1}, S_{i+2}) = U_{(i,2),A}$$

for any $i \in N$.

Assume that the required inclusion is proved for $j = n \ge 2$ and any $i \in N$. Then

$$U_{(i+1,i+n+1),A} \cdot U_{(i+1,i+n+1),A} = F_n \Big(U_{i+2,A}, \dots, U_{i+n+1,A};$$

$$S_{i+2}, \dots, S_{i+n+1} \Big) \cdot F_n \Big(U_{i+2,A}, \dots, U_{i+n+1,A}; S_{i+2}, \dots, S_{i+n+1} \Big) \subseteq$$

$$F_1 \Big(F_n \big(U_{i+2,A}, \dots, U_{i+n+1,A}; S_{i+2}, \dots, S_{i+n+1} \big); S_{i+1} \Big) \subseteq$$

$$F_1 (U_{i+1,A} \bigcup F_n (U_{i+2,A}, \dots, U_{i+n+1,A}; S_{i+2}, \dots, S_{i+n+1}); S_{i+1}) =$$

$$F_{n+1} (U_{i+1,A}, \dots, U_{i+n+1,A}; S_{i+1}, \dots, S_{i+n+1}) = U_{(i,n+1),A}$$

and

$$g \cdot U_{(i+1,i+n+1),A} \cdot g^{-1} = g \cdot F_n(U_{i+2,A}, \dots, U_{i+n+1,A}; S_{i+2}, \dots, S_{i+n+1}) \cdot g^{-1} \subseteq F_1(F_n(U_{i+2,A}, \dots, U_{i+n+1,A}; S_{i+2}, \dots, S_{i+n+1}); S_{i+1}) \subseteq F_1(U_{i+1,A} \bigcup F_n(U_{i+2,A}, \dots, U_{i+n+1,A}; S_{i+2}, \dots, S_{i+n+1}); S_{i+1}) =$$

$$F_{n+1}(U_{i+1,A},\ldots,U_{i+n+1,A};S_{i+1},\ldots,S_{i+n+1}) = U_{(i,n+1),A}$$

So, we have proved that $U_{(i+1,j),A} \cdot U_{(i+1,j),A} \subseteq U_{(i,j),A}$ and $g \cdot U_{(i+1,j),A} \cdot g^{-1} \subseteq U_{(i,j),A}$ for any $i, j \in N, j > 1$ and $g \in S_{i+1}$.

Using the inclusions 1–5 proven above, one can prove that the set $\{\hat{U}_i(A) = \bigcup_{j=1}^{\infty} U_{(i,j),A} \mid i \in N\}$ satisfies the conditions of Theorem 1, and hence, this set is a basis of the filter of neighborhoods of the unity element for a metrizable group topology $\tau(A)$ in the group G.

STEP III. Construction of the continuum of group topologies.

For any subset $A \in \mathbb{N}$ (for definition of the set \mathbb{N} , see Proposition 12) we consider the group topology $\tau(A)$, constructed in the proof of this Theorem, step II.

Since the set \mathbb{N} has the cardinality of the continuum, then to complete the proof, it remains to show that for any sets $A, B \in \tilde{\mathbb{N}}$ the topologies $\tau(A)$ and $\tau(B)$ are incomparable.

Suppose the contrary, for definiteness assume that $\tau(A) \leq \tau(B)$.

Let $n \in A$. Since $\tau(A) \leq \tau(B)$ and $\hat{U}_{n,A}$ is a neighborhood of the unity element in the topological group $(G, \tau(A))$, then there exists a natural number $k \in B$ such that $\hat{U}_{k,B} \subseteq \hat{U}_{n,A}$, and since $A \cap B$ is a finite set, then there exists a natural number $s \in B \setminus A$, such that s > k and s > n. Then

$$h_s \in F_{k-s}\Big(U_{k+1,B},\ldots,U_{s,B};S_{k+1},\ldots,S_s\Big) \subseteq \hat{U}_{k,B} \subseteq \hat{U}_{n,A}.$$

From the construction of the elements h_i (see step I of this proof) we have $h_s \notin F_t(\{e, h_1, h_1^{-1}\}, \ldots, \{e, h_{s-1}, h_{s-1}^{-1}\}, \{e\}, \{e, h_{s+1}, h_{s+1}^{-1}\}, \{e, h_{s+t}, h_{s+t}^{-1}\}; S_1, \ldots, S_{s+t})$ for any $t \in N$.

Since
$$s \notin A$$
, then $U_{s,A} = \{e\}$, and hence, $h_s \notin F_t \Big(U_{n+1,A}, \dots, U_{n+t,A};$
 $S_{n+1}, \dots, S_{n+t} \Big) = U_{(n,t),A}$ for any $t \in N$. Then $h_s \notin \bigcup_{t=1}^{\infty} U_{(n,t),A} = \hat{U}_{n,A}$.

We have arrived at a contradiction, so the topologies $\tau(A)$ and $\tau(B)$ are incomparable.

By this the theorem is proved.

Theorem 14. Let a countable group G admit a non-discrete metrizable group topology τ_0 , then there exists the continuum of non-discrete metrizable group topologies on G stronger than τ_0 , and any two of these topologies are comparable.

Proof. Let P be the set of all prime numbers, let \mathbb{Q} be the set of all rational numbers, and let \mathbb{R} be the set of all real numbers. Then there exists a bijection $\xi : \mathbb{Q} \to P$.

For each positive real number $r \in \mathbb{R}$ we consider the set $A_r = \xi(\{q \in \mathbb{Q} \mid r \leq q\})$ of prime numbers, and let $\tau(A_r)$ be group topology on the group G, constructed in the proof of Theorem 13, step II.

We will show that the set $\{\tau(A_r) \mid r \in R\}$ is the required set of group topologies. Since the set $\{\hat{U}_i(A_r) \mid i \in N\}$ is a basis of the filter of neighborhoods of the unity element for the group topology $\tau(A_r)$, then the topological group $(G, \tau(A_r))$ has a countable basis of the filter of neighborhoods of the unity element.

We show that for any distinct real numbers $r, r' \in \mathbb{R}$ the topologies $\tau(A_r)$ and $\tau(A_{r'})$ are different and comparable.

In fact, if r < r', then $A_r \setminus A_{r'}$ is an infinite set. Then, similarly as in the proof of Theorem 13, step III we show that $\tau(A_r) \neq \tau(A_{r'})$, and hence, the set $\{\tau(A_r) \mid r \in R\}$ has the cardinality of the continuum.

To finish the proof of the Theorem it remains to show that any two topologies from the set $\{\tau(A_r) \mid r \in \mathbb{R}\}$ are comparable.

Let $r, r' \in R$ and suppose (for definiteness) that r < r'. Since

$$A_{r'} = \xi(\{q \in \mathbb{Q} \mid r' \le q\} \subseteq \xi(\{q \in \mathbb{Q} \mid r \le q\} = A_r,$$

then (see the definition of the sets $U_{(i,j),A}$ in the proof of Theorem 13 step II) $U_{(i,j),A_{r'}} \subseteq U_{(i,j),A_r}$ for any $i, j \in \mathbb{N}$. Then $\hat{U}_{n,A_{r'}} \subseteq \hat{U}_{n,A_r}$ for any $n \in N$, and , the sets $\{U_{n,A_{r'}} \mid n \in \mathbb{N}\}$ and $\{U_{n,A_r} \mid n \in \mathbb{N}\}$ are basis of the filter of neighborhoods of the unity element in topological groups $(G, \tau(A_{r'}))$ and $(G, \tau(A_r))$, respectively. As any group topology is determined by the basis of the filter of neighborhoods of the unity element, then $\tau(A_r) < \tau(A_{r'})$.

By this the theorem is proved.

References

- [1] MARKOV A. A. On absolutely closed sets. Mat. Sb., 1945, 18, 3–28 (in Russian).
- KERTESZ A., SZELE T., On existence of non-discrete topologies on an infinite Abelian groups. Publ. Math., 1953, 3, 187–189.
- [3] OL'SHANSKY A. YU. Remark on countable non-topologizable group. Vestnik MGU. Ser. Mat. i Mech., 3:103, 1980 (in Russian).
- [4] BOURBAKI N. Topologie generale. Moskva, 1958 (in Russian).
- [5] ENGELKING R. General topology. Moskva, 1986 (in Russian).

Received October 9, 2012

V. I. ARNAUTOV Institute of Mathematics and Computer Science Academy of Sciences of Moldova 5 Academiei str., MD-2028, Chisinau Moldova E-mail: arnautov@math.md G. N. ERMACOVA

G. N. ERMACOVA Transnistrian State University 25 October str. 128, Tiraspol, 278000 Moldova E-mail: galla0808@yandex.ru