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Examples of quasitopological groups

Alexander V.Arhangel’skii, Mitrofan M.Choban

Abstract. In this paper we construct several examples of completely regular sub-
metrizable quasitopological groups with slightly different combinations of properties,
in particular, a countable quasitopological group G with countable π-weight, countable
tightness, countable δ-character, but not first-countable, and a countable quasitopo-
logical group P with countable π-weight, countable tightness, but of uncountable
δ-character.
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1 Introduction

All spaces considered below are assumed to be Tychonoff. In terminology and
notations we follow [7] and [8]. A space is submetrizable if its topology contains a
metrizable topology.

A group G with a topology T is a semitopological (paratopological, respectively)
group if the multiplication is separately continuous (jointly continuous, respectively).

If G is a semitopological and the inverse operation x → x−1 is continuous, then
G is said to be a quasitopological group.

Recall that a π-base of a space X is a family β of non-empty open subsets of X
such that every open non-empty set U contains some member of β. A π-base of a
space X at a point x ∈ X is a family β of non-empty open subsets of X such that
every open neighborhood of x contains at least one element of β.

We will say that the δ-character of a space X at a point x ∈ X is countable, if
there exists a sequence γ = {Un : n ∈ N} of non-empty open subsets of X converging
to x.

2 The topologies T
∗, T

∗∗ and T
△ on R

2

Let R be the usual topological group of reals. Consider the group R
2 = R × R

with the Euclidean topology TE .

For any (x, y) ∈ G we put:

– V ((x, y), r) = {(x, y)} ∪ {(u, v) : u 6= x, |u − x| < r, 0 < (v − y)/(u − x) < r},
where 0 < r;

– W ((x, y), r) = {(x, y)}∪{(u, v) : u 6= x, |u−x| < r,−r < (v−y)/(u−x) < r},
where 0 < r;
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– S((x, y), r) = {U ∈ TE : U,−U + (x, y) = U − (x, y), x < u < x + r} ⊂ U ⊆
W ((x, y), r)}, where 0 < r;

– S(x, y) = ∪{S((x, y), r) : 0 < r < ∞}.
In particular, U ∈ S(0, 0) if and only if U is open in R

2, −U = U and {(t, 0) :
0 < t < r} ⊆ U ⊆ W ((0, 0), r) for some r > 0. In this case, since U = −U , we have
{(t, 0) : −r < t < 0} ⊆ U too.

By construction, the sets V (x, y)\{(x, y)} and W (x, y)\{(x, y)} are open in R
2.

Now, we put O((x, y), r, U) = V ((x, y), r) ∪ U , B∗(x, y) = {O((x, y), r, U) : U ∈
S((x, y), r), 0 < r < ∞} and B∗ = ∪{B∗(x, y) : (x, y) ∈ R

2}.
The family B∗ is an open base of a new topology T∗ on the set R

2. In particular,
(R2,T∗) is a submetrizable space, and hence, any compact subset of (R2,T∗) is
metrizable.

A sequence s = {sn : n ∈ N} of real numbers is called an r-basic sequence if
0 < −sn+1 < −sn < n−1 and nsn > −r for each n ∈ N. Consider an r-basic
sequence s = {sn : n ∈ N}. We construct the continuous function hs : [0, 1] → R,
where hs(x) = (sn+1−sn)((n+1)−1−n−1)(x−n−1)+sn for each x ∈ [(n+1)−1, n−1]
and n ∈ N. We put D+((x, y), r, s) = {{(u, v) : u − x < r, x + (1 + n)−1 ≤ u <
x + n−1, h(x) < v ≤ y} : n ∈ N}, D−((x, y), s) = −D+((x, y), s) and D((x, y), s) =
D+((x, y), s) ∪ D−((x, y), s).

Now we put H((x, y), r, s) = V ((x, y), r)∪D((x, y), r, s) for each r > 0 and each
r-basic sequence s = {sn : n ∈ N}.

Property 2.1. The group R
2 with the topology T∗ is a quasitopological group.

Proof. By construction, O((0, 0), r, U) = −O((x, y), r, U), O((0, 0), r, U) + (x, y)
= O((x, y), r, U) + (x, y) and U + (x, y) ∈ S((x, y), r) for all U ∈ S((0, 0), r) and
0 < r < ∞}.

Property 2.2. The family H(x, y) = {H((x, y), r, s)) : 0 < r ≤ 1, s is an r-basic
sequence} is an open base of the space (R2,T∗) at the point (x, y).

Proof. Fix O((0, 0), r, U) = V ((0, 0), r) ∪ U , where r > 0 and U ∈ S((x, y), r). Let
k be the first natural number for which 1/k < r. We put r1 = 1/k. The set U is
open and the sets Fn = {(t, 0) : 1/(n + 1) ≤ t ≤ 1/n} are compact in the space
(R2,TE). For each n ≥ k we have Fn ⊆ U . Hence, there exists δn > 0 such that
{(u, v) : 1/(n + 1) ≤ u ≤ 1/n,−δn < v ≤ 0} ⊆ U . We can assume that δn+1 < δn ≤
1/n for each n ≥ k, δm < 1/m for i < k and δ = {δn : n ∈ N} is an r1-basic sequence.
By construction, H((x, y), r1) ⊆ O((x, y), r, U) and H((x, y), r1, δ) ∈ T1(0, 0).

Property 2.3. If r2 < r1 ≤ 1, s = {sn : n ∈ N} is an r1-basic sequence and
δ = {δn : n ∈ N} is an r2-basic and δn < rn for each n ∈ N, then the closure of the
set H((x, y), r2, δ) in the space (R2,T∗) is a subset of the set H((x, y), r1, s).

Proof. It is obvious.

Property 2.4. The space (R2,T∗) is completely regular.

Proof. Fix an r > 0, an r-basic sequence s = {sn : n ∈ N} and the neighborhood
H = H((0, 0), r, s) of the point (0, 0).
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Consider the function f : R
2 → [0, 1], where:

(1) f((0, 0)) = 1 and f((−x,−y)) = f((x, y)) for any point (x, y) ∈ R
2;

(2) f((0, y)) = 0 for each y ∈ R \ {0};
(3) if (x, y) ∈ R

2 and x ≥ r, then f((x, y)) = 0;

(4) if (x, y) ∈ R
2, x > 0 and y/x ≥ r, then f((x, y)) = 0;

(5) if (x, y) ∈ R
2, 0 < x < r and y/x ≤ r, then f((x, y)) = r−2x−1(r−x)(rx−y);

(6) if (x, y) ∈ R
2, n ∈ N, (n+1)−1 ≤ x ≤ n−1, x < r and y ≤ 0, then f((0, y)) = 0

for y ≤ hs(x) and f((x, y)) = r−1hs(x)−1(r − x)(hs(x) − y) for y > hs(x).

By construction, f((0, 0)) = 1 and R
2 \ H = f−1(0). Moreover, if Z = R

2 \
{(0, y) : y ∈ R} is a a subspace of the space (R2,TE), the function f |Z : Z →
[0, 1] is continuous on Z. From this fact, the condition H ⊆ W ((x, y), r) and the
construction (5) it follows that the function f is continuous on the space (R2,T∗).
Hence, the space (R2,T∗) is completely regular.

The family B△ = {W ((x, y), r) : (x, y) ∈ R
2, r > 0} is an open base of the

topology T△ on R
2.

Property 2.5. The group R
2 with the topology T△ satisfies the following conditions:

1. It is a completely regular quasitopological group.

2. It is a first countable space with a countable π-base.

3. It is a not normal space and has the Baire property.

4. It is submetrizable and Dieudonné complete.

5. It is not a topological group.

Denote by T∗∗ the topology on the space R
2 generated by the open base B∗∗ =

{U ∪ {(x, y)} : (x, y) ∈ R
2, U ∈ S(x, y)}. By construction, TE ⊆ T△ ⊂ T∗ ⊂ T∗∗. In

particular, (R2,T∗∗) is a submetrizable space and any compact subset of (R2,T∗∗) is
metrizable. Consider Z = R2 \ {(0, y) : y ∈ R} as a subspace of the space (R2,TE).

Property 2.6. The group R
2 with the topology T∗∗ is a quasitopological group.

Proof. By construction, if U ∈ T(0, 0), then U = −U and U + (x, y) ∈ T(x, y).

Property 2.7. The space (R2,T∗∗) is completely regular. Proof. Fix U ∈ S(0, 0).

The set U is open in X and F = Z∩{(x, 0) : −r ≤ x ≤ r} ⊆ U for some r > 0. Since
the set F is closed in Z and the space Z is metrizable, there exists a continuous
function g : Z → [0, 1] such that X \U = g−1(0) and F = g−1(1). Put f((0, 0)) = 1,
f((0, y)) = 0 for any y 6= 0 and f((x, y)) = g((x, y)) for any (x, y) ∈ Z. By
definition of the topology T∗∗, the function f is continuous on G, f((0, 0)) = 1 and
G \ (U ∪ {(0, 0)}) = f−1(0).

3 Some subgroups of the group (R2
, T

∗)

Fix two dense subgroups A and B of the topological group R in the Euclidean
topology.

Put G = A × B. We will consider G as a subspace and subgroup of the qua-
sitopological group (R2,T∗).
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Property 3.1. G is a quasitopological group.

Proof. Use Property 2.1.

Property 3.2. The space G is completely regular, not first-countable.

Proof. The space G is completely regular, by Property 2.4.
Fix an infinite sequence {sk = {skn : n ∈ N} : k ∈ N} of rn-basic sequences.

For each n ∈ N fix a number sn such that max{−n−1, snn} < sn < 0. Then s =
{sn : n ∈ N} is a 1-basic sequence. Obviously (G∩H((0, 0), rn, sn))\H((0, 0), 1, s) 6=
∅ for each n ∈ N. Thus, the space G is not first-countable.

Property 3.3. If indA = indB = 0, then indG = 0.

Proof. Assume that indA = indB = 0. Fix r > 0, U ∈ S((0, 0), r) and O((0, 0), r, U)
= V ((0, 0), r) ∪ U . Let G+ = {(x, y) ∈ G : x > 0} be a subspace of the space
(R2,TE), F = {(x, y) ∈ G+ : 2x ≤ r, 0 ≤ 2y/x ≤ r} and H = O((0, 0), r, U). Then
G+ is a separable metrizable space, dimG+ = 0, the set H is open in G+, the set F
is closed in G+ and F ⊆ H. Thus there exists an open-and-closed subset H1 of the
space G+ such that F ⊆ H1 ⊆ H. Then the set H2 = H1 ∪ (−H1) ∪ {(0, 0)} is an
open-and-closed subset of the space G such that (0, 0) ∈ H2 ⊆ H.

Property 3.4. G is a space with a countable π-base.

Proof. If L is a base of (R2,TE), then {U ∩ G : U ∈ L} is a π-base of G.

Property 3.5. G is not a topological group.

Proof. Any topological group with a countable π-base is metrizable (see [7]). Pro-
perty 3.2 completes the proof.

Property 3.6. Any point of G has a countable δ-character in G.

Proof. The family {{(u, v) ∈ G : u2 + v2 < 2−n, 0 < v < 2−nu} : n ∈ N} is a strong
π-base of the space G at the point (0, 0).

Property 3.7. If (a, b) ∈ G, then:
1. The subspace {a} × B of G is discrete.
2. The subspace A × {b} of G is separable, metrizable and a subspace of the

space (R2,TE).

Property 3.8. If the set B is countable, then the space G is Lindelöf and has a
countable network. Moreover, if the groups A and B are countable, the the group
G is countable too.

Proof. Clearly, G is a union of a countable family of separable metrizable subspaces.
Hence, G has a countable network.

Property 3.9. If B = R, then the space G is not normal.

Proof. The proof is similar to the proof for the Niemytski plane ([8], Example 1.5.9).

Property 3.10. The tightness of the space G is countable.

Proof. Let M ⊆ {(x, y) : x > 0, y < 0} and (0, 0) ∈ clGM . We put K = (cl(R2,TE)M∩
{(x, 0) ∈ G : x ∈ R}) \ {(0, 0)}. We have two possible cases.

Case 1. (0, 0) 6∈ cl(R2,TE)K.
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There exists k ∈ N such that {(x, y) : x ≤ k−1} ∩ K = ∞. Fix 0 < r < (2k)−1.
and O > si > −(2i)−1r for each i < k. Since the sets Fn = {(u, 0) : (n + 1)−1 ≤ u ≤
n−1} are compact, there exists a sequence {sn : n ≥ k} such that sk < −(2n)−1r ≤
sn < sn+1 < 0 and M ∩ {(u, v) : u − x < r, x + (1 + n)−1 ≤ u < x + n−1, hs(x) <
v ≤ 0} = ∅ for each n ≥ k.

The sequence s = {sn : n ∈ N} is an r-basic sequence, M ∩ D+((x, y), r, s) =
M ∩ H((x, y), r, s) = ∅. Thus, (0, 0) 6∈ clGM . Hence, Case 1 is impossible.

Case 2. (0, 0) ∈ cl(R2,TE)K.
For each n ∈ N fix a point (an, 0) ∈ K such that 0 < an < 2−n. Since (an, 0) ∈

K, there exists a sequence {(anm, bnm) ∈ M : m ∈ N} such that |anm − an| −
bnm < 2−n−m for each m ∈ N. By construction, the set {(anm, bnm) : n,m ∈ N} is
countable, L ⊆ M and (0, 0) ∈ clGL. The proof is complete.

A space X is Dieudonné complete if there exists a complete uniformity on the
space X, i. e the universal uniformity on X is complete [8].

Property 3.11. The space G is Dieudonné complete.

Proof. Any submetrizable space is Dieudonné complete.

Property 3.12. If the space A × B has the Baire property, then the space G has
the Baire property too.

Proof. Any dense open subset of G contains a dense open subset of the space A×B
and any dense subset of A × B is dense in G too.

Property 3.13. If bG is a Hausdorff compactification of the space G, then the
remainder bG \ G is not Lindelöf and is not pseudocompact.

Proof. A space X is of countable type if every compact subset of X is contained
in a compact subset of countable character. M. Henriksen and J. R. Isbel [9] have
proved that a space X is of countable type if and only if any remainder of X is
Lindelöf. The character of any non-empty compact subset of G in G is uncountable.
Therefore, the remainders of G are not Lindelöf.

Since the δ-character of the space G in G is countable at some point, then any
remainder of G is not pseudocompact (see [3]).

4 Some subgroups of the group (R2
, T

∗∗)

Fix two dense subgroups A and B of the topological group R in the Euclidean
topology.

Denote P = A×B. We consider P as a subspace and subgroup of the quasitopo-
logical group (R2,T∗∗).

Property 4.1. G is a quasitopological group.

Proof. Use Property 2.6.

Property 4.2. The space P is completely regular and the δ-character of P is not
countable.

Proof. From Property 2.7 it follows that the space P is completely regular. If the
space P has countable δ-character at the (0, 0), then there exists a sequence S =



116 ALEXANDER V.ARHANGEL’SKII, MITROFAN M. CHOBAN

{(an, bn) ∈ P : n ∈ N} such that an · bn 6= 0 for each n ∈ N and {(0, 0)} = clP S \ S.
Then the set Z \S is open in Z and {(0, 0)}∪ (Z \S) is open in P , a contradiction.

Property 4.3. If indA = indB = 0, then indP = 0.

Proof. The proof is similar to the proof of Property 3.3.

Property 4.4. P is a space with a countable π-base.

Proof. If L is a base of (R2,TE), then {U ∩ P : U ∈ L} is a π-base of P .

Property 4.5. P is not a topological group.

Proof. Any topological group with a countable π-base is metrizable (see [7]). Prop-
erty 4.4 completes the proof.

Property 4.6. If (a, b) ∈ P , then:

1. The subspace {a} × B of P is discrete.

2. The subspace A × {b} of P is separable, metrizable and a subspace of the
space (R2,TE).

Property 4.7. If the set B is countable, then the space P is Lindelöf and has a
countable network. Moreover, if the groups A and B are countable, the the group
P is countable too.

Proof. It is similar to the proof of Property 3.8.

Property 4.8. If B = R, then the space P is not normal.

Proof. The proof is as for the Niemytski plane ([8], Example 1.5.9).

Property 4.9. The tightness of the space P is countable.

Proof. It is similar to the proof of Property 3.10.

Property 4.10. The space P is Dieudonné complete.

Proof. Any submetrizable space is Dieudonné complete.

Property 4.11. If the space A × B has the Baire property, then the space P has
the Baire property too.

Proof. Any dense open subset of P contains a dense open subset of the space A×B
and any dense subset of A × B is dense in P too. The proof is complete.

5 General construction

Let E be a metrizable additive commutative topological group without isolated
points, dimE = 0 and in E there exists an infinite sequence {cn : n ∈ N} of distinct
points of E such that limn→∞cn = 0, where 0 is the neutral element of E. Fix a
sequence {On : n ∈ N} of open-and-closed subsets of the space E such that:

– (On ∪ (−On)) ∩ (Om ∪ (−Om)) = ∅ for n,m ∈ N and n 6= m;

– if U is open in E and 0 ∈ U , then there exists n ∈ N such that Om ⊆ U for
all m ≥ n.

Fix an open base {Un : n ∈ N} of the space E at the point 0. We can assume
that On+1 ⊆ Un+1 ⊆ Un+1 + Un+1 ⊆ Un = −Un and Un is open-and-closed in E for
each n ∈ N.
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In E × E consider the family B1 = {V : V is open-and-closed in E × E \
{0} × E,U = −U , there exists m ∈ N such that ∪{(O2n−1 × Un) ∪ ((Um \ {0}) ×
{0}) : n ∈ N, n ≥ m} ⊆ U} and the family B2 = {V : V is open-and-closed in

E × E \ {0} × E,U = −U , there exists m ∈ N such that (Um \ {0}) × {0} ⊆ U}.
The family B◦ = {{z}∪(U +z) : z ∈ E×E,U ∈ B1} is a base of the topology T◦

on E ×E and the family B◦◦ = {{z}∪ (U + z) : z ∈ E ×E,U ∈ B2} is a base of the
topology T◦◦ on E × E . The sets from B◦ are open-and-closed in (E × E,T◦) and
the sets from B◦◦ are open-and-closed in (E ×E,T◦◦). Thus the spaces (E ×E,T◦)
and (E × E,T◦◦) are zero-dimensional and completely regular. By construction,
T◦ ⊆ T◦◦).

Fix two subgroups A and B without isolated points of the topological group E.
Assume that {cn : n ∈ N} ⊆ clEA

We consider C the set A × B as a subspace of the space (E × E,T◦) and D the
set A × B as a subspace of the space (E × E,T◦◦).

Property 5.1. The group C with the topology T◦|C and the group D with the
topology T◦◦|D satisfy the following conditions:

1. Are completely regular zero-dimensional qvasitopological groups.
2. C is a space of the countable δ-character and D is a space of the countable

π-character.
3. The space C is not first-countable and the δ-character of D is uncountable.
4. The tightnesses of C and D are countable.
5. If the space A × B has the Baire property, then C and D have the Baire

property, too.
6. Are submetrizable, Dieudonné complete and with σ-discrete π-bases.
7. The π-weights of C and D are equal with the weight of the space E.

8. Are not topological groups.
9. Any remainder of C is not Lindelöf and it is not pseudocompact, and any

remainder of D is pseudocompact and not Lindelöf.
10. If the space B is σ-discrete, then C and D are paracompact Fσ-metrizable

spaces. In particular, C and D are paracompact σ-spaces.

Proof. The proofs of the properties of C are similar to the proof of Properties
3.1–3.13 and the proofs of the properties of D are similar to the proof of Properties
4.1–4.12.

6 Open Problems

In [9] M. Henriksen and J. R. Isbel have proved that a space X is of countable
type if and only if any remainder of X is Lindelöf. In [3] Arhangel’skii proved that
any remainder of a topological group is either pseudocomact or Lindelöf. Various
properties of remainders have been studied in [2–6]. Examples constructed in this
paper motivate the following open questions:

Problem 6.1. Is it true that there exists a completely regular sequential (Fréchet-
Urysohn) quasitopological group with countable δ-character, but not first-countable?
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Problem 6.2. Is it true that there exists a completely regular bisequential non-
first-countable quasitopological group with a first-countable remainder?

Problem 6.3. Is it true that there exists a completely regular quasitopological
group G with countable π-character, but without countable δ-character and such
that G, in addition, satisfies at least one of one of the following properties:

1) G is sequential;
2) G is Fréchet-Urysohn;
3) any remainder of G is not Lindelöf and it is not pseudocompact;
4) G has a first-countable remainder in some compactification.
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