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Geometric configurations of singularities for quadratic

differential systems with total finite multiplicity

lower than 2
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Abstract. In [3] we classified globally the configurations of singularities at infinity of
quadratic differential systems, with respect to the geometric equivalence relation. The
global classification of configurations of finite singularities was done in [2] modulo the
coarser topological equivalence relation for which no distinctions are made between
a focus and a node and neither are they made between a strong and a weak focus
or between foci of different orders. These distinctions are however important in the
production of limit cycles close to the foci in perturbations of the systems. The
notion of geometric equivalence relation of configurations of singularities allows us to
incorporates all these important purely algebraic features. This equivalence relation
is also finer than the qualitative equivalence relation introduced in [20]. In this article
we initiate the joint classification of configurations of singularities, finite and infinite,
using the finer geometric equivalence relation, for the subclass of quadratic differential
systems possessing finite singularities of total multiplicity mf ≤ 1. We obtain 84
geometrically distinct configurations of singularities for this family. We also give here
the global bifurcation diagram, with respect to the geometric equivalence relation, of
configurations of singularities, both finite and infinite, for this class of systems. This
bifurcation set is algebraic. The bifurcation diagram is done in the 12-dimensional
space of parameters and it is expressed in terms of polynomial invariants. The results
can therefore be applied for any family of quadratic systems, given in any normal form.
Determining the configurations of singularities for any family of quadratic systems,
becomes thus a simple task using computer algebra calculations.

Mathematics subject classification: Primary 58K45, 34C05, 34A34.
Keywords and phrases: Quadratic vector fields, infinite and finite singularities,
affine invariant polynomials, Poincaré compactification, configuration of singularities,
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1 Introduction and statement of main results

We consider here differential systems of the form

dx

dt
= p(x, y),

dy

dt
= q(x, y), (1)

where p, q ∈ R[x, y], i.e. p, q are polynomials in x, y over R. We call degree of
a system (1) the integer m = max(deg p, deg q). In particular we call quadratic a
differential system (1) with m = 2. We denote here by QS the whole class of real
quadratic differential systems.
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The study of the class QS has proved to be quite a challenge since hard problems
formulated more than a century ago, are still open for this class. The complete
characterization of the phase portraits for real quadratic vector fields is not known,
and attempting to topologically classify these systems, which occur rather often in
applications, is a very complex task. This is partly due to the elusive nature of
limit cycles and partly to the rather large number of parameters involved. This
family of systems depends on twelve parameters but due to the group action of
real affine transformations and time homotheties, the class ultimately depends on
five parameters, still a rather large number of parameters. For the moment only
subclasses depending on at most three parameters were studied globally, including
global bifurcation diagrams (for example [2]). On the other hand we can restrict
the study of the whole quadratic class by focusing on specific global features of the
systems in this family. We may thus focus on the global study of singularities and
their bifurcation diagram. The singularities are of two kinds: finite and infinite.
The infinite singularities are obtained by compactifying the differential systems on
the sphere or on the Poincaré disk as they are defined in Section 6.1 (see also [17]).

The global study of quadratic vector fields in the neighborhood of infinity was
initiated by Coll in [13] where he characterizes all the possible phase portraits in a
neighborhood of infinity. Later Nikolaev and Vulpe in [23] classified topologically
the singularities at infinity in terms of invariant polynomials. Schlomiuk and Vulpe
used geometrical concepts defined in [30], and also introduced some new geometrical
concepts in [31] in order to simplify the invariant polynomials and the classifica-
tion. To reduce the number of phase portraits in half, in both cases the topological
equivalence relation was taken to mean the existence of a homeomorphism carrying
orbits to orbits and preserving or reversing the orientation. In [4] the authors clas-
sified topologically (adding also the distinction between nodes and foci) the whole
quadratic class, according to configurations of their finite singularities.

In the topological classification no distinction was made among the various types
of foci or saddles, strong or weak of various orders. However these distinctions,
of algebraic nature, are very important in the study of perturbations of systems
possessing such singularities. Indeed, the maximum number of limit cycles which
can be produced close to the weak foci in perturbations depends on the orders of
the foci.

The distinction among weak saddles is also important since for example when a
loop is formed using two separatrices of one weak saddle, the maximum number of
limit cycles that can be obtained close to the loop in perturbations is the order of
the weak saddle (see, for example,[26]).

There are also three kinds of simple nodes as we can see in Figure 1 below
where the local phase portraits around the singularities are given.

In the three phase portraits of Figure 1 the corresponding three singularities
are stable nodes. These portraits are topologically equivalent but the solution curves
do not arrive at the nodes in the same way. In the first case, any two distinct non-
trivial phase curves arrive at the node with distinct slopes. Such a node is called
a star node. In the second picture all non-trivial solution curves excepting two of
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Figure 1. Different types of nodes

them arrive at the node with the same slope but the two exception curves arrive at
the node with a different slope. This is the generic node with two directions. In the
third phase portrait all phase curves arrive at the node with the same slope.

We recall that the first and the third types of nodes could produce foci in pertur-
bations because their eigenvalues are equal. The linear part of the first is diagonal
and the one of the third is not. We can distinguish algebraically among the three
types of nodes. Here algebraic means that the linearization matrices at these nodes
and their eigenvalues, distinguish the nodes in Figure 1. The first type of nodes
is also involved in the existence of invariant straight lines of differential systems.
For example it can be shown that if a quadratic differential system has two finite
star nodes then necessarily the system possesses invariant straight lines of total
multiplicity 6, see [32].

Furthermore, a generic node may or may not have the two exceptional curves
lying on the line at infinite. This leads to two situations which geometrically are
different. Indeed, in the case when the two exceptional curves lie on the line at
infinity, all the other phase curves have a common asymptote while in the case the
two exceptional curves lie in the affine plane, all other phase curves are tangent to
the line at infinity. From the geometric viewpoint these two situations are different.
Polynomial vector fields should not be viewed just as particular cases of analytic
vector fields. They are also algebraic and geometric objects in their own right and
as such the algebraic and geometric behavior of their phase curves matters. For this
reason we split the generic nodes at infinity in two types.

The distinctions among the nilpotent and linearly zero singularities finite or
infinite can also be refined, as it will be seen in Section 4. Such singularities are
usually called degenerate singularities so here too we call them degenerate.

The geometric equivalence relation for finite or infinite singularities, introduced
in [3], takes into account such distinctions. This equivalence relation is finer than
the qualitative equivalence relation introduced by Jiang and Llibre in [20] since it
distinguishes among the foci of different orders and among the various types of
nodes. This equivalence relation also induces a finer distinction among the more
complicated degenerate singularities.

To distinguish among the foci (or saddles) of various orders we use the algebraic
concept of Poincaré-Lyapounov constants. We call strong focus (or strong saddle) a
focus with non–zero trace of the linearization matrix at this point. Such a focus (or
saddle) will be considered to have the order zero. A focus (or saddle) with trace zero



CONFIGURATIONS OF SINGULARITIES FOR QUADRATIC SYSTEMS 75

is called a weak focus (weak saddle). For details on Poincaré-Lyapounov constants
and weak foci we refer to [21].

The finer distinctions of singularities are also algebraic in nature through the
Lyapounov-Poincaré constants. In fact the whole bifurcation diagram of the global
configurations of singularities, finite and infinite, in quadratic vector fields and more
generally in polynomial vector fields can be obtained by using only algebraic means,
among them, the algebraic tool of polynomial invariants.

Algebraic information may not be significant for the local (topological) phase
portrait around a singularity. For example, topologically there is no distinction
between a focus and a node or between a weak and a strong focus. However, as
indicated before, algebraic information plays a fundamental role in the study of
perturbations of systems possessing such singularities.

In [14] Coppel wrote: “Ideally one might hope to characterize the phase portraits
of quadratic systems by means of algebraic inequalities on the coefficients. However,
attempts in this direction have met with very limited success...”

This proved to be impossible to realize. Indeed, Dumortier and Fiddelaers [16]
and Roussarie [27] exhibited examples of families of quadratic vector fields which
have non-algebraic bifurcation sets. However, the following is a legitimate question:

How far can we go in the global theory of quadratic (or more generally polyno-
mial) vector fields by using mainly algebraic means?

For certain subclasses of quadratic vector fields the full description of the phase
portraits as well as of the bifurcation diagrams can be obtained using only algebraic
tools. Examples of such classes are:

• the quadratic vector fields possessing a center [24,28,40,43];

• the quadratic Hamiltonian vector fields [1, 5];

• the quadratic vector fields with invariant straight lines of total multiplicity at
least four [32,33];

• the planar quadratic differential systems possessing a line of singularities at
infinity [34];

• the quadratic vector fields possessing an integrable saddle [6];

• the family of Lotka-Volterra systems [35,36], once we assume Bautin’s analytic
result saying that such systems have no limit cycles.

In the case of other subclasses of the quadratic class QS, such as the subclass
of systems with a weak focus of order 3 or 2 (see [2, 21]) the bifurcation diagrams
were obtained by using an interplay of algebraic, analytic and numerical methods.
These subclasses were of dimensions 2 and 3 modulo the action of the affine group
and time rescaling. So far no 4-dimensional subclasses of QS were studied globally
so as to produce also bifurcation diagrams and such problems are very difficult due
to the number of parameters as well as the increased complexities of these classes.
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Although we now know that in trying to understand these systems, there is
a limit to the power of algebraic methods, these methods have not been used far
enough. For example the global classification of singularities, finite and infinite,
using the geometric equivalence relation, which is finer than the qualitative equiva-
lence relation, can be done by using only algebraic methods. The first step in this
direction was done in [3] where the study of the whole class QS, according to the
configurations of the singularities at infinity was obtained by using only algebraic
methods. This classification was done with respect to the geometric equivalence
relation. Our work in [3] can be extended by incorporating also the finite singular-
ities. In this way we can obtain the global geometric classification of all possible
configurations of singularities, finite and infinite, of quadratic differential systems,
by purely algebraic means.

Our goal in this work is to take the first step in this direction by joining the
results for infinite singularities in [3] with finite singularities of total multiplicity
mf ≤ 1, of quadratic differential systems.

We extend here below the notion of configuration of singularities defined in
[3] only for infinite singularities, to all singularities, both finite and infinite. We
distinguish two cases.

1) If we have a finite number of infinite singular points and a finite number
of finite singularities, we call configuration of singularities, finite and infinite, the
set of all these singularities each endowed with its own multiplicity together with
their local phase portraits endowed with additional geometric structure involving
the concepts of tangent, order and blow–up equivalences defined in Section 4 and
using the notations described in Section 5.

2) If the line at infinity Z = 0 is filled up with singularities, in each one of the
charts at infinity X 6= 0 and Y 6= 0, the system is degenerate and we need to do a
rescaling of an appropriate degree of the system, so that the degeneracy be removed.
The resulting systems have only a finite number of singularities on the line Z = 0. In
this case we call configuration of singularities, finite and infinite, the union of the set
of all points at infinity (they are all singularities) with the set of finite singularities
– taking care of singling out the singularities of the “reduced” system at infinity
–, taken together with the local phase portraits of finite singularities endowed with
additional geometric structure as above and of the infinite singularities of the reduced
system.

We continue to use here ISPs as a shorthand for “infinite singular points”.

We obtain the following

Main Theorem. (A) The configurations of singularities, finite and infinite, of
all quadratic vector fields with finite singularities of total multiplicity mf ≤ 1 are
classified in Diagrams 1 and 2 according to the geometric equivalence relation.
We have 84 geometrically distinct configurations of singularities, finite and infinite.
More precisely 32 configurations with mf = 0 and 52 with mf = 1.

(B) For mf = 1 we have only two configurations with a center but 5 configu-
rations with a finite integrable saddle, and the maximum order of a weak focus (or
of a weak saddle) is one.
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(C) For mf = 1 we have: 4 configurations with a weak focus of order one but
only 2 configurations with a weak finite saddle of order one; 6 configurations with a
strong focus but 7 configurations with a strong finite saddle.

(D) Necessary and sufficient conditions for each one of the 84 different equiv-
alence classes can be assembled from Diagrams 1 and 2 in terms of 30 invariant
polynomials with respect to the action of the affine group and time rescaling, given
in Section 7.

(E) The Diagrams 1 and 2 actually contain the global bifurcation diagram in
the 12-dimensional space of parameters, of the global configurations of singularities,
finite and infinite, of this family (mf ≤ 1) of quadratic differential systems.

(F ) The phase portraits in the neighborhood of the line at infinity corresponding
to mf = 0 and to mf = 1 are given in Figure 1. More precisely we have:

mf = 0: Configs - 3; 4; 5; 30; 18; 28; 17; 13; 8; 24; 11; 15; 36; 35; 32; 46;

mf = 1: Configs - 2; 6; 31; 20; 14; 26; 25; 9; 23; 16; 12; 21; 39; 37; 33;
38; 45.

We note that the case mf = 1 was considered in [37], were all 52 possible
geometrically distinct configurations of singularities are given but without proof.
The complete proof is done here below.

The invariants and comitants of differential equations used for proving our
main results are obtained following the theory of algebraic invariants of polyno-
mial differential systems, developed by Sibirsky and his disciples (see for instance
[7, 12,25,38,41]).

2 Some geometrical concepts

In this section we use the same concepts we considered in [3] such as orbit γ
tangent to a semi–line L at p, well defined angle at p, characteristic orbit at a
singular point p, characteristic angle at a singular point, characteristic direction at
p. Since these are basic concepts for the notion of geometric equivalence relation we
recall here their definitions.

We assume that we have an isolated singularity p. Suppose that in a neighbor-
hood U of p there is no other singularity. Consider an orbit γ in U defined by a
solution Γ(t) = (x(t), y(t)) such that limt→+∞ Γ(t) = p (or limt→−∞ Γ(t) = p). For

a fixed t consider the unit vector C(t) = (
−−−−−→
Γ(t) − p)/‖

−−−−−→
Γ(t) − p‖. Let L be a semi–

line ending at p. We shall say that the orbit γ is tangent to a semi–line L at p if
limt→+∞C(t) (or limt→−∞C(t)) exists and L contains this limit point on the unit
circle centered at p. In this case we call a well defined angle of Γ at p the angle
between the positive x–axis and the semi–line L measured in the counterclockwise
sense. We may also say that the solution curve Γ(t) tends to p with a well defined
angle. A characteristic orbit at a singular point p is the orbit of a solution curve
Γ(t) which tends to p with a well defined angle. We call a characteristic angle at
the singular point p a well defined angle of a solution curve Γ(t). The line through
p extending the semi-line L is called a characteristic direction.
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Diagram 1. Global configurations: case µ0 = µ1 = µ2 = µ3 = 0, µ4 6= 0
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Diagram 2. Global configurations: case µ0 = µ1 = µ2 = 0, µ3 6= 0
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Diagram 2 (continued). Global configurations: case µ0 = µ1 = µ2 = 0,
µ3 6= 0

If a singular point has an infinite number of characteristic directions, we will call
it a star–like point.

It is known that the neighborhood of any isolated singular point of a polyno-
mial vector field which is not a focus, a center or a star-like point, is formed by a
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Figure 2. Topologically distinct local configurations of ISPs ([31,34])

finite number of sectors which could only be of three types: parabolic, hyperbolic
and elliptic (see [17]). It is also known that any degenerate singular point can be
desingularized by means of a finite number of changes of variables, called blow–up’s,
into elementary singular points (for more details see Section 3 or [17]).

Consider the three singular points given in Figure 3. All three are topologically
equivalent and their neighborhoods can be described as having two elliptic sectors
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and two parabolic ones. But we can easily detect some geometric features which
distinguish them. For example (a) and (b) have three characteristic directions and (c)
has only two. Moreover in (a) the solution curves of the parabolic sectors are tangent
to only one characteristic direction and in (b) they are tangent to two characteristic
directions. All these properties can be determined algebraically.

Figure 3. Some topologically equivalent singular points

The usual definition of a sector is of a topological nature and it is local with
respect to a neighborhood around the singular point. We work with a new notion,
namely of geometric local sector, introduced in [3] (we will improve that definition
in this paper) which distinguishes the systems of Figure 3 as well as the nodes in
Figure 1. This notion is characterized by algebraic means.

We consider first the case of an elemental star-node p. This is a very special case
because this has an infinite number of characteristic directions. Literally speaking
we have no parabolic sectors here although each orbits is tangent to a half-line at p.
We shall consider that this node has just one geometric local parabolic sector which
is the complement of {p} in an open neighborhood of p.

We introduce an equivalence relation for the orbits of solutions Γ(t) tending to a
singular point p when t tends to either +∞ or to −∞. We say that two such orbits
are equivalent if and only if after the complete desingularization, these orbits lifted
to the final stage are tangent to the same half-line at the same singular point, or end
as an orbit of a star-node on the same half-plane. We will call borsec a representative
of an equivalence class, with the exception of the case when in the desingularized
picture the characteristic direction is the same as the direction of the blow-up, and
in addition the singular point in the desingularization picture is a two directions
node or a saddle-node.

We call geometric local sector of a singular point p with respect to a neighborhood
V as a region in V delimited by two consecutive borsecs.

A semi–elemental saddle–node can be topologically described as a singular point
having two hyperbolic sectors and a single parabolic one. But if we add a borsec
which is an orbit of the parabolic sector (any orbit in that sector could be this
borsec), then the description consists of two hyperbolic sectors and two parabolic
ones. This distinction will be significant when trying to describe a singular point like
the one in Figure 4 which is an intricate singularity, topologically a saddle–node
but different from a semi–elemental saddle–node. Indeed, in an elemental saddle-
node in the parabolic sector all orbits are tangent to just one half-line at p, while in
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Figure 4. Local phase portrait of a saddle-node

Figure 4 some of the orbits of the parabolic sector are tangent to one half-line at
p while others are tangent to a different half-line at p.

Generically a geometric local sector is defined by two consecutive borsecs tangent
to two distinct half-lines at the singular point p with two different well defined angles.
If this sector is parabolic, then the solutions can arrive at the singular point p with
one of the two half-lines at p on the characteristic direction lines at p and this is a
geometrical information than can be revealed with the blow–up.

There is also the possibility that two borsecs defining a geometric local sector
are tangent to the same half-line at the singular point. Such a sector will be called
a cusp–like sector which can either be hyperbolic, elliptic or parabolic respectively
denoted by Hf, Ef and Pf.

In the case of parabolic sectors we want to include the information as to whether
the orbits arrive tangent to one or to the other borsec. We distinguish the two cases

writing by
x

P if they arrive tangent to the borsec limiting the previous sector in

clockwise sense or
y

P if they arrive tangent to the borsec limiting the next sector.
In the case of a cusp–like parabolic sector, all orbits must arrive with only one well

determined angle, but the distinction between
x

P and
y

P is still valid because it occurs
at some stage of the desingularization and this can be algebraically determined.
Thus complicated degenerate singular points like the two we see in Figure 5 may

be described as
y

PE
x

P HHH (case (a)) and E
x

PfHH
y

PfE (case (b)), respectively.

Figure 5. Two phase portraits of degenerate singular points
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3 The blow–up technique

To draw the phase portrait around an elementary hyperbolic singularity of a
smooth planar vector field we just need to use the Hartman-Grobman theorem. For
an elementary non-hyperbolic singularity the system can be brought by an affine
change of coordinates and time rescaling to the form dx/dt = −y+ ..., dy/dt = x+ ...
and it is well known that in this case the singularity is either a center or a focus.
One way to see this is by the Poincaré-Lyapounov theory. In the quadratic case we
can actually determine using the Poincaré-Lyapounov constants if it is a focus or
a center and then the local phase portrait is known (see [28, 40]). For higher order
systems we have the center-focus problem: we can only say that the phase portrait
around the singularity is of a center or of a focus but we cannot determine with
certainty which one of the two it is.

In the case of a more complicated singularity, such as a degenerate one, we
need to use the blow–up technique. This is a well known technique but since it
plays such a crucial role in this work, we shall briefly describe it here. We are
using this technique in a slightly modified (actually simplified) way to lighten the
calculations. This slightly modified way is in complete agreement with the usual
blow–up procedure.

The idea behind the blow–up technique is to replace a singular point p by a circle
or by a line on which the “composite” degenerate singularity decomposes (ideally)
into a finite number of simpler singularities pi. For this idea to work we need to
construct a new surface, on which we have a diffeomorphic copy of our vector field
on R

2\{p} or at least on the complement of a line passing through p, and whose
associated foliation with singularities extends also to the circle (or to a line) which
replaces the point p on the new surface.

One way to do this is to use polar coordinates. Clearly we may assume that
the singularity is placed at the origin. Consider the map φ : S

1 × R −→ R
2 defined

by φ(θ, r) 7→ (r cos θ, r sin θ). Restrictions of this map φ on S
1 × (0,∞) and on

S
1 × (−∞, 0) are diffeomeorphisms, mapping the upper, respectively lower part of

the cylinder on R
2\{(0, 0)}. But φ−1(0, 0) is the circle S

1 × {0}. This application
defines a diffeomorphic vector field on the upper part of the cylinder S

1 ×R. In fact
this is the passing to polar coordinates. The resulting smooth vector field extends
to the whole cylinder just by allowing r to be negative or zero. This full vector field
on the cylinder has either a finite number of singularities on the circle (this occurs
when the initial singular point is nilpotent) or the circle is filled up with singularities
(when we start with a point for which the linear part of the system at this point
vanishes). In this latter case we need to work with the reduced system obtained by
dividing the right hand side of the equations by a factor rs with an adequate s to
obtain a finite number of singularities. Since R

2 \ {(0, 0)} is diffeomorphic to the
upper part of the cylinder we only need to consider r > 0 for which this factor rs

is also positive. Removing this factor does not affect the nature of the orbits and
their orientation. The map φ collapses the circle on the cylinder (and hence the
singularities located on this circle) to the origin of coordinates in the plane. In case
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the phase portraits around the singularities on the circle can be drawn then the
inverse process of blowing down the upper side of the cylinder completed with the
circle allows to draw the portrait around the origin of R

2. In case the singularities
on the circle are still degenerate, we need to repeat this process a finite number
of times. This is guaranteed by the theorem of desingularization of singularities
(see [10] and [15], or [20]).

The blow–up by polar coordinates is simple, leading to a simple surface (the
cylinder), on which a diffeomorphic copy of our vector field on R

2\{(0, 0)} extends
to a vector field on the full cylinder. The origin of the plane ”blows-up” to the
circle φ−1(0, 0) on which the singularity splits into several simpler singularities. The
visualization of this blow–up is easy. But this process has the disadvantage of using
the transcendental functions: cos and sin and in case several such blow–ups are
needed this is computationally very inconvenient.

It would be more advantageous to use a construction involving rational functions.
More difficult to visualize, this algebraic blow–up is computationally simpler, using
only rational transformations. The blow-up in this case starts with a directional
blow–up of a point of the plane, by this meaning that in this case to replace the point
with a line sitting on a manifold playing the role of the cylinder in the preceding
case.

Consider the algebraic surface S in R
3 defined by the equation y = xz. We

may think of this surface as being here the analogue of the cylinder in the polar
blow-up. Like the cylinder, S is a differentiable manifold. Indeed, the projection
π1,2 : S → R

2, π1,2(x, xz, z) = (x, xz), is a global chart for this manifold. We observe
that the line Lz = {(0, 0, z)|z ∈ R} (the z-axis in R

3), lies on S. The projection
π1,2 collapses the z-axis to the point (0, 0). The line Lz may be thought here as the
analogue of the circle in the polar blow-up construction. The restriction

ψ = π1,2

∣∣
S\Lz

: S \ Lz −→ R
2 \ {x = 0}

of π1,2 to S\Lz is a diffeomorphism with inverse ψ−1(x, y) = (x, y, y/x) transferring
our vector field restricted to the open set x 6= 0 of the plane (x, y) to a diffeomorphic
vector field on S\Lz. The map π1,3 ◦ψ

−1 carries our vector field on the plane (x, y),
restricted to x 6= 0, to a diffeomorphic vector field on the open set x 6= 0 of the plane
(x, z). This is actually the vector field on S \ Lz calculated in the chart given by
π1,3.

We now compute this vector field on the plane (x, z). We start with a polynomial
differential system of the form (1) with a degenerate singular point at the origin
(0, 0). We have p(x, y) = p1(x, y)+. . .+pn(x, y) and q(x, y) = q1(x, y)+. . .+qn(x, y)
where pi(x, y) and qi(x, y) (for i = 1, . . . , n) are the sums of the homogeneous terms
involving xryl with r+l = i of p and q. We call the starting degree of (1) the positive
integer m such that (pm(x, y), qm(x, y)) 6= (0, 0) but (pi(x, y), qi(x, y)) = (0, 0) for
i = 0, 1, . . . ,m− 1.

This differential system when transferred on S and calculated in the chart π1,3
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by using y = xz becomes:

dx/dt = xm(pm(1, z) + . . .+ xn−mpn(1, z)),

dz/dt = xm−1[qm(1, z) + . . .+ xn−mqn(1, z) − zx(pm(1, z) + . . .+ xn−mpn(1, z))],

because dy/dt = d(xz)/dt = zdx/dt+xdz/dt. This system is defined over the whole
plane (x, z) and when m > 1 the line x = 0 (the z-axis in the plane (x, z)) is filled
up with singularities. If m = 1 then p1(x, y) and q1(x, y) cannot be both identically
zero. If q1(x, y) ≡ 0 then q1(1, z) ≡ 0, and again we must have the z-axis filled up
with singularities. But if q1(x, y) = ax+by is not identically zero, then (a, b) 6= (0, 0).
If b 6= 0 then q1(1, z) = a + bz and (0,−a/b) is the unique singular point on the
z-axis. If however b = 0 then q1(x, y) = ax and hence q1(1, z) = a 6= 0, and we have
no singular point on the z-axis. So for a nilpotent point with m = 1 we either get
an infinite number of singularities, or a unique singularity, or no singularity on the
z-axis.

Just like in the polar blow-up when we eliminated the common factor rs, here
we eliminate the common factor xm−1 (or xm in case qm(x, y) ≡ 0 but pm is not
identically zero). But in doing so we need to take some precautions which we explain
below. Consider the system above and its associated “reduced” system

dx/dt = x
[
pm(1, z) + . . .+ pn(1, z)

]
,

dz/dt = qm(1, z) + . . .+ xn−mqn(1, z) − z
[
pm(1, z) + . . .+ xn−mpn(1, z)

]
,

(2)

obtained by removing the common factor xm−1 on the right side of the equations.
We observe that for x > 0 the two systems have the same orbits and their orbits
have the same orientations, but the orbits are described by the solutions of the two
systems with different speeds so we have a time change (rescaling). If m is even then
m−1 is odd, and hence xm−1 is negative for x < 0 and the orbits of the two systems
for x < 0 are described by the solutions of the two differential systems with opposite
orientations. We need to take care of this when at the end we blow down the line to
the point (0, 0). At the points on the z-axis (x = 0) for which qm(1, z) = 0 we have
singularities. The finite number of singularities obtained in this way for the reduced
system is analogous to the finite number of singularities on the circle we obtained
in the reduced system in the polar blow-up. Thus the singular point at the origin
is blown-up to a finite number of singularities on the z-axis of the plane (x, z). We
call this the directional blow-up in the direction of y-axis of the plane (x, y).

In this blow-up construction the y-axis was excluded. Indeed, the surface S
does not contain the y-axis and we have a copy of our vector field on S only for
the complement in the plane (x, y) of the y-axis, i.e. only on the open set x 6= 0.
However, by doing an analogous blow-up in the direction of x-axis, the y-axis can be
included. The two blow-ups can then be glued so as to obtain a complete blow-up on
a Möbius band which will in this case be the full analogue of the cylinder in the polar
blow-up. The circle at the center of the Möbius band is then viewed as the space
P1(R) of all directions in the plane (x, y). To see here the need of this twisting on
the Möbius band we observe that the map π1,3 ◦ψ

−1 sends the left side of the y-axis
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of the (x, y) plane to the left side of the z-axis of the (x, z) plane. While sending
the semi-line y = 0 and x < 0 to the semi-line z = 0 and x < 0 this map flips the
second and third quadrant in the (x, z) plane. Indeed, the second (respectively third)
quadrant in the (x, y) plane are sent to the third (respectively second) quadrant in
the (x, z) plane. In this work we use a procedure, a sort of shortcut, to be explained
further below which enables to manage without the Möbius band.

The equation giving the singular points on the z-axis in the (x, z) plane according
to (2) is zpm(1, z)−qm(1, z) = 0 and going back to the (x, y) coordinates by replacing
z = y/x (for x 6= 0) we get the equation ypm(x, y) − xqm(x, y) = 0.

The polynomial PCD(x, y) = ypm(x, y)−xqm(x, y), where m is the starting de-
gree of a system of the form (1), is called the Polynomial of Characteristic Directions
of (1). In case PCD(x, y) 6≡ 0 the factorization of PCD(x, y) gives the characteristic
directions at the origin. So, in order to be sure that the y–axis is not a characteristic
direction we only need to show that x is not a factor of PCD(x, y). In case it is, we
need to do a linear change of variables which moves this direction out of the vertical
axis and does not place any other characteristic direction on this axis. If all the
directions are characteristic, i.e. PCD(x, y) ≡ 0, then the degenerate point will be
star–like and at least two blow–ups must be done to obtain the desingularization.
Anyway, in quadratic systems there are no degenerate star–like singular points. So,
the number of characteristic directions is finite and there exists the possibility to do
such a linear change. We will use changes of the type (x, y) → (x + ky, y) where
k is some number (usually 1). It seems natural to call this linear change a k–twist
as the y–axis gets twisted with some angle depending on k. It is obvious that the
phase portrait of the degenerate point which is studied cannot depend on the set of
k’s used in the desingularization process.

Once we are sure that we have no characteristic direction on the y–axis we do
the directional blow–up (x, y) = (x, xz). This change sends the x–axis of the (x, y)
plane to the X–axis of the (x, z) plane and replaces the singular point (0, 0) with a
whole vertical axis in the (x, z) plane. The old orbits which arrived at (0, 0) with
a well defined slope s now arrive at the singular point (0, s) of the new system.
Studying these new singular points, one can determine the local behavior around
them and their separatrices which after the blow–down describe the behavior of the
orbits around the original singular point up to geometrical equivalence (for definition
see next section). Often one needs to do a tree of blow–up’s (combined with some
translation and/or twists) if some of the singular points which appear on x = 0 after
the first blow–up are also degenerate.

4 Equivalence relations for singularities of planar polynomial

vector fields

We first recall the topological equivalence relation as it is used in most of the
literature. Two singularities p1 and p2 are topologically equivalent if there exist open
neighborhoods N1 and N2 of these points and a homeomorphism Ψ : N1 → N2

carrying orbits to orbits and preserving their orientations. To reduce the number
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of cases, by topological equivalence we shall mean here that the homeomorphism Ψ
preserves or reverses the orientation. We observe that this second notion which is
usually used in the literature on classification problems of polynomial vector fields
(see [2, 20]), does not conserve stability.

In [20] Jiang and Llibre introduced another equivalence relation for singularities,
which is finer than the topological equivalence:

We say that p1 and p2 are qualitatively equivalent if i) they are topologically
equivalent through a local homeomorphism Ψ, and ii) two orbits are tangent to the
same straight line at p1 if and only if the corresponding two orbits are also tangent
to the same straight line at p2.

We say that two simple finite nodes, with the respective eigenvalues λ1, λ2 and
σ1, σ2, of a planar polynomial vector field are tangent equivalent if and only if they
satisfy one of the following three conditions: a) (λ1−λ2)(σ1−σ2) 6= 0; b) λ1−λ2 =
0 = σ1 − σ2 and both linearization matrices at the two singularities are diagonal; c)
λ1−λ2 = 0 = σ1−σ2 and the corresponding linearization matrices are not diagonal.

We say that two infinite simple nodes P1 and P2 are tangent equivalent if and
only if their corresponding singularities on the sphere are tangent equivalent and in
addition, in case they are generic nodes, we have (|λ1| − |λ2|)(|σ1| − |σ2|) > 0 where
λ1 and σ1 are the eigenvalues of the eigenvectors tangent to the line at infinity.

Finite and infinite singular points may either be real or complex. In case we have
a complex singular point we will specify this with the symbols c© and c© for finite
and infinite points respectively. We point out that the sum of the multiplicities of
all singular points of a quadratic system with a finite number of singular points, is
always 7 (here of course we refer to the compactification on the complex projective
plane P2(C) of the foliation with singularities associated to the complexification
of the vector field, see Section 6.1). The sum of the multiplicities of the infinite
singular points is always at least 3, more precisely it is always 3 plus the sum of the
multiplicities of the finite points disappeared at infinity.

We use here the following terminology for singularities:

We call elemental a singular point with its both eigenvalues not zero;

We call semi–elemental a singular point with exactly one of its eigenvalues
equal to zero;

We call nilpotent a singular point with both its eigenvalues zero but with its
Jacobian matrix at that point not identically zero;

We call intricate a singular point with its Jacobian matrix identically zero.

The intricate singularities are usually called in the literature linearly zero. We
use here the term intricate to indicate the rather complicated behavior of phase
curves around such a singularity.

Roughly speaking a singular point p of an analytic differential system χ is a
multiple singularity of multiplicity m if p generates m singularities, as close to p as we
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wish, in analytic perturbations χε of this system and m is the maximal such number.
In polynomial differential systems of fixed degree n we have several possibilities
for obtaining multiple singularities. i) A finite singular point splits into several
finite singularities in n-degree polynomial perturbations. ii) An infinite singular
point splits into some finite and some infinite singularities in n-degree polynomial
perturbations. iii) An infinite singularity splits only in infinite singular points of
the systems in n-degree perturbations. To all these cases we can give a precise
mathematical meaning using the notion of intersection multiplicity at a point p of
two algebraic curves (see [29,30]).

We will say that two foci (or saddles) are order equivalent if their corresponding
orders coincide.

Semi–elemental saddle–nodes are always topologically equivalent.

To define the notion of geometric equivalence relation of singularities we first
define for nilpotent and intricate singular points, the notion of blow–up equivalence.
We start by having a degenerate singular point p1 at the origin of the plane of
coordinates (x0, y0), such that p1 has a positive number of characteristic directions.
We define an ε-twist as a k-twist with k small enough so that no characteristic
direction (or special characteristic direction in the case of a star point) with negative
slope is moved to positive slope. Then if x0 = 0 is a characteristic direction, we do
an ε-twist. After the blow–up (x0, y0) = (x1, y1x1) the singular point is replaced by
the straight line x1 = 0 in the plane (x1, y1). The neighborhood of the straight line
x1 = 0 in the projective plane obtained identifying the opposite infinite points of
the Poincaré disk is a Möbius band M1.

The straight line x1 = 0 will be invariant and may be formed by a continuum of
singular points. In that case, with a time change, this degeneracy may be removed
and the y1–axis will remain invariant.

Now we have a number k1 of singularities located on the affine axis x1 = 0.
We do not include the infinite singular point which is the origin of the local chart
U2 at infinity (Y 6= 0) because we already know that it does not play any role in
understanding the local phase portrait of the singularity p1. We can then list the
k1 singularities as p1,1, p1,2, ..., p1,k1 with decreasing order of the y1 coordinate. The
p1,i is adjacent to p1,i+1 in the usual sense and p1,k1 is also adjacent to p1,1 on the
Möbius band.

Assume now that we have a degenerate singular point p1 at the origin of the
plane (x0, y0) with an infinite number of characteristic directions. Then if x0 = 0
is a special characteristic direction, we do an ε-twist. After the blow–up (x0, y0) =
(x1, y1x1) the singular point is replaced by the straight line x1 = 0 in the plane
(x1, y1). The neighborhood of the straight line x1 = 0 in the projective plane
obtained identifying the opposite infinite points of the Poincaré disk is a Möbius
band M1.

The straight line x1 = 0 will be invariant and formed by a continuum of singular
points. In that case, with a time change, this degeneracy may be removed and the
y1–axis will no longer be invariant.

Now we have a set of cardinality k1 formed by singularities located on the axis
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x1 = 0 plus contact points of the flow with the axis x1 = 0. Again we do not include
the infinite singular point at the origin of the local chart U2 at infinity (Y 6= 0)
because we already know that it does not play any role in understanding the local
phase portrait of the singularity p1. We list again the k1 points as p1,1, p1,2, ..., p1,k1

with decreasing order of the y1 coordinate. The p1,i is adjacent to p1,i+1 in the usual
sense and p1,k1 is also adjacent to p1,1 by the Möbius band.

Let p2 be a degenerate singularity of another polynomial vector field and suppose
that it is located at the origin of the plane (x̄0, ȳ0).

The next definition works whether the singular points are star–like or not.

We say that p1 and p2 are one step blow–up equivalent if modulus a rotation
with center p2 (before the blow–up) and a reflection (if needed) we have:

(i) the cardinality k1 from p1 equals the cardinality k2 from p2;

(ii) we can construct a homeomorphism φ1
p1

: M1 → M2 such that φ1
p1

({x1 =
0}) = {x̄1 = 0}, φ1

p1
sends the points p1,i to p2,i and the phase portrait in

a neighborhood U of the axis x1 = 0 is topologically equivalent to the phase
portrait on φ1

p1
(U);

(iii) φ1
p1

sends an elemental (respectively semi–elemental, nilpotent or intricate)
singular point to an elemental (respectively semi–elemental, nilpotent or intri-
cate) singular point;

(iv) φ1
p1

sends a contact point to a contact point.

Assuming p1,j and φ1
p1

(p1,j) = p2,j are both intricate or both nilpotent, then the
process of desingularization (blow–up) must be continued.

We do exactly the same study we did before for p1 and p2 now for p1,j and p2,j .
We move them to the respective origins of the planes (x1, y1) and (x̄1, ȳ1) and we
determine whether they are one step blow–up equivalent or not.

If successive degenerate singular points appear from desingularization of p1 we do
the same kind of changes that we did for p1,j and apply the corresponding definition
of one step blow–up equivalence. This is repeated until after a finite number of
blow–up’s all the singular points that appear are elemental or semi–elemental.

We say that two singularities p1 and p2, both nilpotent or both intricate, of two
polynomial vector fields χ1 and χ2, are blow–up equivalent if and only if

(i) they are one step blow–up equivalent;

(ii) at each level j in the process of desingularization of p1 and of p2, two singu-
larities which are related via the corresponding homeomorphism are one step
blow–up equivalent.

Definition 1. Two singularities p1 and p2 of two polynomial vector fields are locally
geometrically equivalent if and only if they are topologically equivalent, they have the
same multiplicity and one of the following conditions is satisfied:
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• p1 and p2 are order equivalent foci (or saddles);

• p1 and p2 are tangent equivalent simple nodes;

• p1 and p2 are both centers;

• p1 and p2 are both semi–elemental singularities;

• p1 and p2 are blow–up equivalent nilpotent or intricate singularities.

We say that two infinite isolated singularities P1 and P2 of two polynomial vector
fields are blow–up equivalent if they are blow–up equivalent finite singularities in the
corresponding infinite local charts and the number, type and ordering of sectors on
each side of the line at infinity of P1 coincide with those of P2.

Definition 2. Let χ1 and χ2 be two polynomial vector fields each having a finite
number of singularities. We say that χ1 and χ2 have geometricallyequivalent config-
urations of singularities if and only if we have a bijection ϑ carrying the singularities
of χ1 to singularities of χ2 and for every singularity p of χ1, ϑ(p) is geometricallye-
quivalent with p.

5 Notations for singularities of polynomial differential systems

In this work we encounter all the possibilities we have for the geometric features
of both the finite and the infinite singularities in the whole quadratic class as well as
the way they assemble in systems of this class. Since we want to describe precisely
these geometric features and in order to facilitate understanding, it is important to
have a clear, compact and congenial notation which conveys easily the information.
The notation we use, even though it is used here to describe finite and infinite
singular points of quadratic systems, can easily be extended to general polynomial
systems.

We describe the finite and infinite singularities, denoting the first ones with lower
case letters and the second with capital letters. When describing in a sequence both
finite and infinite singular points, we will always place first the finite ones and only
later the infinite ones, separating them by a semicolon‘;’.

Elemental points: We use the letters ‘s’,‘S’ for “saddles”; ‘n’, ‘N ’ for “nodes”;
‘f ’ for “foci”; ‘c’ for “centers” and c© (respectively c©) for complex finite (respectively
infinite) singularities. In order to augment the level of precision we will distinguish
the finite nodes as follows:

• ‘n’ for a node with two distinct eigenvalues (generic node);

• ‘nd’ (a one–direction node) for a node with two identical eigenvalues whose
Jacobian matrix is not diagonal;

• ‘n∗’ (a star–node) for a node with two identical eigenvalues whose Jacobian
matrix is diagonal.
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Moreover, in the case of an elemental infinite generic node, we want to dis-
tinguish whether the eigenvalue associated to the eigenvector directed towards the
affine plane is, in absolute value, greater or lower than the eigenvalue associated to
the eigenvector tangent to the line at infinity. This is relevant if we consider the
geometric behavior of the phase curves around the node (see page 74). We will
denote them as ‘N∞’ and ‘Nf ’ respectively.

Finite elemental foci and saddles are classified as strong or weak foci, respectively
strong or weak saddles. When the trace of the Jacobian matrix evaluated at those
singular points is not zero, we call them strong saddles and strong foci and we
maintain the standard notations ‘s’ and ‘f .’ But when the trace is zero, except for
centers and saddles of infinite order (i.e. saddles with all their Poincaré-Lyapounov
constants equal to zero), it is known that the foci and saddles, in the quadratic case,
may have up to 3 orders. We denote them by ‘s(i)’ and ‘f (i)’ where i = 1, 2, 3 is the
order. In addition we have the centers which we denote by ‘c’ and saddles of infinite
order (integrable saddles) which we denote by ‘$’.

Foci and centers cannot appear as singular points at infinity and hence there is
no need to introduce their order in this case. In the case of saddles, we can have weak
saddles at infinity but the maximum order of weak singularities in cubic systems is
not yet known. For this reason, a complete study of weak saddles at infinity cannot
be done at this stage. Due to this, in this work we shall not even distinguish between
a saddle and a weak saddle at infinity.

All non–elemental singular points are multiple points, in the sense that there
are perturbations which have at least two elemental singular points as close as we
wish to the multiple point. For finite singular points we denote with a subindex
their multiplicity as in ‘s(5)’ or in ‘ês(3)’ (the notation ‘ ’ indicates that the saddle
is semi–elemental and ‘ês(3)’ indicates that the singular point is nilpotent). In order
to describe the various kinds of multiplicity for infinite singular points we use the
concepts and notations introduced in [31]. Thus we denote by ‘

(
a
b

)
...’ the maximum

number a (respectively b) of finite (respectively infinite) singularities which can be

obtained by perturbation of the multiple point. For example ‘
(1
1

)
SN ’ means a saddle–

node at infinity produced by the collision of one finite singularity with an infinite

one; ‘
(0
3

)
S’ means a saddle produced by the collision of 3 infinite singularities.

Semi–elemental points: They can either be nodes, saddles or saddle–nodes,
finite or infinite. We will denote the semi–elemental ones always with an overline, for
example ‘sn’, ‘s’ and ‘n’ with the corresponding multiplicity. In the case of infinite
points we will put ‘ ’ on top of the parenthesis with multiplicities.

Moreover, in cases that will be explained later (see page 94), an infinite saddle–

node may be denoted by ‘
(1
1

)
NS’ instead of ‘

(1
1

)
SN ’. Semi–elemental nodes could

never be ‘nd’ or ‘n∗’ since their eigenvalues are always different. In the case of an
infinite semi–elemental node, the type of collision determines whether the point is

denoted by ‘Nf ’ or by ‘N∞’ where ‘
(2
1

)
N ’ is an ‘Nf ’ and ‘

(0
3

)
N ’ is an ‘N∞’.

Nilpotent points: They can either be saddles, nodes, saddle–nodes, elliptic–
saddles, cusps, foci or centers. The first four of these could be at infinity. We denote
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the nilpotent singular points with a hat ‘̂’ as in ês(3) for a finite nilpotent elliptic–
saddle of multiplicity 3 and ĉp(2) for a finite nilpotent cusp point of multiplicity 2. In
the case of nilpotent infinite points, we will put the ‘̂’ on top of the parenthesis with

multiplicity, for example
(̂1
2

)
PEP −H (the meaning of PEP −H will be explained

in the next paragraph). The relative position of the sectors of an infinite nilpotent
point, with respect to the line at infinity, can produce topologically different phase
portraits. This forces to use a notation for these points similar to the notation which
we will use for the intricate points.

Intricate points: It is known that the neighborhood of any singular point of
a polynomial vector field (except for foci and centers) is formed by a finite number
of sectors which could only be of three types: parabolic, hyperbolic and elliptic
(see [17]). Then, a reasonable way to describe intricate and nilpotent points is to
use a sequence formed by the types of their sectors. The description we give is the
one which appears in the clockwise direction (starting anywhere) once the blow–
down of the desingularization is done. Thus in non-degenerate quadratic systems,
we have just seven possibilities for finite intricate singular points of multiplicity four
(see [4]) which are the following ones:

• a) phpphp(4);

• b) phph(4);

• c) hh(4);

• d) hhhhhh(4) ;

• e) peppep(4);

• f) pepe(4);

• g) ee(4).

We use lower case letters because of the finite nature of the singularities and add
the subindex (4) since they are all of multiplicity 4.

For infinite intricate and nilpotent singular points, we insert a dash (hyphen)
between the sectors to split those which appear on one side or the other of the
equator of the sphere. In this way we will distinguish between

(2
2

)
PHP −PHP and(2

2

)
PPH − PPH.
Whenever we have an infinite nilpotent or intricate singular point, we will always

start with a sector bordering the infinity (to avoid using two dashes). When one
needs to describe a configuration of singular points at infinity, then the relative
positions of the points, is relevant in some cases. In [3] this situation only occurs
once for systems having two semi–elemental saddle–nodes at infinity and a third
singular point which is elemental. In this case we need to write NS instead of SN
for one of the semi–elemental points in order to have coherence of the positions of the
parabolic (nodal) sector of one point with respect to the hyperbolic (saddle) of the
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other semi–elemental point. More concretely, Figure 3 from [31] (which corresponds

to Config. 3 in Figure 1) must be described as
(1
1

)
SN,

(1
1

)
SN, N since the elemental

node lies always between the hyperbolic sectors of one saddle–node and the parabolic
ones of the other. However, Figure 4 from [31] (which corresponds to Config. 4 in

Figure 1) must be described as
(1
1

)
SN,

(1
1

)
NS, N since the hyperbolic sectors of

each saddle–node lie between the elemental node and the parabolic sectors of the
other saddle–node. These two configurations have exactly the same description of
singular points but their relative position produces geometrically (and topologically)
different portraits.

For the description of the topological phase portraits around the isolated singular
points the information described above is sufficient. However we are interested
in additional geometrical features such as the number of characteristic directions
which figure in the final global picture of the desingularization. In order to add this
information we need to introduce more notation. If two borsecs (the limiting orbits
of a sector) arrive at the singular point with the same slope and direction, then the
sector will be denoted byHf, Ef or Pf. The index in this notation refers to the cusp–
like form of limiting trajectories of the sectors. Moreover, in the case of parabolic
sectors we want to make precise whether the orbits arrive tangent to one borsec or

to the other. We distinguish the two cases by
x

P if they arrive tangent to the borsec

limiting the previous sector in clockwise sense or
y

P if they arrive tangent to the
borsec limiting the next sector. Clearly, a parabolic sector denoted by P ∗ would
correspond to a sector in which orbits arrive with all possible slopes between the
those of the borsecs. In the case of a cusp–like parabolic sector, all orbits must arrive

with only one slope, but the distinction between
x

P and
y

P is still valid if we consider
the different desingularizations we obtain from them. Thus, complicated intricate

singular points like the two we see in Figure 5 may be described as
(4
2

) y

PE
x

P−HHH

(case (a)) and
(4
3

)
E

x

PfH−H
y

PfE (case (b)), respectively.
The lack of finite singular points will be encapsulated in the notation ∅. In the

cases we need to point out the lack of an infinite singular point, we will use the
symbol ∅.

Finally there is also the possibility that we have an infinite number of finite or of
infinite singular points. In the first case, this means that the polynomials defining
the differential system are not coprime. Their common factor may produce a line
or conic with real coefficients filled up with singular points.

Line at infinity filled up with singularities: It is known that any such sys-
tem has in a sufficiently small neighborhood of infinity one of 6 topologically distinct
phase portraits (see [34]). The way to determine these portraits is by studying the
reduced systems on the infinite local charts after removing the degeneracy of the
systems within these charts. In case a singular point still remains on the line at
infinity we study such a point. In [34] the tangential behavior of the solution curves
was not considered in the case of a node. If after the removal of the degeneracy in
the local charts at infinity a node remains, this could either be of the type Nd, N
and N⋆ (this last case does not occur in quadratic systems as it was shown in [3]).
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Since no eigenvector of such a node N (for quadratic systems) will have the direction
of the line at infinity we do not need to distinguish Nf and N∞. Other types of
singular points at infinity of quadratic systems, after removal of the degeneracy, can
be saddles, centers, semi–elemental saddle–nodes or nilpotent elliptic–saddles. We
also have the possibility of no singularities after the removal of the degeneracy. To
convey the way these singularities were obtained as well as their nature, we use the

notation [∞; ∅], [∞; N ], [∞; Nd], [∞; S], [∞; C], [∞;
(1
0

)
SN ] or [∞;

(̂3
0

)
ES].

Degenerate systems: We will denote with the symbol ⊖ the case when the
polynomials defining the system have a common factor. This symbol stands for the
most generic of these cases which corresponds to a real line filled up with singular
points. The degeneracy can also be produced by a common quadratic factor which
defines a conic. It is well known that by an affine transformation any conic over
R can be brought to one of the following forms: x2 + y2 − 1 = 0 (real ellipse),
x2 + y2 + 1 = 0 (complex ellipse), x2 − y2 = 1 (hyperbola), y − x2 = 0 (parabola),
x2−y2 = 0 (pair of intersecting real lines), x2 +y2 = 0 (pair of intersecting complex
lines), x2 − 1 = 0 (pair of parallel real lines), x2 + 1 = 0 (pair of parallel complex
lines), x2 = 0 (double line).

We will indicate each case by the following symbols:

•⊖[|] for a real straight line;

•⊖[◦] for a real ellipse;

•⊖[ c©] for a complex ellipse;

•⊖[ )( ] for an hyperbola;

•⊖[∪] for a parabola;

•⊖[×] for two real straight lines intersecting at a finite point;

•⊖[· ] for two complex straight lines which intersect at a real finite point.

•⊖[‖] for two real parallel lines;

•⊖[‖c] for two complex parallel lines;

•⊖[|2] for a double real straight line.

Moreover, we also want to determine whether after removing the common factor
of the polynomials, singular points remain on the curve defined by this common
factor. If the reduced system has no finite singularity on this curve, we will use
the symbol ∅ to describe this situation. If some singular points remain we will use
the corresponding notation of their types. As an example we complete the notation
above as follows:

•
(
⊖ [|];∅

)
denotes the presence of a real straight line filled up with singular

points such that the reduced system has no singularity on this line;
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•
(
⊖ [|]; f

)
denotes the presence of the same straight line such that the reduced

system has a strong focus on this line;

•
(
⊖ [∪];∅

)
denotes the presence of a parabola filled up with singularities such

that no singular point of the reduced system is situated on this parabola.

Degenerate systems with non–isolated singular points at infinity,
which are however isolated on the line at infinity: The existence of a common
factor of the polynomials defining the differential system also affects the infinite sin-
gular points. We point out that the projective completion of a real affine line filled
up with singular points has a point on the line at infinity which will then be also a
non–isolated singularity.

In order to describe correctly the singularities at infinity, we must mention also
this kind of phenomena and describe what happens to such points at infinity after
the removal of the common factor. To show the existence of the common factor we
will use the same symbol ⊖ as before, and for the type of degeneracy we use the
symbols introduced above. We will use the symbol ∅ to denote the non–existence
of real infinite singular points after the removal of the degeneracy. We will use
the corresponding capital letters to describe the singularities which remain there.
We take note that a simple straight line, two parallel lines (real or complex), one
double line or one parabola defined by the common factor (all taken over the reals)
imply the existence of one real non–isolated singular point at infinity in the original
degenerate system. However a hyperbola and two real straight lines intersecting at a
finite point imply the presence of two real non–isolated singular points at infinity in
the original degenerate system. Finally, a complex ellipse and two complex straight
lines which intersect at a real finite point imply the presence of two complex non–
isolated singular points at infinity in the original degenerate system. Thus, in the
reduced system these points may disappear as singularities and in case they remain,
they must be described. For the first four cases mentioned above we will give the
description of the corresponding infinite point. In the next four cases we will give
the description of the corresponding two singular points. According to our notation,
we will use capital letters to denote them since they are on the line at infinity. We
give below some examples:

• Nf , S,
(
⊖ [|]; ∅

)
means that the system has a node at infinity such that an

infinite number of orbits arrive tangent to the eigenvector in the affine part,
a saddle, and one non–isolated singular point which belongs to a real affine
straight line filled up with singularities, and that the reduced linear system
has no infinite singular points in that position;

• S,
(
⊖ [|];N∗

)
means that the system has a saddle at infinity, and one non–

isolated singular point which belongs to a real affine straight line filled up
with singularities, and that the reduced linear system has a star node in that
position;
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• S,
(
⊖ [ )( ]; ∅, ∅

)
means that the system has a saddle at infinity, and two non–

isolated singular points which belong to a hyperbola filled up with singularities,
and that the reduced constant system has no singularities in those positions;

•
(
⊖ [×];N∗, ∅

)
means that the system has two non–isolated singular points

at infinity which belong to two real intersecting straight lines filled up with
singularities, and that the reduced constant system has a star node in one of
those positions and no singularities in the other;

• S,
(
⊖ [◦]; ∅, ∅

)
means that the system has a saddle at infinity, and two non–

isolated (complex) singular points which are located on the complexification
of a real ellipse which has no real points at infinity, and the reduced constant
system has no singularities in those positions.

When there is a non–isolated infinite singular point such that the reduced system
has a singularity at that position, it may happen that one or several characteristic
directions at this point, directed towards the affine plane, could coincide with a
tangent line to the curve of singularities at this point. This situation could produce
many different geometrical (or even topological) combinations but in the quadratic
case we only have a few of them for which we introduce a coherent notation. This
notation can be further developed for higher degree systems. In quadratic systems
we only need to distinguish among some situations in which, after the removal of
the degeneracy, a characteristic direction of the infinite singular point may coincide
or may not coincide with a tangent line to the curve of singularities at this point.
We show in Figure 6 two cases that need to be distinguished (case (a) and (b)).
Here we will use a numerical subscript which denotes the cardinal number K of the
union of the set of characteristic directions, together with the set of tangent lines to
the curve of singularities at this point, all of them considered in a neighborhood of
the point at infinity on the Poincaré sphere. The singularities at infinity of examples
(a) and (b) of Figure 6 would then be denoted by S,

(
⊖ [|];N∞

3

)
(case (a)) and

S,
(
⊖ [|];N∞

2

)
(case (b)).

Figure 6.

Degenerate systems with the line at infinity filled up with singularities:
For a quadratic system this implies that the polynomials must have a common linear
factor and there are only two possible phase portraits, which can be seen in Figure
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6 (the portraits (c) and (d)). In order to be consistent with our notation and
considering generalization to higher degree systems, we describe the two cases in a
way coherent with what we have done up to now.

The case (c) is denoted by [∞;
(

⊖ [|]; ∅3

)
] which means:

• the line at infinity is filled up with singular points;

• the reduced quadratic system has on one of the infinite local charts a non–
isolated singular point on the line at infinity due to the affine line of degeneracy;

• once the original system at infinity is reduced to a linear one by removing the
common factor, the infinity continues to be filled up with singular points;

• once the system on a local chart around the singularity which is common to
both lines filled up with singular points, is reduced by completely removing
the degeneracy, there is no singular point on that intersection;

• the cardinal number K is 3. This means that apart from the line of singulari-
ties and the line at infinity, we have another characteristic direction pointing
towards the affine plane.

The second case is denoted by [∞;
(

⊖ [|]; ∅2

)
], which means exactly the same

items as above with the exception that cardinal number K is 2. That is, beyond the
line of singularities and the line at infinity, we have no other characteristic direction.

6 Assembling multiplicities for global configurations

of singularities at infinity using divisors

The singular points at infinity belong to compactifications of planar polynomial
differential systems, defined on the affine plane. We begin this section by briefly
recalling these compactifications.

6.1 Compactifications associated to planar polynomial differential

systems

6.1.1 Compactification on the sphere and on the Poincaré disk

Planar polynomial differential systems (1) can be compactified on the sphere.
For this we consider the affine plane of coordinates (x, y) as being the plane Z = 1
in R

3 with the origin located at (0, 0, 1), the x–axis parallel with the X–axis in
R

3, and the y–axis parallel to the Y –axis. We use central projection to project this
plane on the sphere as follows: for each point (x, y, 1) we consider the line joining the
origin with (x, y, 1). This line intersects the sphere in two points P1 = (X,Y,Z) and
P2 = (−X,−Y,−Z) where (X,Y,Z) = (1/

√
x2 + y2 + 1)(x, y, 1). The applications

(x, y) 7→ P1 and (x, y) 7→ P2 are bianalytic and associate to a vector field on the
plane (x, y) an analytic vector field Ψ on the upper hemisphere and also an analytic
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vector field Ψ′ on the lower hemisphere. A theorem stated by Poincaré and proved
in [18] says that there exists an analytic vector field Θ on the whole sphere which
simultaneously extends the vector fields on the two hemispheres. By the Poincaré
compactification on the sphere of a planar polynomial vector field we mean the
restriction Ψ̄ of the vector field Θ to the union of the upper hemisphere with the
equator. For more details we refer to [21]. The vertical projection of Ψ̄ on the plane
Z = 0 gives rise to an analytic vector field Φ on the unit disk of this plane. By
the compactification on the Poincaré disk of a planar polynomial vector field we
understand the vector field Φ. By a singular point at infinity of a planar polynomial
vector field we mean a singular point of the vector field Ψ̄ which is located on the
equator of the sphere, respectively a singular point of the vector field Φ located on
the circumference of the Poincaré disk.

6.1.2 Compactification on the projective plane

To a polynomial system (1) we can associate a differential equation ω1 =
q(x, y)dx − p(x, y)dy = 0. Assuming the differential system (1) is with real coeffi-
cients, we may associate to it a foliation with singularities on the real, respectively
complex, projective plane as indicated below. The equation ω1 = 0 defines a foliation
with singularities on the real or complex plane depending if we consider the equation
as being defined over the real or complex affine plane. It is known that we can com-
pactify these foliations with singularities on the real respectively complex projective
plane. In the study of real planar polynomial vector fields, their associated complex
vector fields and their singularities play an important role. In particular such a
vector field could have complex, non-real singularities, by this meaning singularities
of the associated complex vector field. We briefly recall below how these foliations
with singularities are defined.

The application Υ : K
2 −→ P2(K) defined by (x, y) 7→ [x : y : 1] is an injection

of the plane K
2 over the field K into the projective plane P2(K) whose image is the

set of [X : Y : Z] with Z 6= 0. If K is R or C this application is an analytic injection.
If Z 6= 0 then (Υ)−1([X : Y : Z]) = (x, y) where (x, y) = (X/Z, Y/Z). We obtain a
map i : K

3 \ {Z = 0} −→ K
2 defined by [X : Y : Z] 7→ (X/Z, Y/Z).

Considering that dx = d(X/Z) = (ZdX − XdZ)/Z2 and dy = (ZdY −
Y dZ)/Z2, the pull-back of the form ω1 via the map i yields the form i ∗ (ω1) =
q(X/Z, Y/Z)(ZdX −XdZ)/Z2 − p(X/Z, Y/Z)(ZdY − Y dZ)/Z2 which has poles on
Z = 0. Then the form ω = Zm+2i ∗ (ω1) on K3 \ {Z = 0}, K being R or C and m
being the degree of systems (1) yields the equation ω = 0:

A(X,Y,Z)dX +B(X,Y,Z)dY + C(X,Y,Z)dZ = 0

on K3 \ {Z = 0} where A, B, C are homogeneous polynomials over K with
A(X,Y,Z) = ZQ(X,Y,Z), Q(X,Y,Z) = Zmq(X/Z, Y/Z), B(X,Y,Z) = ZP (X,Y,Z),
P (X,Y,Z) = Zmp(X/Z, Y/Z) and C(X,Y,Z) = Y P (X,Y,Z) −XQ(X,Y,Z).

The equation AdX + BdY + CdZ = 0 defines a foliation F with singularities
on the projective plane over K with K either R or C. The points at infinity of the
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foliation defined by ω1 = 0 on the affine plane are the points [X : Y : 0] and the line
Z = 0 is called the line at infinity of the foliation with singularities generated by
ω1 = 0.

The singular points of the foliation F are the solutions of the three equations
A = 0, B = 0, C = 0. In view of the definitions of A,B,C it is clear that the
singular points at infinity are the points of intersection of Z = 0 with C = 0.

6.2 Assembling data on infinite singularities in divisors of the line

at infinity

In the previous sections we have seen that there are two types of multiplicities
for a singular point p at infinity: one expresses the maximum number m of infinite
singularities which can split from p, in small perturbations of the system and the
other expresses the maximum number m′ of finite singularities which can split from
p, in small perturbations of the system. In Section 2 we mentioned that we shall
use a column (m,m′)t to indicate this situation.

We are interested in the global picture which includes all singularities at infinity.
Therefore we need to assemble the data for individual singularities in a convenient,
precise way. To do this we use for this situation the notion of cycle on an algebraic
variety as indicated in [24] and which was used in [21] as well as in [31].

We briefly recall here the definition of this notion. Let V be an irreducible
algebraic variety over a field K. A cycle of dimension r or r− cycle on V is a formal
sum

∑
W nWW , where W is a subvariety of V of dimension r which is not contained

in the singular locus of V , nW ∈ Z, and only a finite number of the coefficients nW

are non-zero. The degree deg(J) of a cycle J is defined by
∑

W nW . An (n−1)-cycle
is called a divisor on V . These notions were used for classification purposes of planar
quadratic differential systems in [21,24,31].

To a system (1) we can associate two divisors on the line at infinity Z = 0
of the complex projective plane: DS(P,Q;Z) =

∑
w Iw(P,Q)w and DS(C,Z) =∑

w Iw(C,Z)w where w ∈ {Z = 0} and where by Iw(F,G) we mean the intersection
multiplicity at w of the curves F (X,Y,Z) = 0 and G(X,Y,Z) = 0, with F and G
homogeneous polynomials in X,Y,Z over C. For more details see [21].

Following [31] we assemble the above two divisors on the line at infinity into just
one but with values in the ring Z

2:

DS =
∑

ω∈{Z=0}

(
Iw(P,Q)
Iw(C,Z)

)
w.

This divisor encodes the total number of singularities at infinity of a system (1) as
well as the two kinds of multiplicities which each singularity has. The meaning of
these two kinds of multiplicities are described in the definition of the two divisors
DS(P,Q;Z) and DS(C,Z) on the line at infinity.
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7 Invariant polynomials and preliminary results

Consider real quadratic systems of the form:

dx

dt
= p0 + p1(x, y) + p2(x, y) ≡ P (x, y),

dy

dt
= q0 + q1(x, y) + q2(x, y) ≡ Q(x, y),

(3)

with homogeneous polynomials pi and qi (i = 0, 1, 2) of degree i in x, y:

p0 = a00, p1(x, y) = a10x+ a01y, p2(x, y) = a20x
2 + 2a11xy + a02y

2,

q0 = b00, q1(x, y) = b10x+ b01y, q2(x, y) = b20x
2 + 2b11xy + b02y

2.

Let ã = (a00, a10, a01, a20, a11, a02, b00, b10, b01, b20, b11, b02) be the 12-tuple of the
coefficients of systems (3) and denote R[ã, x, y] = R[a00, . . . , b02, x, y].

7.1 Affine invariant polynomials associated to infinite singularities

It is known that on the set QS of all quadratic differential systems (3) acts
the group Aff (2,R) of the affine transformations on the plane (cf.[31]). For every
subgroup G ⊆ Aff (2,R) we have an induced action of G on QS. We can identify the
set QS of systems (3) with a subset of R

12 via the map QS−→ R
12 which associates

to each system (3) the 12–tuple (a00, . . . , b02) of its coefficients.

For the definitions of a GL–comitant and invariant as well as for the definitions of
a T–comitant and a CT–comitant we refer the reader to the paper [31] (see also [38]).
Here we shall only construct the necessary T–comitants and CT–comitants associ-
ated to configurations of infinite singularities (including multiplicities) of quadratic
systems (3).

Consider the polynomial Φα,β = αP ∗ + βQ∗ ∈ R[ã,X, Y, Z, α, β], where
P ∗ = Z2P (X/Z, Y/Z), Q∗ = Z2Q(X/Z, Y/Z), P, Q ∈ R[ã, x, y] and
max(deg(x,y)P,deg(x,y)Q) = 2. Then

Φα,β =s11(ã, α, β)X2 + 2s12(ã, α, β)XY + s22(ã, α, β)Y 2 + 2s13(ã, α, β)XZ

+ 2s23(ã, α, β)Y Z + s33(ã, α, β)Z2

and we denote
D̃(ã, x, y) =4det ||sij(ã, y,−x)||i,j∈{1,2,3} ,

H̃(ã, x, y) =4det ||sij(ã, y,−x)||i,j∈{1,2} .

We consider the polynomials

Ci(ã, x, y) = ypi(ã, x, y) − xqi(ã, x, y),

Di(ã, x, y) =
∂

∂x
pi(ã, x, y) +

∂

∂y
qi(ã, x, y),

(4)
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in R[ã, x, y] for i = 0, 1, 2 and i = 1, 2 respectively. Using the so–called transvectant
of order k (see [19],[22]) of two polynomials f, g ∈ R[ã, x, y]

(f, g)(k) =

k∑

h=0

(−1)h
(
k

h

)
∂kf

∂xk−h∂yh

∂kg

∂xh∂yk−h
,

we construct the following GL—comitants of the second degree with the coefficients
of the initial system

T1 = (C0, C1)
(1) , T2 = (C0, C2)

(1) , T3 = (C0,D2)
(1) ,

T4 = (C1, C1)
(2) , T5 = (C1, C2)

(1) , T6 = (C1, C2)
(2) ,

T7 = (C1,D2)
(1) , T8 = (C2, C2)

(2) , T9 = (C2,D2)
(1) .

(5)

Using these GL—comitants as well as the polynomials (4) we construct the
additional invariant polynomials (see also [31])

M̃(ã, x, y) =(C2, C2)
(2) ≡ 2Hess

(
C2(ã, x, y)

)
;

η(ã) =(M̃ , M̃)(2)/384 ≡ Discrim
(
C2(ã, x, y)

)
;

K̃(ã, x, y) =Jacob
(
p2(ã, x, y), q2(ã, x, y)

)
;

K1(ã, x, y) =p1(ã, x, y)q2(ã, x, y) − p2(ã, x, y)q1(ã, x, y);

K2(ã, x, y) =4(T2, M̃ − 2K̃)(1)+ 3D1(C1, M̃ − 2K̃)(1)−

− (M̃ − 2K̃)
(
16T3 − 3T4/2 + 3D2

1

)
;

K3(ã, x, y) =C2
2 (4T3 + 3T4) + C2(3C0K̃ − 2C1T7) + 2K1(3K1 − C1D2);

L̃(ã, x, y) =4K̃ + 8H̃ − M̃ ;

L1(ã, x, y) =(C2, D̃)(2);

R̃(ã, x, y) =L̃+ 8K̃;

κ(ã) =(M̃ , K̃)(2)/4;

κ1(ã) =(M̃ ,C1)
(2);

Ñ(ã, x, y) =K̃(ã, x, y) + H̃(ã, x, y);

θ6(ã, x, y) =C1T8 − 2C2T6.

The geometrical meaning of the invariant polynomials C2, M̃ and η is revealed
in the next lemma (see [31]).

Lemma 1. The form of the divisor DS(C,Z) for systems (3) is determined by
the corresponding conditions indicated in Table 1, where we write wc

1 + wc
2 + w3 if

two of the points, i.e. wc
1, w

c
2, are complex but not real. Moreover, for each form

of the divisor DS(C,Z) given in Table 1 the quadratic systems (3) can be brought
via a linear transformation to one of the following canonical systems (SI) − (SV )
corresponding to their behavior at infinity.
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Table 1

Case Form of DS(C,Z)
Necessary and

sufficient conditions
on the comitants

1 w1 + w2 + w3 η > 0

2 wc
1 + wc

2 + w3 η < 0

3 2w1 + w2 η = 0, M̃ 6= 0

4 3w M̃ = 0, C2 6= 0

5 DS(C,Z) undefined C2 = 0

{
ẋ = a+ cx+ dy + gx2 + (h− 1)xy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;
(SI)

{
ẋ = a+ cx+ dy + gx2 + (h+ 1)xy,

ẏ = b+ ex+ fy − x2 + gxy + hy2;
(SII)

{
ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;
(SIII)

{
ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy − x2 + gxy + hy2,
(SIV )

{
ẋ = a+ cx+ dy + x2,

ẏ = b+ ex+ fy + xy.
(SV )

7.2 Affine invariant polynomials associated to finite singularities

Consider the differential operator L = x·L2−y·L1 acting on R[a, x, y] constructed
in [9], where

L1 = 2a00
∂

∂a10
+ a10

∂
∂a20

+ 1
2a01

∂
∂a11

+ 2b00
∂

∂b10
+ b10

∂
∂b20

+ 1
2b01

∂
∂b11

,

L2 = 2a00
∂

∂a01
+ a01

∂
∂a02

+ 1
2a10

∂
∂a11

+ 2b00
∂

∂b01
+ b01

∂
∂b02

+ 1
2b10

∂
∂b11

.

Using this operator and the affine invariant µ0 = Res x

(
p2(ã, x, y), q2(ã, x, y)

)
/y4 we

construct the following polynomials

µi(ã, x, y) =
1

i!
L(i)(µ0), i = 1, .., 4,

where L(i)(µ0) = L(L(i−1)(µ0)).
These polynomials are in fact comitants of systems (3) with respect to the group

GL(2,R) (see [9]). Their geometrical meaning is revealed in Lemmas 2 and 3 below.

Lemma 2. ([8]) The total multiplicity of all finite singularities of a quadratic system
(3) equals k if and only if for every i ∈ {0, 1, . . . , k − 1} we have µi(ã, x, y) = 0 in
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R[x, y] and µk(ã, x, y) 6= 0. Moreover a system (3) is degenerate (i.e. gcd(P,Q) 6=
constant) if and only if µi(ã, x, y) = 0 in R[x, y] for every i = 0, 1, 2, 3, 4.

Lemma 3. ([9]) The point M0(0, 0) is a singular point of multiplicity k (1 ≤ k ≤ 4)
for a quadratic system (3) if and only if for every i ∈ {0, 1, . . . , k − 1} we have
µ4−i(ã, x, y) = 0 in R[x, y] and µ4−k(ã, x, y) 6= 0.

We denote

σ(ã, x, y) =
∂P

∂x
+
∂Q

∂y
= σ0(ã) + σ1(ã, x, y) (≡ D1(ã) +D2(ã, x, y))

and observe that the polynomial σ(ã, x, y) is an affine comitant of systems (3). It
is known that if (xi, yi) is a singular point of a system (3) then for the trace of its
respective linear matrix we have ρi = σ(xi, yi).

Applying the differential operators L and (∗, ∗)(k) (i.e. transvectant of index k)
we shall define the following polynomial function which governs the values of the
traces for finite singularities of systems (3).

Definition 3 ([39]). We call trace polynomial T(w) over the ring R[ã] the polynomial
defined as follows:

T(w) =

4∑

i=0

1

(i!)2

(
σi

1,
1

i!
L(i)(µ0)

)(i)

w4−i =

4∑

i=0

Gi(ã)w
4−i, (6)

where the coefficients Gi(ã) =
1

(i!)2
(σi

1, µi)
(i) ∈ R[ã], i = 0, 1, 2, 3, 4

(
G0(ã) ≡ µ0(ã)

)

are GL–invariants.

Using the polynomial T(w) we could construct the following four affine invariants
T4, T3, T2, T1, which are responsible for the weak singularities:

T4−i(ã)=
1

i!

diT

dwi

∣∣∣
w=σ0

∈ R[ã], i = 0, 1, 2, 3
(
T4 ≡ T(σ0)

)
.

The geometric meaning of these invariants is revealed by the next lemma (see
[39]).

Lemma 4. Consider a non-degenerate system (3) and let a ∈ R
12 be its 12-tuple

of coefficients. Denote by ρs the trace of the linear part of this system at a finite
singular point Ms, 1 ≤ s ≤ 4 (real or complex, simple or multiple). Then the
following relations hold, respectively:
(i) For µ0(a) 6= 0 (total multiplicity 4):

T4(a) = G0(a)ρ1ρ2ρ3ρ4,

T3(a) = G0(a)(ρ1ρ2ρ3 + ρ1ρ2ρ4 + ρ1ρ3ρ4 + ρ2ρ3ρ4),

T2(a) = G0(a)(ρ1ρ2 + ρ1ρ3 + ρ1ρ4 + ρ2ρ3 + ρ2ρ4 + ρ3ρ4),

T1(a) = G0(a)(ρ1 + ρ2 + ρ3 + ρ4);

(7)
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(ii) For µ0(a) = 0, µ1(a, x, y) 6= 0 (total multiplicity 3):

T4(a) = G1(a)ρ1ρ2ρ3, T3(a) = G1(a)(ρ1ρ2 + ρ1ρ3 + ρ2ρ3),
T2(a) = G1(a)(ρ1 + ρ2 + ρ3), T1(a) = G1(a);

(8)

(iii) For µ0(a) = µ1(a, x, y) = 0, µ2(a, x, y) 6= 0 (total multiplicity 2):

T4(a) = G2(a)ρ1ρ2, T3(a) = G2(a)(ρ1 + ρ2),
T2(a) = G2(a), T1(a) = 0;

(9)

(iv) For µ0(a) = µ1(a, x, y) = µ2(a, x, y) = 0, µ3(a, x, y) 6= 0 (one singularity):

T4(a) = G3(a)ρ1, T3(a) = G3(a), T2(a) = T1(a) = 0. (10)

In order to be able to calculate the values of the needed invariant polynomials
directly for every canonical system we shall define here a family of T–comitants
(see [31] for detailed definitions) expressed through Ci (i = 0, 1, 2) and Dj (j = 1, 2):

Â =
(
C1, T8 − 2T9 +D2

2

)(2)
/144,

D̂ =
1

36

[
2C0(T8 − 8T9 − 2D2

2) + C1(6T7 − T6 − (C1, T5)
(1) +

+6D1(C1D2 − T5) − 9D2
1C2

]
,

Ê =
[
D1(2T9 − T8) − 3 (C1, T9)

(1) −D2(3T7 +D1D2)
]
/72,

F̂ =
[
6D2

1(D
2
2 − 4T9) + 4D1D2(T6 + 6T7) +48C0 (D2, T9)

(1)− 9D2
2T4+288D1Ê

− 24
(
C2, D̂

)(2)
+120

(
D2, D̂

)(1)
−36C1 (D2, T7)

(1)+8D1 (D2, T5)
(1)

]
/144,

B̂ =
{
16D1 (D2, T8)

(1) (3C1D1 − 2C0D2 + 4T2) + 32C0 (D2, T9)
(1) (3D1D2−

−5T6 + 9T7) + 2 (D2, T9)
(1) (

27C1T4 − 18C1D
2
1 −32D1T2 + 32 (C0, T5)

(1) )

+ 6 (D2, T7)
(1) [8C0(T8 − 12T9) − 12C1(D1D2 + T7) +D1(26C2D1 + 32T5)+

+C2(9T4 + 96T3)] + 6 (D2, T6)
(1) [32C0T9 − C1(12T7 + 52D1D2) −32C2D

2
1

]

+ 48D2 (D2, T1)
(1) (

2D2
2 − T8

)

− 32D1T8 (D2, T2)
(1) + 9D2

2T4 (T6 − 2T7) − 16D1 (C2, T8)
(1) (

D2
1 + 4T3

)

+ 12D1 (C1, T8)
(2) (C1D2 − 2C2D1) + 6D1D2T4

(
T8 − 7D2

2 − 42T9

)

+ 12D1 (C1, T8)
(1) (T7 + 2D1D2) + 96D2

2

[
D1 (C1, T6)

(1) +D2 (C0, T6)
(1)

]

− 16D1D2T3

(
2D2

2 + 3T8

)
− 4D3

1D2

(
D2

2 + 3T8 + 6T9

)
+ 6D2

1D
2
2 (7T6 + 2T7)

−252D1D2T4T9} /(2
833),

K̂ =(T8 + 4T9 + 4D2
2)/72 ≡ K̃/4,

Ĥ =(8T9 − T8 + 2D2
2)/72 ≡ −H̃/4,

M̂ =T8.
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These polynomials in addition to (4) and (5) will serve as bricks in constructing
affine invariant polynomials for systems (3).

The following 42 affine invariants A1, . . . , A42 form the minimal polynomial basis
of affine invariants up to degree 12. This fact was proved in [11] by constructing
A1, . . . , A42 using the above bricks.

A1 = Â, A22 = 1
1152

[
C2, D̂)(1),D2

)(1)
,D2

)(1)
,D2

)(1)
D2

)(1)
,

A2 = (C2, D̂)(3)/12, A23 =
[
F̂ , Ĥ)(1), K̂

)(2)
/8,

A3 =
[
C2,D2)

(1),D2

)(1)
,D2

)(1)
/48, A24 =

[
C2, D̂)(2), K̂

)(1)
, Ĥ

)(2)
/32,

A4 = (Ĥ, Ĥ)(2), A25 =
[
D̂, D̂)(2), Ê

)(2)
/16,

A5 = (Ĥ, K̂)(2)/2, A26 = (B̂, D̂)(3)/36,

A6 = (Ê, Ĥ)(2)/2, A27 =
[
B̂,D2)

(1), Ĥ
)(2)

/24,

A7 =
[
C2, Ê)(2),D2

)(1)
/8, A28 =

[
C2, K̂)(2), D̂

)(1)
, Ê

)(2)
/16,

A8 =
[
D̂, Ĥ)(2),D2

)(1)
/8, A29 =

[
D̂, F̂ )(1), D̂

)(3)
/96,

A9 =
[
D̂,D2)

(1),D2

)(1)
,D2

)(1)
/48, A30 =

[
C2, D̂)(2), D̂

)(1)
, D̂

)(3)
/288,

A10 =
[
D̂, K̂)(2),D2

)(1)
/8, A31 =

[
D̂, D̂)(2), K̂

)(1)
, Ĥ

)(2)
/64,

A11 = (F̂ , K̂)(2)/4, A32 =
[
D̂, D̂)(2),D2

)(1)
, Ĥ

)(1)
,D2

)(1)
/64,

A12 = (F̂ , Ĥ)(2)/4, A33 =
[
D̂,D2)

(1), F̂
)(1)

,D2

)(1)
,D2

)(1)
/128,

A13 =
[
C2, Ĥ)(1), Ĥ

)(2)
,D2

)(1)
/24, A34 =

[
D̂, D̂)(2),D2

)(1)
, K̂

)(1)
,D2

)(1)
/64,

A14 = (B̂, C2)
(3)/36, A35 =

[
D̂, D̂)(2), Ê

)(1)
,D2

)(1)
,D2

)(1)
/128,

A15 = (Ê, F̂ )(2)/4, A36 =
[
D̂, Ê)(2), D̂

)(1)
, Ĥ

)(2)
/16,

A16 =
[
Ê,D2)

(1), C2

)(1)
, K̂

)(2)
/16, A37 =

[
D̂, D̂)(2), D̂

)(1)
, D̂

)(3)
/576,

A17 =
[
D̂, D̂)(2),D2

)(1)
,D2

)(1)
/64, A38 =

[
C2, D̂)(2), D̂

)(2)
, D̂

)(1)
, Ĥ

)(2)
/64,

A18 =
[
D̂, F̂ )(2),D2

)(1)
/16, A39 =

[
D̂, D̂)(2), F̂

)(1)
, Ĥ

)(2)
/64,

A19 =
[
D̂, D̂)(2), Ĥ

)(2)
/16, A40 =

[
D̂, D̂)(2), F̂

)(1)
, K̂

)(2)
/64,

A20 =
[
C2, D̂)(2), F̂

)(2)
/16, A41 =

[
C2, D̂)(2), D̂

)(2)
, F̂

)(1)
,D2

)(1)
/64,

A21 =
[
D̂, D̂)(2), K̂

)(2)
/16, A42 =

[
D̂, F̂ )(2), F̂

)(1)
,D2

)(1)
/16.

In the above list, the bracket “[” is used in order to avoid placing the otherwise
necessary up to five parenthesizes “(”.

Using the elements of the minimal polynomial basis given above we construct
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the affine invariants

F1(ã) =A2,

F2(ã) = − 2A2
1A3 + 2A5(5A8 + 3A9) +A3(A8 − 3A10 + 3A11 +A12)−

−A4(10A8 − 3A9 + 5A10 + 5A11 + 5A12),

F3(ã) = − 10A2
1A3 + 2A5(A8 −A9) −A4(2A8 +A9 +A10 +A11 +A12)+

+A3(5A8 +A10 −A11 + 5A12),

F4(ã) = 20A2
1A2 −A2(7A8 − 4A9 +A10 +A11 + 7A12) +A1(6A14 − 22A15)−

− 4A33 + 4A34,

F(ã) =A7,

B(ã) = − (3A8 + 2A9 +A10 +A11 +A12),

H(ã) = − (A4 + 2A5),

as well as the CT -comitants:

B1(ã) =
{(
T7,D2

)(1)[
12D1T3 + 2D3

1 + 9D1T4 + 36
(
T1,D2

)(1)]

− 2D1

(
T6,D2

)(1)[
D2

1+12T3] +D2
1

[
D1

(
T8, C1

)(2)
+

+ 6
((
T6, C1

)(1)
,D2

)(1)]}
/144,

B2(ã) =
{(
T7,D2

)(1)[
8T3

(
T6,D2

)(1)
−D2

1

(
T8, C1

)(2)
− 4D1

((
T6, C1

)(1)
,D2

)(1)]
+

+
[(
T7,D2

)(1)
]2

(8T3 − 3T4 + 2D2
1)

}
/384,

B3(ã, x, y) = −D2
1(4D

2
2 + T8 + 4T9) + 3D1D2(T6 + 4T7) − 24T3(D

2
2 − T9),

B4(ã, x, y) = D1(T5 + 2D2C1) − 3C2(D
2
1 + 2T3).

We note that the invariant polynomials Ti, Fi, Bi (i=1,2,3,4), and B, F , H and σ are
responsible for weak singularities of the family of quadratic systems (see [39, Main
Theorem]).

Now we need also the invariant polynomials which are responsible for the types
of the finite singularities. These were constructed in [4]. Here we need only the
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following ones (we keep the notations from [4]):

W4(ã) =
[
1512A2

1(A30 − 2A29) − 648A15A26 + 72A1A2(49A25 + 39A26)

+ 6A2
2(23A21 − 1093A19) − 87A4

2 + 4A2
2(61A17 + 52A18 + 11A20)

− 6A37(352A3 + 939A4 − 1578A5) − 36A8(396A29 + 265A30)

+ 72A29(17A12 − 38A9 − 109A11) + 12A30(76A9 − 189A10 − 273A11

− 651A12) − 648A14(23A25 + 5A26) − 24A18(3A20 + 31A17)

+ 36A19(63A20 + 478A21) + 18A21(2A20 + 137A21) − 4A17(158A17

+ 30A20 + 87A21) − 18A19(238A17 + 669A19)
]
/81,

W7(ã) =12A26(A26−2A25)+(2A29 −A30)(A
2
2−20A17−12A18 + 6A19 + 6A21)

+ 48A37(A
2
1 −A8 −A12),

W8(ã) = 64D1

[((
T6, C1

)(1)
,D2

)(1)]2[
16

(
C0, T6

)(1)
− 37

(
D2, T1

)(1)
+ 12D1T3

]

+ 4(108D4
1 − 3T 2

4 − 128T3T4 + 42D2
1T4)

[((
T6, C1

)(1)
,D2

)(1)]2

+ 36D1

((
T6, C1

)(1)
,D2

)(1)[
4D1

(
C0, T6

)(1)
−D2

1(4T3 + T4)

+ 24T 2
3

](
C1, T8

)(2)
+ 64

[((
T6, C1

)(1)
,D2

)(1)]2[
27T 2

3

+ 16
((
T6, C1

)(1)
, C0

)(1)]
− 54

[
8D4

1 +D2
1T4 − 8D1

(
C0, T6

)(1)

+ 8D2
1T3+8T 2

3

]((
T6, C1

)(1)
, T6

)(1)(
C1, T8

)(2)
+108D1T3

[(
C1, T8

)(2)]2
×

×
[
D1T3 − 2

(
C0, T6

)(1)]
+ 576

((
T6, C1

)(1)
,D2

)(1)
×

×
((
T6, C1

)(1)
, T6

)(1)[
2
(
D2, T1

)(1)
− 5D1T3

]

− 27
[(
C1, T8

)(2)]2[
T 4

4 /8 +
(
C0, T1

)(1)]
,

F4(ã, x, y) = µ3(ã, x, y),

F5(ã, x, y) = T5 + 2C1D2 − 3C2D1,

G3(ã) = A2.

Finally we need the invariant polynomials which are responsible for the existence
of one (or two) star node(s) arbitrarily located on the phase plane of a system (3).
We have the following lemma (see [42]):

Lemma 5. A quadratic system (3) possesses one star node if and only if one of the
following sets of conditions hold:

(i) U1 6= 0, U2 6= 0, U3 = Y1 = 0;
(ii) U1 = U4 = U5 = U6 = 0, Y2 6= 0;

and it possesses two star nodes if and only if

(iii) U1 = U4 = U5 = 0, U6 6= 0, Y2 > 0,
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where
U1 = Ñ , U2 = (C1, H̃ − K̃)(1) − 2D1Ñ ,

U3 = 3D̃(D2
2 − 16K̃) + C2

[
(C2, D̃)(2) − 5(D2, D̃)(1) + 6 F̃

]
,

U4 = 2T5 + C1D2, U5 = 3C1D1 + 4T2 − 2C0D1,

U6 = H̃, Y1 = A1, Y2 = 2D2
1 + 8T3 − T4.

We base our work here on results obtained in [3] and [4].

8 The proof of the Main Theorem

8.1 The family of systems without finite singularities

The total multiplicity mf of finite singularities of every system in this family
is zero. In [3] we gave the full global geometric classification of the whole class
of quadratic systems according to their singularities at infinity. Since only infinite
singularities occur in this family (mf = 0), we can extract from [3] the classification
of the configurations of singularities of this family. In fact from [3] we obtain more.
Indeed, we extract from [3] the part of the global bifurcation diagram of configu-
rations of singularities at infinity of QS, the fragment covering the case we need
here, i.e. mf = 0. We obtain the bifurcation diagram (see Diagram 1) of config-
urations of singularities of this class, done in the 12-parameter space of coefficients
and obtained with the help of invariant polynomials. The proof for this diagram is
completely covered in [3] and thus there is no need for a proof here. We shall only
give here examples, one for each kind of distinct geometric configurations occurring
in this family.

1) Systems with η < 0;

•
(4
1

)
N, c©, c© : Example ⇒ (ẋ = 1 + xy; ẏ = −x2);

• N∗,
(2
1

)
c©,

(2
1

)
c© : Example ⇒ (ẋ = 1; ẏ = −x2 − y2).

2) Systems with η > 0;

•
(4
1

)
N, S, N∞ : Example ⇒ (ẋ = −1 + xy; ẏ = 1 − xy + 2y2);

•
(4
1

)
S, Nf , Nf : Example ⇒ (ẋ = 1 − xy; ẏ = 2 − 2xy + y2);

•
(
3
1

)
SN,

(
1
1

)
SN, Nd : Example ⇒ (ẋ = 1 + x− xy; ẏ = 1 − xy);

•
(3
1

)
SN,

(1
1

)
NS, Nd : Example ⇒ (ẋ = 1 − x+ xy; ẏ = 1 + xy);

•
(2
1

)
S,

(2
1

)
N, N∗ : Example ⇒ (ẋ = 1 − xy; ẏ = −xy).

3) Systems with η = 0, M̃ 6= 0;

•
(
0
2

)
SN,

(
4
1

)
N : Example ⇒ (ẋ = 1 + xy; ẏ = −1 − xy + y2);

•
(4
2

) y

P Hf

x

P −
y

P Hf

x

P , Nf : Example ⇒ (ẋ = x2/4; ẏ = 1 − 3xy/4);

•
(4
2

) y

P
x

PfH−H
y

Pf

x

P , Nf : Example ⇒ (ẋ = 2x2/3; ẏ = 1 − xy/3);
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•
(4
2

) y

P H−H
x

P , Nf : Example ⇒ (ẋ = x2/2; ẏ = 1 − xy/2);

•
(4
2

) x

P
y

PfE−E
x

Pf

y

P , S : Example ⇒ (ẋ = −x2; ẏ = 1 − 2xy);

•
(4
2

) y

P
x

PfH−H
y

Pf

x

P , N∞ : Example ⇒ (ẋ = 2x2; ẏ = 1 + xy);

•
(̂
4
2

) y

Pf

x

P Hf−H, N∗ : Example ⇒ (ẋ = y + x2; ẏ = 1);

•
(4
2

)
H−H, Nd : Example ⇒ (ẋ = 1 + x2; ẏ = x);

•
(4
2

)
H−H, N∗ : Example ⇒ (ẋ = 1 + x2; ẏ = 1);

•
(4
2

) y

PE
x

P −HHH, Nd : Example ⇒ (ẋ = −2 + x2; ẏ = 1 + x);

•
(4
2

) y

P
x

PH−H
y

P
x

P , Nd : Example ⇒ (ẋ = −1 + x2; ẏ = 2 + x);

•
(4
2

) y

P
x

PH−H
y

P
x

P , N∗ : Example ⇒ (ẋ = −1 + x2; ẏ = 1);

•
(4
2

) y

P
x

PfH−H
y

Pf

x

P , Nd : Example ⇒ (ẋ = x2; ẏ = 1 + x);

•
(4
2

) y

P
x

PfH−H
y

Pf

x

P , N∗ : Example ⇒ (ẋ = x2; ẏ = 1);

•
(̂
1
2

) y

PfE
x

Pf−H,
(
3
1

)
SN : Example ⇒ (ẋ = y; ẏ = 1 − xy);

•
(
3
2

)
E

x

P −
x

P H,
(
1
1

)
SN : Example ⇒ (ẋ = x; ẏ = 1 − xy);

•
(2
2

)
E−E,

(2
1

)
S : Example ⇒ (ẋ = −1; ẏ = 1 − xy);

•
(
2
2

)
H−H,

(
2
1

)
N : Example ⇒ (ẋ = 1. ẏ = 1 − xy);

4) Systems with η = M̃ = 0;

•
(4
3

)
E

x

PfH−H
y

PfE : Example ⇒ (ẋ = x2; ẏ = 1 − x2 + xy);

•
(4
3

) x

P
y

Pf

x

P −
y

P
x

Pf

y

P : Example ⇒ (ẋ = x2; ẏ = −1 − x2 + xy);

•
(4
3

) y

PfEE
x

Pf−HH : Example ⇒ (ẋ = x; ẏ = 1 − x2);

•
(4
3

) y

Pf

x

P
y

P
x

Pf−
y

P
x

P : Example ⇒ (ẋ = 1 + x; ẏ = −x2);

•
(
4
3

) y

PfEHf−
y

P : Example ⇒ (ẋ = 1; ẏ = y − x2);

•
(
4
3

) y

Pf

x

P −
y

P
x

Pf : Example ⇒ (ẋ = 1; ẏ = −x2);

•
[
∞;

(̂3
0

)
ES

]
: Example ⇒ (ẋ = x2; ẏ = 1 + xy).

8.2 The family of quadratic differential systems with only one finite

singularity which in addition is elemental

In this subsection we consider all quadratic vector fields with total multiplicity
mf of finite singularities equal to 1. Since we have only one finite singular point,
this point is of course real. To obtain the full global classification of configurations
of singularities with respect to the geometric equivalence relation for this family,
we need to: i) deepen the topological classification of all configurations of finite
singularities done in [2] by using the finer geometric equivalence relation; ii) to
integrate this with the geometric classification of infinite singularities done in [3]
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and iii) to search for a minimal set of invariants which allow to obtain for this
family the bifurcation diagram with respect to the geometric equivalence relation
of configurations of singularities, finite and infinite, in the 12-dimensional space of
parameters.

According to [39] in this case the conditions µ0 = µ1 = µ2 = 0 and µ3 6= 0 must
be satisfied and according to [3] the following lemma is valid.

Lemma 6. The configurations of singularities at infinity of the family of quadratic
systems possessing one elemental (real) finite singularity (i.e. µ0 = µ1 = µ2 = 0 and
µ3 6= 0) are classified in Diagram 3 according to the geometric equivalence rela-
tion. Necessary and sufficient conditions for each one of the 22 different equivalence
classes can be assembled from this diagram in terms of 14 invariant polynomials with
respect to the action of the affine group and time rescaling, given in Section 7.

According to [39] the family of quadratic systems with one elemental finite sin-
gularity could be brought via an affine transformation to one of the two canonical
forms in [39], governed by invariant polynomial K̃ 6= 0. In what follows we consider
two cases: K̃ 6= 0 and K̃ = 0.

8.2.1 Systems with K̃ 6= 0

In this case by [39] via an affine transformation quadratic systems in this family
could be brought to the systems

ẋ = cx+ dy + (2c + d)x2 + 2dxy,

ẏ = ex+ fy + (2e + f)x2 + 2fxy,
(11)

possessing the singular points M1(0, 0). For these systems calculations yield

µ0 = µ1 = µ2 = 0, µ3 = (cf − de)2x3, κ = 256d2(de− cf). (12)

We remark that for the systems above we have µ3 6= 0 and therefore in what follows
we assume that the condition cf − de 6= 0 holds (i.e. the singular point M1(0, 0) is
elemental).

8.2.1.1 The case κ 6= 0. Then d 6= 0 and due to a time rescaling we may
assume d = 1. So we consider the 3-parameter family of systems:

ẋ = cx+ y + (2c + 1)x2 + 2xy,

ẏ = ex+ fy + (2e+ f)x2 + 2fxy, cf − e 6= 0,
(13)

for which calculations yield

µ0 = µ1 = µ2 = 0, µ3 = (cf − e)2x3, K̃ = 8(cf − e)x2,

η = 4
[
(2c+ 1 + 2f)2 + 16(e − cf)

]
, κ = 256(e − cf),

T4 = −8(c+ f)(cf − e)2, T3 = −8(cf − e)2, F1 = 6(e− cf),

W4 = 64(cf − e)4
[
(c− f)2 + 4e

]
= 64(cf − e)4

[
(c+ f)2 + 4(e− cf)

]
,

M̃ = −8
[
(1 + 2c− 2f)2 + 6(2e+ f)

]
x2 − 16(1 + 2c− 2f)xy − 32y2.

(14)
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Diagram 3. The case µ0 = µ1 = µ2 = 0, µ3 6= 0
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Considering (14) we make the remark:

Remark 1. Assume that the condition κ 6= 0 holds. Then

(i) T3F1 6= 0 and sign (K̃) = −sign (κ);

(ii) the condition κ > 0 implies η > 0 and W4 > 0;

(iii) in the case T4 = 0 we have W4 6= 0 and sign (W4) = sign (κ).

The first two statements follow obviously from (14). In the case T4 = 0 we get
f = −c and then κ = 256(c2 + e), W4 = 256(c2 + e)5 and this proves the last
assertion.

8.2.1.1.1 The subcase κ < 0. Then by Remark 1 we obtain K̃ > 0.

1) The possibility W4 < 0. In this case considering the condition K̃ > 0, accord-
ing to [4] (see Table 1, line 184) the finite singularity is a focus.

a) Assume first T4 6= 0. Then by [39] the focus is strong. As κ < 0 according to
Lemma 6 we get the following three global configurations of singularities:

• f ;
(
3
1

)
SN, c©, c© : Example ⇒ (c = 0, e = −1, f = 1) (if η < 0);

• f ;
(3
1

)
SN,S,N∞: Example ⇒ (c = 0, e = −1, f = 7/4) (if η > 0);

• f ;
(0
2

)
SN,

(3
1

)
SN : Example ⇒ (c = 0, e = −1, f = 3/2) (if η = 0).

b) Suppose now T4 = 0. Then f = −c and since by Remark 1 we have T3F1 6=
0, then by [39] the finite singularity is a first order weak focus. Considering the
types of the infinite singularities mentioned above we obtain the following three
configurations

• f (1);
(3
1

)
SN, c©, c© : Example ⇒ (c = 0, e = −1, f = 0) (if η < 0);

• f (1);
(3
1

)
SN,S,N∞: Example ⇒ (c = 0, e = −1/18, f = 0) (if η > 0);

• f (1);
(
0
2

)
SN,

(
3
1

)
SN : Example ⇒ (c = 0, e = −1/16, f = 0) (if η = 0).

2)The possibility W4 > 0. Since K̃ > 0, according to [4] systems (13) possess
a node which is generic (due to W4 6= 0). So considering Lemma 6 we have the
configurations

• n;
(3
1

)
SN, c©, c© : Example ⇒ (c = 0, e = −1, f = −9/4) (if η < 0);

• n;
(
3
1

)
SN,S,N∞: Example ⇒ (c = 0, e = −1, f = −3) (if η > 0);

• n;
(0
2

)
SN,

(3
1

)
SN : Example ⇒ (c = 0, e = −1, f = −5/2) (if η = 0).

3)The possibility W4 = 0. Then the singular point M1(0, 0) of systems (13)
is a node with coinciding eigenvalues which could not be a star node (due to the
respective linear matrix). Considering the types of the infinite singularities given by
Lemma 6 we get the next three configurations

• nd;
(
3
1

)
SN, c©, c© : Example ⇒ (c = 0, e = −1/4, f = −1) (if η < 0);

• nd;
(3
1

)
SN,S,N∞: Example ⇒ (c = 0, e = −1/4, f = 1) (if η > 0);

• nd;
(0
2

)
SN,

(3
1

)
SN : Example ⇒ (c = 0, e = −1/64, f = −1/4) (if η = 0).
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8.2.1.1.2 The subcase κ > 0. According to Remark 1 we obtain K̃ < 0
and according to [4] (see Table 1, line 178) the finite singularity is a saddle. By
Remark 1, in this case we have η > 0 and considering Lemma 6 we have the unique

configuration of infinite singularities
(3
1

)
SN, Nf , Nf .

1) Assume first T4 6= 0. In this case by [39] the saddle is strong and we arrive
at the configuration

• s;
(3
1

)
SN, Nf , Nf : Example ⇒ (c = 0, e = 1, f = 1).

2) Suppose now T4 = 0. Then f = −c and as by Remark 1, we have T3F1 6= 0.
Considering [39] we deduce that the finite singularity is a weak saddle of the first
order. So we obtain the configuration

• s(1);
(3
1

)
SN, Nf , Nf : Example ⇒ (c = 0, e = 1, f = 0).

8.2.1.2 The case κ = 0. Then by (13) we have d = 0 and considering the
condition µ3 = c2f2x3 6= 0 we obtain cf 6= 0. So doing a time rescaling we may
assume f = 1 and we consider the 2-parameter family of systems:

ẋ = cx+ 2cx2, ẏ = ex+ y + (2e+ 1)x2 + 2xy, c 6= 0, (15)

for which calculations yield

µ0 = µ1 = µ2 = 0, µ3 = c2x3, K̃ = 8cx2, η = κ = 0, M̃ = −32(c− 1)2x2,

C2 = −(1 + 2e)x3 + 2(c− 1)x2y, σ = 1 + c+ 2(1 + 2c)x,

Ti = 0, i = 1, 2, 3, 4, F1 = H = B = B1 = B2 = 0,

B3 = −288c3(1 + c)x2 W4 = 0, L̃ = 32c(c − 1)x2.
(16)

Remark 2. We observe that the corresponding matrix for the singular point M1(0, 0)

is

(
c 0
e 1

)
and hence this singular point is i) a saddle if c < 0; ii) a node with two

direction if c > 0 and c 6= 1; iii) a node with one direction if c = 1 and e 6= 0; iv) a
star node if c = 1 and e = 0.

8.2.1.2.1 The subcase K̃ < 0. Then c < 0 and by the remark above the
finite singularity is a saddle. Considering (16) according to [39] the saddle is weak
if and only if B3 = 0 (see the statement e3[γ] of Main Theorem. Moreover in this
case we have an integrable saddle.

Since c < 0 we have M̃ 6= 0. Then according to Lemma 6 at infinity we get the

unique configuration of singularities given by
(3
2

) y

P E
x

P −
y

P
x

P H, Nf . So we arrive
at the next two global configurations of singularities

• s ;
(3
2

) y

P E
x

P −
y

P
x

P H, Nf : Example ⇒ (c = −2, e = 0) (if B3 6= 0);

• $ ;
(3
2

) y

P E
x

P −
y

P
x

P H, Nf : Example ⇒ (c = −1, e = 0) (if B3 = 0).
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8.2.1.2.2 The subcase K̃ > 0. Then c > 0 and by Remark 2 the finite
singularity is a node. We observe that due to µ3 6= 0 the condition c = 1 is equivalent
to L̃ = 0.

1) The possibility L̃ 6= 0. Then M̃ 6= 0 and by Remark 2 we have a generic
node. On the other hand as K̃ > 0 we obtain sign (L̃) = sign (c− 1) and considering
Lemma 6 we get the following two configurations

• n ;
(
3
2

) x

P H
y

P −
x

P
y

P E, S: Example ⇒ (c = 1/2, e = 0) (if L̃ < 0);

• n ;
(3
2

)
H

y

P
x

P −HHH, N∞: Example ⇒ (c = 2, e = 0) (if L̃ > 0).

2) The possibility L̃ = 0. Then c = 1 and this implies M̃ = 0. By Remark 2
we have a node with coinciding eigenvalues. On the other hand for c = 1 we obtain
C2 = −(1 + 2e)x3, U3 = −24ex5.

a) Assume first C2 6= 0. Then we have a single real infinite singularity of
multiplicity six and according to Lemma 6 the type of this singularity depends on
the sign of the invariant polynomial K3 = 6(1 + 2e)x6, which is nonzero due to
C2 6= 0.

Thus taking into consideration Remark 2 and Lemma 6 we arrive at the next
configurations

• nd ;
(3
3

)
H

y

P E−
x

P HH: Example ⇒ (c = 1, e = −1) (if K3 < 0);

• nd ;
(3
3

)
HH

y

P −
x

P
y

P
x

P : Example ⇒ (c = 1, e = 1) (if K3 > 0, U3 6= 0);

• n∗ ;
(3
3

)
HH

y

P −
x

P
y

P
x

P : Example ⇒ (c = 1, e = 0) (if K3 > 0, U3 = 0).

b) Suppose now C2 = 0. Then e = −1/2 and we get the system

ẋ = x(1 + 2x), ẏ = −x/2 + y + 2xy,

possessing a node nd and the infinite line filled up with singularities. Considering
Lemma 6 we obtain the configuration

• nd ;
[
∞;

(2
0

)
SN

]
: Example ⇒ (c = 1, e = −1/2).

8.2.2 Systems with K̃ = 0

In this case, according to [39] we consider the following family of systems

ẋ = x+ dy,

ẏ = ex+ fy + lx2 + 2mxy − d(dl − 2m)y2,
(17)

possessing the singular points M1(0, 0). For these systems calculations yield

η = 4d2(dl −m)2(dl − 2m)2, L̃ = 8d(2m − dl)(x+ dy)
[
lx− (dl − 2m)y

]
. (18)

We consider two cases: η 6= 0 and η = 0.
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8.2.2.1 The case η 6= 0. Then d(dl − m)(dl − 2m) 6= 0 and we may assume
d = l = 1 and m = 0 due to the transformation

x1 = (dl − 2m)x, y1 = −
(dl − 2m)m

dl −m
x+

d(dl − 2m)2

dl −m
y, t1 =

dl −m

dl − 2m
t.

So we consider the 2-parameter family of systems

ẋ = x+ y, ẏ = ex+ fy + x2 − y2, (19)

for which calculations yield

µ0 = µ1 = µ2 = 0, µ3 = (f − e)(x− y)(x+ y)2, K̃ = κ = 0,

η = 4, K1 = (x− y)(x+ y)2, F4F5 = 6(f − e)(x− y)2(x+ y)4,

G3 = 2(e − f), W4 = 64(e − f)2
[
(f − 1)2 + 4e

]
,

T4 = 8(f − e)(1 + f), T3 = 8(f − e), F1 = 2(e− f).

(20)

Remark 3. In the case η 6= 0 the condition µ3 6= 0 implies T3F1F4F5G3 6= 0 and
sign (µ3K1) = sign (F4F5).

8.2.2.1.1 The subcase µ3K1 < 0. By Remark 3 we have F4F5 < 0 and
according to [4] (see Table 1, line 179) the finite singularity is a saddle. Clearly this
saddle is weak if and only if f = −1 and this is equivalent to T4 = 0. On the other
hand by Remark 3 we have T3F1 6= 0 and according to [39] the weak saddle could
be only of the first order. So considering Lemma 6 we get the following two global
configurations of singularities

• s ;
(2
1

)
N,

(1
1

)
SN, Nd: Example ⇒ (e = 2, f = 1) (if T4 6= 0);

• s(1) ;
(
2
1

)
N,

(
1
1

)
SN, Nd: Example ⇒ (e = 2, f = −1) (if T4 = 0).

8.2.2.1.2 The subcase µ3K1 > 0. In this case we have F4F5 > 0 and as
G3 6= 0 by [4] we have a focus or a center if W4 < 0 and a node if W4 ≥ 0.

1) The possibility W4 < 0. Then we have a focus which is strong if T4 6= 0 and
it is weak of the first order if T4 = 0 (due to [39] and T3F1 6= 0, see Remark 3).
Considering Lemma 6 we arrive at the next two configurations

• f ;
(
2
1

)
S,

(
1
1

)
SN, Nd: Example ⇒ (e = −2, f = 1) (if T4 6= 0);

• f (1) ;
(2
1

)
S,

(1
1

)
SN, Nd: Example ⇒ (e = −2, f = −1) (if T4 = 0).

2) The possibility W4 > 0. In this case we have a generic node (as W4 6= 0) and
hence we get

• n ;
(2
1

)
S,

(1
1

)
SN, Nd: Example ⇒ (e = 0, f = 2).

3) The possibility W4 = 0. Then we have a node with coinciding eigenvalues
and due to the linearization matrix at the singularity M1(0, 0) this is a one-direction
node, and we have the configuration

• nd ;
(2
1

)
S,

(1
1

)
SN, Nd: Example ⇒ (e = −1/4, f = 0).
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8.2.2.2 The case η = 0. Then d(dl − m)(dl − 2m) 6= 0 and we consider two
subcases: L̃ 6= 0 and L̃ = 0.

8.2.2.2.1 The subcase L̃ 6= 0. Considering (18) we obtain d(dl − 2m) 6= 0
and then the condition η = 0 gives m = dl. In this case we have L̃ = 8d2l2(x+dy)2 6=
0 and then via the rescaling (x, y) 7→

(
x/(dl), y/(d2l)

)
we obtain the following 2-

parameter family of systems:

ẋ = x+ y, ẏ = ex+ fy + (x+ y)2. (21)

For these systems calculations yield

µ0 = µ1 = µ2 = η = 0, µ3 = (f − e)(x+ y)3, L̃ = 8(x+ y)2 = −M̃,

K̃ = Ñ = κ = 0, K1 = (x+ y)3, F4F5 = 6(f − e)(x+ y)6,

G3 = 0, W8 = 21433(e− f)4
[
(f − 1)2 + 4e

]
, Ti = 0, i = 1, 2, 3, 4,

σ = 1 + f + 2x+ 2y, F1 = H = 0, B1 = 4(e− f)2(1 + f), B2 = 4(e− f)3

(22)

and we again have sign (µ3K1) = sign (F4F5).

1) The possibility µ3K1 < 0. Then we have F4F5 < 0 and according to [4] (see
Table 1, line 179) the finite singularity is a saddle. Clearly this saddle is weak if
and only if f = −1 and this is equivalent to B1 = 0. On the other hand considering
(22) we obtain B2 > 0 and according to [39] the weak saddle is an integrable one.
So considering Lemma 6 we get the following two configurations

• s ;
(̂
3
2

) y

PfE
x

Pf−H, Nd: Example ⇒ (e = 2, f = 1) (if B1 6= 0);

• $ ;
(̂
3
2

) y

PfE
x

Pf−H, Nd: Example ⇒ (e = 2, f = −1) (if B1 = 0).

2) The possibility µ3K1 > 0 In this case we have F4F5 > 0 and as G3 = Ñ = 0
by [4] we have a focus or a center if W8 < 0 and a node if W8 ≥ 0.

a) The case W8 < 0. Then we have a focus which is strong if B1 6= 0. Considering
(22) we have B2 < 0 and according to [39] in the case B1 = 0 we have a center. So
considering Lemma 6 we arrive at the configurations

• f ;
(̂3
2

)
HfHHf−H, Nd: Example ⇒ (e = −2, f = 1) (if B1 6= 0);

• c ;
(̂3
2

)
HfHHf−H, Nd: Example ⇒ (e = −2, f = −1) (if B1 = 0).

b) The case W8 > 0. In this case we have a generic node (as the condition
W8 6= 0 implies δ1 = (f − 1)2 + 4e 6= 0) and hence we get the configuration

• n ;
(̂3
2

)
HfHHf−H, Nd: Example ⇒ (e = 0, f = 2).

c) The case W8 = 0. Then we have a node with coinciding eigenvalues and due
to the matrix of the linearization of the system at the singularity M1(0, 0), this is a
one-direction node, providing the configuration

• nd ;
(̂3
2

)
HfHHf−H, Nd: Example ⇒ (e = −1/4, f = 0).
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8.2.2.2.2 The subcase L̃ = 0. Considering (18) we obtain d(dl − 2m) = 0
and as for systems (17) we have

M̃ = −32m2x2 − 8d(dl − 2m)(3lx2 − 2mxy + d2ly2 − 2dmy2).

The condition above gives M̃ = −32m2x2. We consider two possibilities: M̃ 6= 0
and M̃ = 0.

1) The possibility M̃ 6= 0. Then m 6= 0 and as the condition d(dl − 2m) = 0
holds, applying the transformation

x1 = dlx, y1 = dl(x+ dy),

when d 6= 0 (then m = dl/2 6= 0 due to M̃ 6= 0), or the transformation

x1 = 2mx, y1 = lx/(2m) + y,

when d = 0, we arrive at the following family of systems

ẋ = ε1x+ ε2y, ε1ε2 = 0,

ẏ = ex+ fy + xy, ε1 + ε2 = 1.
(23)

For these systems calculations yield

µ0 = µ1 = µ2 = 0, µ3 = (ε1f − ε2e)xy(ε1x+ ε2y), K̃ = κ = L̃ = 0,

Ñ = −x2, η = 0, M̃ = −8x2, κ1 = −32ε2, K1 = xy(ε1x+ ε2y),

F4F5 = 6(ε1f − ε2e)x
2y2(ε1x+ ε2y)

2, W7 = 3ε2e
2(4ε2e+ f2)/16,

G3 = 0, Ti = 0, i = 1, 2, 3, 4, σ = ε1 + f + x, F1 = H = 0,

B1 = −ε2ef, B2 = ε2e/4.

(24)

So we obtain again sign (µ3K1) = sign (F4F5) and we consider two cases: µ3K1 < 0
and µ3K1 > 0.

a) Assume first µ3K1 < 0. Then we have F4F5 < 0 and according to [4] (see
Table 1, line 179) the finite singularity is a saddle. Clearly this saddle is weak if and
only if ε1 + f = 0.

α) The case κ1 6= 0. Then by (24) we have ε2 = 1, ε1 = 0 and the condition
µ3K1 < 0 yields e > 0. So B2 > 0 and we have B1 = 0 if and only if f = 0. In
this case according to [39] we have an integrable saddle. Therefore considering the
condition κ1 6= 0 and Lemma 6 we get the following two global configurations of
singularities

• s ;
(̂
1
2

) y

PfE
x

Pf−H,
(
2
1

)
N : Example ⇒ (ε2 = 1, e = 1, f = 1) (if B1 6= 0);

• $ ;
(̂1
2

) y

PfE
x

Pf−H,
(2
1

)
N : Example ⇒ (ε2 = 1, e = 1, f = 0) (if B1 = 0).
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β) The case κ1 = 0. Then we have ε2 = 0, ε1 = 1 and the condition µ3K1 < 0
yields f < 0. We observe that in this case the saddle is a weak one if and only if
f + 1 = 0. On the other hand calculations yield

F1 = H = B1 = B2 = B3 = 0, B4 = 6(1 + f)x2y. (25)

So according to [39] in the case of weak saddle (i.e. f = −1) we have an integrable
saddle. Therefore considering the condition κ1 = 0 and Lemma 6 we obtain the
configurations

• s ;
(2
2

) y

P E−
y

P E,
(1
1

)
SN : Example ⇒ (ε2 = 0, e = 0, f = −2) (if B4 6= 0);

• $ ;
(2
2

) y

P E−
y

P E,
(1
1

)
SN : Example ⇒ (ε2 = 0, e = 0, f = −1) (if B4 = 0).

b) Suppose now µ3K1 > 0. In this case we have F4F5 > 0 and as G3 = 0 and
Ñ 6= 0, according to [4] (see Table 1, lines 182, 186, 188) we have a focus or a center
if W7 < 0 and a node if W7 ≥ 0.

α) The case W7 < 0. Then we have ε2 = 1, ε1 = 0 (i.e. κ1 6= 0) and e < 0.
So the finite singularity is a focus and according to [39] we have a strong focus if
B1 6= 0 and we have a center if B1 = 0.

Thus considering Lemma 6 we arrive at the following two configurations

• f ;
(̂
1
2

) y

PfE
x

Pf−H,
(
2
1

)
S: Example ⇒ (ε2 = 1, e = −1, f = 1) (if κ1 6= 0,

B1 6= 0);

• c ;
(̂1
2

) y

PfE
x

Pf−H,
(2
1

)
S: Example ⇒ (ε2 = 1, e = −1, f = 0) (if κ1 6= 0,

B1 = 0).

β) The case W7 > 0. Then we again have ε2 = 1, ε1 = 0 and hence κ1 6= 0. So
the singular point is a generic node and by Lemma 6 we get the configuration

• n ;
(̂1
2

) y

PfE
x

Pf−H,
(2
1

)
S: Example ⇒ (ε2 = 1, e = −1, f = 3).

γ) The case W7 = 0. Then by (24) we have ε2e(4ε2e+ f2) = 0 and we consider
two subcases: κ1 6= 0 and κ1 = 0.

γ1) The subcase κ1 6= 0. Then we have ε2 = 1, ε1 = 0 and the condition W7 = 0
gives e = −f2/4. Considering the linearization matrix of the singularity M1(0, 0)
we conclude that systems (23) possess a node nd. So by Lemma 6 we have the
configuration

• nd ;
(̂1
2

) y

PfE
x

Pf−H,
(2
1

)
S: Example ⇒ (ε2 = 1, e = −1, f = 2).

γ2) The subcase κ1 = 0. In this case we have ε2 = 0, ε1 = 1 and the linearization

matrix of the singularity M1(0, 0) is

(
1 0
e f

)
with f > 0 due to µ3K1 > 0. So

systems (23) possess i) a generic node if f 6= 1; ii) a one-direction node if f = 1 and
e 6= 0, and iii) a star node if f = 1 and e = 0. On the other hand for these systems
in the considered case we have

U7 = 12(f − 1)x4, U3 = −3x4
[
efx+ (1 − f)y

]
,
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and clearly these invariant polynomials govern the possibilities mentioned above. So
considering the condition κ1 = 0 and Lemma 6 we get the following three configu-
rations

• n ;
(2
2

) x

P H−
x

P H,
(1
1

)
SN : Example ⇒ (ε2 = 0, e = 1, f = 2) (if U7 6= 0);

• nd ;
(2
2

) x

P H−
x

P H,
(1
1

)
SN : Example ⇒ (ε2 = 0, e = 1, f = 1) (if U7 = 0,

U3 6= 0);

• n∗ ;
(
2
2

) x

P H−
x

P H,
(
1
1

)
SN : Example ⇒ (ε2 = 0, e = 0, f = 1) (if U7 = 0,

U3 = 0).

2) The possibility M̃ = 0. In this case m = 0 and then the condition M̃ = 0
yields dl = 0. As l 6= 0 (due to µ3 6= 0) we get d = 0 and then via the rescaling
(x, y) 7→ (x/l, y/l) we may assume l = 1. Therefore we obtain the family of systems

ẋ = x, ẏ = ex+ fy + x2, (26)

for which calculations yield

µ0 = µ1 = µ2 = 0, µ3 = fx3, η = M̃ = 0, C2 = −x3, K1 = x3,

K̃ = κ = L̃ = Ñ = 0, G3 = W8 = 0, K3 = 6(2 − f)fx6,

F4F5 = 6fx6, Ti = 0, i = 1, 2, 3, 4, σ = 1 + f.

(27)

a) The case µ3K1 < 0. Then we have F4F5 < 0 and according to [4] (see Table
1, line 179) the finite singularity is a saddle. Clearly this saddle is weak if and only if
f = −1 and this is equivalent to σ = 0. However in the last case we get Hamiltonian
systems and hence the weak saddle is an integrable one. So considering Lemma 6
we arrive at the configurations

• s ;
(
3
3

) y

PfEE
x

Pf−
y

P
x

P : Example ⇒ (e = 0, f = −2) (if σ 6= 0);

• $ ;
(3
3

) y

PfEE
x

Pf−
y

P
x

P : Example ⇒ (e = 0, f = −1) (if σ = 0).

b) The case µ3K1 > 0. In this case we have F4F5 > 0 (i.e. f > 0) and considering
the matrix of the linearization at the singular point, we conclude that the singular
point M1(0, 0) is a node. Moreover, this node is: i) generic if f 6= 1; ii) one-direction
node if f = 1 and e 6= 0, and iii) it is a star node if f = 1 and e = 0. On the other
hand for these systems in the considered case we have

U4 = −6(f − 1)x3, U5

∣∣
f=1

= −6ex2.

The behavior of the trajectories in the vicinity of the infinite singularity (which
is of multiplicity six) according to Lemma 6 is governed by the invariant polynomial
K3. By (27) as f > 0 we have sign (K3) = sign (2 − f). Thus we arrive at the
following five geometrically distinct global configurations of singularities

• n ;
(3
3

)
Hf

x

P
y

P Hf−
x

P
y

P : Example ⇒ (e = 0, f = 3) (if K3 < 0);

• n ;
(3
3

)
HH−

x

P
y

P : Example ⇒ (e = 0, f = 2) (if K3 = 0);
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• n ;
(3
3

) y

Pf

x

P
y

P
x

Pf−HH: Example ⇒ (e = 0, f = 1/2) (if K3 > 0, U4 6= 0);

• nd ;
(3
3

) y

Pf

x

P
y

P
x

Pf−HH: Example ⇒ (e = 1, f = 1) (if K3 > 0, U4 = 0,
U5 6= 0);

• n∗ ;
(3
3

) y

Pf

x

P
y

P
x

Pf−HH: Example ⇒ (e = 0, f = 1) (if K3 > 0, U4 = 0,
U5 = 0).

As all the cases have been considered we have got 52 possible geometrically
distinct global configurations of singularities of the family of quadratic systems with
only one finite singularity which in addition is elemental.
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[43] Żo la̧dek H. Quadratic systems with center and their perturbations, J. Differential Equations,
1994, 109, 223–273.

Joan C. Artes, Jaume Llibre

Departament de Matemàtiques
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