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Invariant transformations of loop transversals. 2.
The case of isotopy

Eugene Kuznetsov, Serghei Botnari

Abstract. The investigation of special transformations of loop transversals is con-
tinued. These transformations correspond to arbitrary isotopies of loop transversal
operations (witch correspond to the considered loop transversals). Isotopies of loop
transversal operations with the same unit are investigated.
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1 Introduction

This article is a continuation of the research of some special class of loop transver-
sal transformations, begun in [5]. Transformations from the studied class correspond
to arbitrary isotopies of transversal operations (which correspond to the considered
loop transversals). We find a new class of loop transversal transformations which
preserve the property to be a loop transversal. This investigation (as it was men-
tioned in [5]) is important for solving some other problems – for example, it can be
used in the classification of G-loops.

2 Necessary definitions and statements

All necessary definitions and statements can be found in [5], §2. We remind the
most important ones.

Definition 1. Let G be a group and H be its subgroup. Let {Hi}i∈E be the set
of all left (right) cosets in G to H, and we assume H1 = H. A set T = {ti}i∈E

of representativities of the left (right) cosets (by one from each coset Hi and
t1 = e ∈ H) is called a left (right) transversal in G to H.

On any left transversal T in a group G to its subgroup H it is possible to define
the following operation (transversal operation) :

x
(T )· y = z

def⇐⇒ txty = tzh, h ∈ H,

Definition 2. If a system 〈E,
(T )· , 1〉 is a loop, then such left transversal

T = {tx}x∈E is called a loop transversal.
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Further we are going to use the following permutation representation Ĝ of a group
G by the left cosets of its subgroup H (see [2, 3]):

ĝ(x) = y
def⇐⇒ gtxH = tyH.

For simplicity we assume that

CoreG(H) = ∩
g∈G

gHg−1 = {e},

then this representation is exact (see Lemma 6 in [3]), and we have Ĝ ∼= G. Notice
that Ĥ = St1(Ĝ).

Lemma 1 (see [3], Lemma 4). Let T = {tx}x∈E be a left transversal in G to H.
Then the following statements are true:

1. ĥ(1) = 1 ∀hεH;

2. ∀x, y ∈ E :

t̂x(y) = x
(T )· y = L̂x(y), t̂1(x) = t̂x(1) = x,

t̂−1
x (y) = x

(T )

�y = L̂−1
x (y), t̂−1

x (1) = x
(T )

�1, t̂−1
x (x) = 1,

where ”
(T )

�” is a left division for the operation 〈E,
(T )· , 1〉 (i.e. x

(T )

�y = z ⇐⇒
x

(T )· z = y).

Lemma 2 (see [3], Lemma 7). Let T = {tx}x∈E and P = {px}x∈E be left transversals
in G to H. Then there is a set of elements {h(x)}x∈E from H such that:

1. px = txh(x) ∀x ∈ E;

2. x
(P )· y = x

(T )· ĥ(x)(y).

This set {h(x)}x∈E is called (see [4]) a derivation set for the transversal T (and

for the transversal operation 〈E,
(T )· , 1〉).

Definition 3 (see [1]). A triple of permutations Φ = (α, β, γ) ( α, β, γ are permuta-
tions on a set E) is called an isotopy of the operation 〈E, ·〉 on the operation 〈E, ◦〉
if

γ(x ◦ y) = α(x) · β(y) ∀x, y ∈ E.

If Φ = (γ, γ, γ), then such an isotopy is called an isomorphism. If Φ = (α, β, id),
then such an isotopy is called a principal isotopy.

According to Lemma 1.2 from [1] we have
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Lemma 3. If a loop 〈E, ·, e1〉 is isotopic to a loop 〈E, ◦, e2〉, then it is isomorphic
to some principal isotope of a loop 〈E, ◦〉 (and this principal isotopy has the form
T0 = (R−1

b , L−1
a , id), a · b = e2).

Remark 1. If a loop 〈E, ·, 1〉 is principally isotopic to a loop 〈E, ◦, 1〉, then this
principal isotopy has the form T0 = (R−1

a�1, L
−1
a , id) for some a ∈ E (a−1 = a�1 is

the right inverse element to a in the loop 〈E, ·, 1〉).

3 Transformations of loop transversals which correspond to an
isotopy of their transversal operations

Let T = {tx}x∈E and P = {px}x∈E be two loop transversals in a group G to its

subgroup H, and 〈E,
(T )· , 1〉, 〈E,

(P )· , 1〉 be their transversal operations. Fix one of
these loop transversals, for example T = {tx}x∈E .

As follows from Lemma 3, to investigate loop transversals transformations which

correspond to an isotopy of operations 〈E,
(T )· , 1〉 and 〈E,

(P )· , 1〉 it is enough to study
the case of principal isotopy T0 = (R−1

a�1, L
−1
a , id) (because the transformations which

corresponds to an isomorphism of transversal operations were studied earlier in [5]).

Theorem 1. Let loops 〈E,
(T )· , 1〉 and 〈E,

(P )· , 1〉 be principally isotopic and this prin-
cipal isotopy has the form T0 = (R−1

b , L−1
a , id) for some a ∈ E (note that a, b ∈ E,

a
(T )· b = 1). Then

P̂ = T̂ · t̂−1
a .

Proof. Let the conditions of Theorem hold. Then

x
(P )· y = R−1

b (x)
(T )· L−1

a (y)

for some a, b ∈ E, a
(T )· b = 1, and La, Rb are left and right translations in the loop

〈E,
(T )· , 1〉. Then the left translation Lx in the loop 〈E,

(P )· , 1〉 has the form:

Lx(y) = x
(P )· y = R−1

b (x)
(T )· L−1

a (y) = LR−1
b (x)L

−1
a (y), ∀x, y ∈ E,

that is
Lx = LR−1

b (x)L
−1
a ∀x ∈ E. (1)

By Lemma 1 (item 2) we have

{Lx}x∈E ≡ {p̂x}x∈E = P̂

and
{Lx}x∈E ≡

{
t̂x

}
x∈E

= T̂ .

Since R−1
b is a permutation on the set E for every b ∈ E, then it follows from (1):

P̂ = T̂ · t̂−1
a for some a ∈ E.
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Lemma 4. Let loops 〈E,
(T )· , 1〉 and 〈E,

(P )· , 1〉 be isotopic. Then the following state-
ment holds:

P̂ = ĥ0T̂ t̂−1
a ĥ−1

0

for some h0 ∈ Ĥ and some a ∈ E.

Proof. Let loops 〈E,
(T )· , 1〉 and 〈E,

(P )· , 1〉 be isotopic. Then according to Lemma 3,
their isotopy can be represented in the form of composition of a principal isotopy
and an isomorphism:

(α, β, γ) = (R−1
b , L−1

a , id) ◦ (γ, γ, γ),

where γ(1) = 1, a
(T )· b = 1. Now our statement is a simple corollary from Theorem

1 and Lemma 7 of [5].

Theorem 2. Let T = {tx}x∈E be a fixed loop transversal in G to H, and a ∈ E
be an arbitrary element of the set E. Define the following set P = {px′}x′∈E of
permutations:

p̂x′
def
= t̂xt̂−1

a ∀x ∈ E.

Then

1. P = {px′}x′∈E is a left transversal in G to H;

2. A transversal operation 〈E,
(P )· , 1〉 is principally isotopic to the operation

〈E,
(T )· , 1〉, and the principal isotopy S has the following form: S = (R−1

a�1, L
−1
a , id);

3. P is a loop transversal in G to H.

Proof. 1. We have

x′ = p̂x′(1) = t̂xt̂−1
a (1) = t̂x(a�1) = x

(T )· (a�1) = Ra�1(x).

Since 〈E,
(T )· , 1〉 is a loop, then Ra�1 is a permutation on the set E for every a ∈ E.

Therefore the element x′ runs over all the set E. So there is at least one element of
P (element px′) in each left coset Hx′ . It means that P is a left transversal in G to
H. Moreover, e = tat

−1
a ∈ P .

2. Let us study the following set of elements:

p̂x′ = t̂xt̂−1
a , x ∈ E,

where a is an arbitrary fixed element of the set E. As we have seen,

x′ = x
(T )· (a

(T )

�1). (2)
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For the transversal operation 〈E,
(P )· , 1〉 we have (by the definition):

px′py′ = p
x′

(P )· y′
h∗, h∗ ∈ H.

Then by Lemma 1 and the definition of transversal operation we have

x′
(P )· y′ = p̂

x′
(P )· y′

ĥ∗(1) = p̂x′ p̂y′(1) =

= t̂xt̂−1
a t̂y t̂

−1
a (1) = x

(T )·
[
a

(T )

� (y
(T )· (a

(T )

�1))

]
. (3)

Using (2) in (3), we obtain
[
x

(T )· (a
(T )

�1)

]
(P )·

[
y

(T )· (a
(T )

�1)

]
= x

(T )·
[
a

(T )

� (y
(T )· (a

(T )

�1))

]
. (4)

We replace:




x = u
(T )

/ (a
(T )

�1)

y = v
(T )

/ (a
(T )

�1)
⇐⇒





u = x
(T )· (a

(T )

�1) = Ra�1(x)

v = y
(T )· (a

(T )

�1) = Ra�1(y).

Since Ra�1 is a permutation for every a ∈ E in the loop 〈E,
(T )· , 1〉, then u and v run

over all the set E. Then we have from (4):

u
(P )· v = (u

(T )

/ (a�1))
(T )·

[
a

(T )

� ((v
(T )

/ (a�1))
(T )· (a�1))

]
=

= (u
(T )

/ (a�1))
(T )· (a�v) = R−1

a�1(u)
(T )· L−1

a (v).

From the last equality it follows that the operation 〈E,
(P )· , 1〉 is principally isotopic

to the operation 〈E,
(T )· , 1〉 and this principal isotopy has the following form: S =

(R−1
a�1, L

−1
a , id).

3. According to item 2 the operation 〈E,
(P )· , 1〉 is a principal isotope of the loop

operation 〈E,
(T )· , 1〉, and this principal isotopy has the form S = (R−1

a�1, L
−1
a , id). It

is well known that any isotope of a loop is a quasigroup, so the operation 〈E,
(P )· , 1〉

is a quasigroup. Moreover, the element 1 is a unit element of this quasigroup, that

is the operation 〈E,
(P )· , 1〉 is a loop. It means that the transversal P = {px}x∈E is a

loop transversal.
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Lemma 5. Let T = {tx}x∈E and P = {px}x∈E be two transversals in G to H
which correspond to principally isotopic transversal operations. Let px = txh(x) and{
h(x)

}
x∈E

be a derivation set. Then

h(x) = t−1
x t

x
(T )

/ (a�1)

t−1
a

for some a ∈ E.

Proof. According to Theorem 2 (item 2) we have for every x ∈ E :

p̂
x
(T )· (a�1)

= t̂xt̂−1
a

for some element a ∈ E. Let us replace u = x
(T )· (a�1), so x = u

(T )

/ (a�1). Then

pu = t
u
(T )

/ (a�1)

t−1
a , ∀u ∈ E

On the other hand,
pu = tuh(u), ∀u ∈ E.

So
tuh(u) = tu/(a�1)t

−1
a ,

and our Lemma is proved.

Lemma 6. Let T = {tx}x∈E be a fixed loop transversal in G to H, and a ∈ E be
some element of the set E. Define the following set S = {sx′}x′∈E of elements:

sx′
def
= tatxt−1

a ∀x ∈ E.

Then:

1. S = {sx′}x′∈E is a left transversal in G to H;

2. A transversal operation 〈E,
(S)· , 1〉 is isotopic to the operation 〈E,

(T )· , 1〉, and
the isotopy S has the following form: S = (βα, α, β−1), where α = L−1

a ,
β = R−1

a�1;

3. S is a loop transversal in G to H.

Proof. 1. We have:

x′ = ŝx′(1) = t̂at̂xt̂−1
a (1) = t̂at̂x(a�1) = a

(T )· (x
(T )· (a�1)) = LaRa�1(x).

Since 〈E,
(T )· , 1〉 is a loop, then La and Ra�1 are permutations on the set E for every

a ∈ E. Therefore an element x′ runs over all the set E. So every left coset Hx′
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contains an element of S (element sx′). So S = {sx′}x′∈E is a left transversal in G
to H. Moreover, e = taet

−1
a = tat1t

−1
a ∈ E.

2. Let us examine the following set of elements

sx′ = tatxt−1
a , x ∈ E,

where a is an element of the set E. As we have seen,

x′ = a
(T )· (x

(T )· (a�1)). (5)

For the transversal operation 〈E,
(S)· , 1〉 we have

sx′sy′ = s
x′

(S)· y′
h∗, h∗ ∈ H.

Then

x′
(S)· y′ = ŝ

x′
(S)· y′

ĥ∗(1) = ŝx′ ŝy′(1) = (t̂at̂xt̂−1
a )(t̂at̂y t̂−1

a )(1) =

= t̂at̂xt̂y t̂
−1
a (1) = t̂at̂xt̂y(a�1) = a

(T )· (x
(T )· (y

(T )· (a�1))).

By (5) from the last equality we obtain:
[
a

(T )· (x
(T )· (a�1))

]
(S)·

[
a

(T )· (y
(T )· (a�1))

]
= a

(T )· (x
(T )· (y

(T )· (a�1))). (6)

We replace:




a
(T )· (x

(T )· (a�1)) = u

a
(T )· (y

(T )· (a�1)) = v
⇐⇒

{
x = (a�u)/(a�1)
y = (a�v)/(a�1)

⇐⇒
{

u = LaRa�1(x)
v = LaRa�1(y),

that is the elements u, v run over all the set E. Then from (6) we obtain:

u
(S)· v = a

(T )·
[
((a�u)/(a�1))

(T )·
[
((a�v)/(a�1))

(T )· (a�1)
]]

=

= a
(T )·

[
((a�u)/(a�1))

(T )· (a�v)
]

= La

[
(R−1

a�1L
−1
a (u))

(T )· (L−1
a (v))

]

and
L−1

a (u
(S)· v) = R−1

a�1L
−1
a (u)

(T )· L−1
a (v). (7)

It means that the operations 〈E,
(S)· , 1〉 and 〈E,

(T )· , 1〉 are isotopic and the isotopy S
has the form S = (βα, α, α), where α = L−1

a , β = R−1
a�1.

3. By item 2 the operation 〈E,
(S)· , 1〉 is an isotope of the loop operation and this

isotopy has the form S = (βα, α, α), where α = L−1
a , β = R−1

a�1. It is well known
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that any isotope of a loop is a quasigroup, so the operation 〈E,
(S)· , 1〉 is a quasigroup.

Moreover,
s1′ = tat1t

−1
a = ta · e · t−1

a = e = t1,

that is the element 1 is a unit element of this quasigroup. So the operation 〈E,
(S)· , 1〉

is a loop and S′ = {sx}x∈E is a loop transversal.

Lemma 7. Let T = {tx}x∈E be a fixed loop transversal in G to H and a ∈ E be an
arbitrary element in E. Define the following set M = {mx′}x′∈E of elements:

mx′
def
= t−1

a tx, ∀x ∈ E.

Then:

1. M = {mx′}x′∈E is a left transversal in G to H.

2. The transversal operation 〈E,
(M)· , 1〉 is isotopic to the operation 〈E,

(T )· , 1〉 and
the isotopy Q has the following form: Q = (La, id, La).

3. M is a loop transversal in G to H.

Proof. 1. We have

x′ = m̂x′(1) = t̂−1
a t̂x(1) = a�x = L−1

a (x). (8)

Since 〈E,
(T )· , 1〉 is a loop then L−1

a is a permutation on the set E for every a ∈ E.
So the element x′ runs over all the set E, and M is a loop transversal in G to H.

2. Let us examine the following set of elements:

mx′
def
= t−1

a tx, x ∈ E

where a is some element in E. As we have seen above, x′ = a�x. For the

transversal operation 〈E,
(M)· , 1〉 we have

mx′my′ = m
x′

(M)· y′
h∗, h∗ ∈ H.

Then

x′
(M)· y′ = m̂

x′
(M)· y′

ĥ∗(1) = m̂x′m̂y′(1) = (t̂−1
a t̂x)(t̂−1

a t̂y)(1) =

= t̂−1
a t̂x(a�y) = a�

[
x

(T )· (a�y)
]

.

By (8) we obtain:

(a�x)
(M)· (a�y) = a�

[
x

(T )· (a�y)
]

. (9)
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We use the change of variables:

{
a�x = u
a�y = v

⇐⇒




x = a
(T )· u

y = a
(T )· v

⇐⇒
{

u = L−1
a (x)

v = L−1
a (y)

So elements u, v run over all the set E. Then we have

u
(M)· v = a�

[
(a

(T )· u)
(T )· (a�(a

(T )· v))
]

= a�
[
(a

(T )· u)
(T )· v

]
,

that is
La(u

(M)· v) = La(u)
(T )· v.

It is an isotopy of the type (La, id, La).
3. Similar to the item 3 of Lemma 5 and Lemma 6.
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