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A REPUBLICII MOLDOVA. MATEMATICA
Number 3(70), 2012, Pages 63–71
ISSN 1024–7696

Stability analysis of Pareto optimal portfolio
of multicriteria investment maximin problem

in the Hölder metric

Vladimir Emelichev, Vladimir Korotkov

Abstract. We analyzed the stability of a Pareto-optimal portfolio of the multicriteria
discrete variant of Markowitz’s investment problem with Wald’s maximin efficiency
criteria. We obtained lower and upper bounds for the stability radius of such portfolio
in the case of the Hölder metric lp, 1 ≤ p ≤ ∞, in the three-dimensional space of
problem parameters. We also show the attainability of bounds in particular cases.
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In paper [1] we obtained lower and upper attainable bounds for the stability
radius of a Pareto-optimal portfolio of the multicriteria Boolean investment prob-
lem with Savage’s minimax risk criteria in the case of the Chebyshev metric l1
in the three-dimensional space of problem parameters. In the present paper we
obtained the results of similar nature for the stability radius of the multicriteria in-
vestment problem with Wald’s maximin efficiency criteria and any Hölder metric lp,
1 ≤ p ≤ ∞, in the spaces of criteria, portfolio and market states.

1 Problem statement and definitions

We consider the multicriteria discrete variant of Markowitz’s investment mana-
ging problem [2]. To this end, we introduce the following notations:

Nn = {1, 2, . . . , n} be a set of investment alternative projects (assets);
Nm be a set of market states (conditions, scenarios);
Ns be a set of project efficiency measures;
x = (x1, x2, . . . , xn)T ∈ X ⊆ En be an investment portfolio, where |X| ≥ 2,

E = {0, 1},
xj =

{
1 if the project j is implemented,
0 otherwise;

eijk be an assessment of efficiency of measure k ∈ Ns of investment project
j ∈ Nn in the situation when the market is in state i ∈ Nm;

E = [eijk] be a three-dimensional m× n× s matrix with elements from R.
Note that there are several approaches to evaluate efficiency of investment

projects (NPV, NFV, PI et al.), which take into account risk and uncertainty in
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different ways (see e.g. [3–5]). That way it is worth to consider a decision making
problem with multiple criteria (several measures of project efficiency).

Let the following vector objective function

f(x,E) = (f1(x,E1), f2(x,E2), . . . , fs(x,Es)),

be given on a set of investment portfolios X whose components are Wald’s maximin
criteria [6]

fk(x,Ek) = min
i∈Nm

Eikx = min
i∈Nm

∑

j∈Nn

eijkxj → max
x∈X

, k ∈ Ns,

where Ek ∈ Rm×n is the k-th cut of matrix E = [eijk] ∈ Rm×n×s, Eik =
(ei1k, ei2k, . . . , eink) is the i-th row of that cut. Thus, the investor, following Wald’s
criteria, takes extreme caution and optimizes portfolio efficiency Eikx (for the k-th
criteria), assuming that the market was in the worst state, namely the efficiency
is minimal. Obviously such pessimistic approach in the market state estimation is
justified when we are talking about the guaranteed result.

A multicriteria investment Boolean problem Zs(E), s ∈ N, with Wald’s criteria
means the problem of searching the set of Pareto-optimal investment portfolios (the
Pareto set)

P s(E) = {x ∈ X : @x′ ∈ X (g(x′, x, E) ≥ 0(s) & g(x′, x, E) 6= 0(s))},

where
g(x′, x, E) = (g1(x′, x, E1), g2(x′, x, E2), . . . , gs(x′, x, Es)),

gk(x′, x, Ek) = fk(x′, Ek)− fk(x, Ek) = max
i∈Nm

min
i′∈Nm

(Ei′kx
′ −Eikx), k ∈ Ns,

0(s) = (0, 0, . . . , 0) ∈ Rs.

It is easy to see, in the particular case for m = 1 our multicriteria investment
problem Zs(E) becomes the multicriteria problem of linear Boolean programming

Zs
B(E) : Ex → max

x∈X
, (1)

where X ⊆ En, E = [e1jk] ∈ R1×n×s is the matrix with rows Ek = (e11k, e12k, . . .
. . . , e1nk) ∈ Rn, k ∈ Ns. Such case can be interpreted as the situation when the
investor has not got another alternative market state.

For any positive integer d ≥ 2 in the real space Rd we introduce the Hölder
metric lp, 1 ≤ p ≤ ∞, where the norm of a = (a1, a2, . . . , ad) ∈ Rd is defined by the
formula

‖a‖p =





(∑
j∈Nd

|aj |p
)1/p

if 1 ≤ p < ∞,

max{|aj | : j ∈ Nd} if p = ∞,
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and by the norm of a matrix means the norm of the vector composed of all matrix
elements. Hence for matrix E ∈ Rm×n×s and any metric lp, 1 ≤ p ≤ ∞, we get the
equalities

‖E‖p = ‖(‖E1‖p, ‖E2‖p, . . . , ‖Es‖p)‖p, (2)

‖Ek‖p = ‖(‖E1k‖p, ‖E2k‖p, . . . , ‖Emk‖p)‖p, k ∈ Ns. (3)

Thus for p < ∞ the equations

‖E‖p = (
∑

k∈Ns

‖Ek‖p
p)

1/p, (4)

‖z‖p = ‖z‖1/p
1 for z ∈ {−1, 0, 1}n (5)

hold. In addition, from (2) and (3) it follows that

‖Eik‖p ≤ ‖Ek‖p ≤ ‖E‖p, i ∈ Nm, k ∈ Ns. (6)

It is known, that the metric lp defined in the space Rd includes the metric lq in
the dual space (Rd)∗, and p, q, as it is well known, are related by the formula

1
p

+
1
q

= 1, 1 < p < ∞. (7)

In addition, as usual, we set q = 1 if p = ∞ and q = ∞ if p = 1. Thus, in what
follows, we assume that the domain of variation of p and q is the interval [1,∞],
while p, q obey the above conditions, moreover, we assume 1/p = 0 for p = ∞.

Using (6) and the Hölder inequality

ab ≤ ‖a‖p‖b‖q,

where a = (a1, a2, . . . , an) ∈ Rn, b = (b1, b2, . . . , bn)T ∈ Rn, it is easy to see that for
x0, x ∈ X and 1 < p ≤ ∞ the following inequalities hold:

Ei′kx
0 − Eikx ≥ −‖Ek‖p(‖x0‖q + ‖x‖q), i, i′ ∈ Nm, k ∈ Ns, (8)

and for p = 1:

Ei′kx
0 − Eikx ≥ −‖Ek‖1, i, i′ ∈ Nm, k ∈ Ns. (9)

In addition, for any p ∈ [1,∞] the following equality is obvious:

‖a‖p = m1/pα (10)

if any component of a ∈ Rm is the number α > 0.
As usual [1, 7–9], the stability radius of the investment portfolio x0 ∈ P s(E) in

the Hölder metric lp is defined as follows:

ρs(x0, p, m) =
{

sup Ξp if Ξp 6= ∅,
0 if Ξp = ∅,
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where
Ξp = {ε > 0 : ∀E′ ∈ Ωp(ε) (x0 ∈ P s(E + E′))},

Ωp(ε) = {E′ ∈ Rm×n×s : ‖E′‖p < ε}.
Here Ω(ε) is the set of perturbing matrixes, and P s(E + E′) is the Pareto set of

the perturbed problem Zs(E + E′).
Thus, the stability radius defines an extreme level of problem initial data per-

turbations (elements of matrix E) preserving Pareto-optimality of the portfolio.

2 Lemmas

For the vector a = (a1, a2, . . . , as) ∈ Rs we introduce the positive cutoff function:

a+ = [a]+ = (a+
1 , a+

2 , . . . , a+
s ),

where a+
k = [ak]+ = max{0, ak}, k ∈ Ns.

Lemma 1. Let ϕ1 > 0, x0 6= x,

‖g+(x0, x, E)‖1 ≥ ϕ1. (11)

Then
∀E′ ∈ Ω1(ϕ1) ∃l ∈ Ns (gl(x0, x, El + E′

l) > 0). (12)

Proof. Suppose, to the contrary, that there exists the perturbing matrix E0 ∈ Ω1(ϕ1)
such that the inequalities

gk(x0, x, Ek + E0
k) ≤ 0, k ∈ Ns (13)

hold.
Then, involving (9), we derive

0 ≥ gk(x0, x, Ek + E0
k) = max

i∈Nm

min
i′∈Nm

(Ei′kx
0 − Eikx + E0

i′kx
0 − E0

ikx) ≥

≥ gk(x0, x, Ek)− ‖E0
k‖1,

i. e. g+
k (x0, x, Ek) ≤ ‖E0

k‖1, k ∈ Ns. Hence, taking into account E0 ∈ Ω1(ϕ1) it
follows that the inequality

‖g+(x0, x, E)‖1 =
∑

k∈Ns

g+
k (x0, x, Ek) ≤

∑

k∈Ns

‖E0
k‖1 = ‖E0‖1 < ϕ1

holds.
This inequality contradicts the condition (11) of Lemma 1.

Lemma 2. Let 1 < p ≤ ∞, ϕ2 > 0, x0 6= x,

‖g+(x0, x, E)‖p ≥ ϕ2(‖x0‖q + ‖x‖q). (14)

Then
∀E′ ∈ Ωp(ϕ2) ∃l ∈ Ns (gl(x0, x, El + E′

l) > 0). (15)
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Proof. We again suppose, to the contrary, that there exists the perturbing matrix
E0 ∈ Ωp(ϕ2) with the conditions (13) and for any index k ∈ Ns in view of (8) we
find

0 ≥ gk(x0, x, Ek + E0
k) = max

i∈Nm

min
i′∈Nm

(Ei′kx
0 − Eikx + E0

i′kx
0 − E0

ikx) ≥

≥ gk(x0, x, Ek)− ‖E0
k‖p(‖x0‖q + ‖x‖q),

i.e.
g+
k (x0, x, Ek) ≤ ‖E0

k‖p(‖x0‖q + ‖x‖q), k ∈ Ns.

Thus, taking into account (4) and E0 ∈ Ωp(ϕ2) for p < ∞ we have

‖g+(x0, x, E)‖p =
( ∑

k∈Ns

(g+
k (x0, x, Ek))p

)1/p
≤

≤
( ∑

k∈Ns

‖E0
k‖p

p

)1/p
(‖x0‖q + ‖x‖q) = ‖E0‖p(‖x0‖q + ‖x‖q) < ϕ2(‖x0‖q + ‖x‖q),

and for p = ∞ we derive

‖g+(x0, x, E)‖∞ = max
k∈Ns

g+
k (x0, x, Ek) ≤ max

k∈Ns

‖E0
k‖∞(‖x0‖1 + ‖x‖1) =

= ‖E0‖∞(‖x0‖1 + ‖x‖1) < ϕ2(‖x0‖1 + ‖x‖1).

This inequality is contrary to the condition (14).

By contradiction we can easily prove the following lemma.

Lemma 3. Let x0 ∈ P s(E), γ > 0 and 1 ≤ p ≤ ∞. If for any portfolio x ∈ X \{x0}
and any perturbing matrix E′ ∈ Ωp(γ) there exists l ∈ Ns such that the inequality
gl(x0, x, El + E′

l) > 0 is true, then the portfolio x0 is a Pareto-optimal portfolio of
the perturbing problem Zs(E + E′), i.e. x0 ∈ P s(E + E′) for E′ ∈ Ωp(γ).

Lemma 4. Let 1 ≤ p ≤ ∞, x0 6= x, δ = (δ1, δ2, . . . , δs), δk > 0, k ∈ Ns,

δk‖x0 − x‖q > g+
k (x0, x, Ek), k ∈ Ns. (16)

Then for any number ε > m1/p‖δ‖p there exists a matrix E0 ∈ Ωp(ε) such that
x0 6∈ P s(E + E0).

Proof. Using components of δ (see (16)), we define elements of the perturbing matrix
E0 = [e0

ijk] ∈ Rm×n×s as follows:

e0
ijk = δk

xj − x0
j

‖x0 − x‖p
, i ∈ Nm, j ∈ Nn, k ∈ Ns.
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Because all rows E0
ik, i ∈ Nm, of the cut E0

k ∈ Rm×n are equal, then denoting such
rows as Ak, we have

Ak = δk
(x− x0)T

‖x0 − x‖p
, k ∈ Ns. (17)

Thus ‖E0
ik‖p = ‖Ak‖p = δk, i ∈ Nm, k ∈ Ns. Hence, according to (2), (3) and (10)

we find
‖E0

k‖p = m1/pδk, k ∈ Ns,

‖E0‖p = m1/p‖δ‖p,

and, therefore, E0 ∈ Ωp(ε) for any ε > m1/p‖δ‖. Here 1/p = 0 is for p = ∞.
Further we prove that for any p ∈ [1,∞] and k ∈ Ns the equality

Ak(x0 − x) = −δk‖x0 − x‖q (18)

holds. Actually, for p = ∞ we have (in view of (17))

Ak(x0 − x) = −δk‖x0 − x‖1, k ∈ Ns,

and for 1 ≤ p < ∞, considering (5), (7) and (17), we get the following chain of
equalities

Ak(x0 − x) = −δk
‖x0 − x‖1

‖x0 − x‖p
=

= −δk
‖x0 − x‖1

‖x0 − x‖1/p
1

= −δk‖x0 − x‖1/q
1 = −δk‖x0 − x‖q, k ∈ Ns.

At last, using (16) and (18), we conclude that for any index k ∈ Ns the relations

gk(x0, x, Ek + E0
k) = min

i∈Nm

(Eik + Ak)x0 − min
i∈Nm

(Eik + Ak)x =

= gk(x0, x, Ek) + Ak(x0 − x) ≤ g+
k (x0, x, Ek)− δk‖x0 − x‖q < 0

hold.
Hence, x0 6∈ P s(E + E0).

3 Stability radius bounds

For a Pareto-optimal portfolio x0 of the problem Zs(E) denote

ϕ1 = ϕ1(x0, p, m) = min
x∈X\{x0}

‖g+(x0, x, E)‖p,

ϕ2 = ϕ2(x0, p,m) = min
x∈X\{x0}

‖g+(x0, x, E)‖p

‖x0‖q + ‖x‖q
,

ψ = ψ(x0, p,m) = min
x∈X\{x0}

‖g+(x0, x, E)‖p

‖x0 − x‖q
.

Evidently, ψ ≥ 0, ϕi ≥ 0, i ∈ N2, herewith ϕ1(x0, 1,m) = ψ(x0, 1, m) and
ϕ2(x0, p,m) ≤ ψ(x0, p,m) for 1 < p ≤ ∞.
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Theorem. For any m, s ∈ N and 1 ≤ p ≤ ∞ the stability radius ρs(x0, p, m) of the
investment portfolio x0 ∈ P s(E) in the Hölder metric lp has the following lower and
upper bounds

m1/pψ(x0, p,m) ≥ ρs(x0, p, m) ≥
{

ϕ1(x0, p, m), if p = 1,
ϕ2(x0, p, m), if 1 < p ≤ ∞.

(19)

Proof. Let x0 ∈ P s(E). First we will prove the validity of lower bounds (19).
Without loss of generality we assume that ϕi > 0, i ∈ N2 (otherwise, the inequalities
ρ ≥ ϕi, i ∈ N2, are obvious). We shall consider separately the two possible cases.

Case 1: p = 1. According to the definition of ϕ1 = ϕ1(x0, 1,m) for any portfolio
x 6= x0 the inequality

‖g+(x0, x, E)‖1 ≥ ϕ1,

holds. Therefore, due to Lemma 1 the formula (12) is valid. Then, according to
Lemma 3 the portfolio x0 ∈ P s(E + E′) for any perturbing matrix E′ ∈ Ω1(ϕ1).
Thus, ρs(x0, 1,m) ≥ ϕ1(x0, 1,m).

Case 2: 1 < p ≤ ∞. According to the definition of ϕ2 = ϕ2(x0, p, m) the
inequalities hold

‖g+(x0, x, E)‖p ≥ ϕ2(‖x0‖q + ‖x‖q), x ∈ X \ {x0}.

Applying Lemma 2 yields the conclusion that for any portfolio x 6= x0 the formula
(15) holds. Hence from Lemma 3 it follows that the portfolio x0 ∈ P s(E + E′) for
E′ ∈ Ωp(ϕ2). Therefore, ρs(x0, p, m) ≥ ϕ2(x0, p, m).

Further we will prove the validity of the upper bound (19) for any number p ∈
[1,∞]. Let ε > m1/pψ > 0, and a portfolio x∗ 6= x0 be such that

‖g+(x0, x∗, E)‖p = ψ‖x0 − x∗‖q.

Then, taking into account the continuous dependence of the norm of a vector
on its coordinates we find a vector δ ∈ Rs with positive components, which satisfy
inequalities (16) shach that ε/m1/p > ‖δ‖p > ψ. Hence, due to Lemma 4 there exists
a perturbing matrix E0 ∈ Ωp(ε) such that the portfolio x0 ∈ P s(E) is not a Pareto-
optimal portfolio of the perturbed problem Zs(E + E0). Thus, we proved that for
any number ε > m1/pψ the inequality ρs(x0, p, m) < ε holds, i.e. the inequality
ρs(x0, p, m) ≤ m1/pψ(x0, p, m) is true for any number p ∈ [1,∞].

4 Corollary

All of the following corollaries from Theorem are obvious and are valid for any
number of criteria s ∈ N.
Corollary 1. For any m ∈ N the following bounds are true:

mϕ1(x0, 1,m) ≥ ρs(x0, 1, m) ≥ ϕ1(x0, 1,m).
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Hence we get the following well-known result, which shows that lower and upper
bounds (19) are attainable for p = m = 1.
Corollary 2 [7, 10]. The following formula holds:

ρs(x0, 1, 1) = ϕ1(x0, 1, 1) = min
x∈X\{x0}

‖[E(x0 − x)]+‖1.

Corollary 3. For any m ∈ N the following bounds are true:

ψ(x0,∞,m) = min
x∈X\{x0}

max
k∈Ns

max
i∈Nm

min
i′∈Nm

Ei′kx
0 −Eikx

‖x0 − x‖1
≥ ρs(x0,∞,m) ≥

≥ min
x∈X\{x0}

max
k∈Ns

max
i∈Nm

min
i′∈Nm

Ei′kx
0 − Eikx

‖x0‖1 + ‖x‖1
= ϕ2(x0,∞,m). (20)

In paper [1] we proved the attainability of such bounds for the stability radius of
the Pareto-optimal portfolio of the multicriteria investment problem with Savage’s
minimax criteria in the metric l∞. Using the developed there techniques it is easy
to prove, that lower and upper bounds (20), obtained here, are also attainable. In
addition, the next statement follows from Corollary 3 and shows that lower and
upper bound are attainable for p = ∞.
Corollary 4. If for any portfolio x ∈ X\{x0} the inequality ‖x0‖1+‖x‖1 = ‖x0−x‖1

holds, then for index m ∈ N the following formula is true:

ρs(x0,∞,m) = ϕ2(x0,∞,m) = ψ(x0,∞,m).

Note that earlier in paper [7] (see also [8, 9]) the formula of the stability radius
of the Pareto-optimal solution x0 of the multicriteria linear Boolean programming
problem Zs

B(E) (see (1)) in the Hölder metric was obtained:

ρs(x0, p, 1) = ψ(x0, p, 1) = min
x∈X\{x0}

‖[E(x0 − x)]+‖p

‖x0 − x‖q
, 1 ≤ p ≤ ∞.

This result shows that upper bound (19) is attainable in the linear case (m = 1).
Corollary 5. For any parameters m ∈ N and p ∈ [1,∞] the stability radius
ρs(x0, p, m) > 0 if and only if

min
x∈X\{x0}

max
k∈Ns

g+
k (x0, x, Ek) > 0.

Remark. Due to equivalence of any two metrics in finite dimensional linear spaces
(see e. g. [11]), Corollary 5 is also valid not only for the Hölder metric lp, but for
another metrics in the space Rm×n×s of perturbing parameters of Zs(E).

This work was supported by the Republican Foundation of Fundamental Re-
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metric. Discrete Math. Appl, 2009, 19, No. 3, 229–236.

[10] Emelichev V.A., Kuzmin K.G., Leonovich A.M. Stability in the combinatorial vector
optimization problems. Automation and Remote Control, 2004, 65, No. 2, 227–240.

[11] Kolmogorov A.N., Fomin S.V. Elements of the theory of functions and functional analysis.
New York, Dover, 1999.

Vladimir Emelichev, Vladimir Korotkov
Belarusian State University
av. Nezavisimosti, 4, 220030 Minsk
Belarus

E-mail: emelichev@bsu.by; wladko@tut.by

Received July 25, 2012


