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On a Method for Estimation of Risk Premiums Loaded
by a Fraction of the Variance of the Risk

Virginia Atanasiu

Abstract. In this paper we have obtained linear approximations which are unbiased
estimates for the expected value part, respectively for the variance part and finally
for the fluctuation part of the loading from the variance premium, using the greatest
accuracy theory. The article provides a means to approximate the separate parts of
the variance loaded premium by linear non-homogeneous credibility estimators. Apart
from the purpose of this paper, which is to simply add ”credibility” like estimators for
the separate parts of the variance premium, we have presented some basic theorems
from statistics and some basic results on finding estimators with minimal mean squared
error from probability theory. The fact that it is based on complicated mathematics,
involving conditional expectations, needs not bother the user more than it does when
he applies statistical tools like, discriminating analysis and scoring models.

Mathematics subject classification: 62P05.
Keywords and phrases: The linear estimator, the Esscher premium, the variance
premium.

Introduction

It is an original paper which describes techniques for estimating premiums for
risks, containing a fraction of the variance of the risk as a loading on the net risk
premium. An approach ”in this sense” is to consider the variance premium. The
problem under discussion is to get linear approximations, which are unbiased es-
timates for the expected value part, variance part, fluctuation part, i.e. for the
separate parts of the variance premium, using the classical model of Bühlmann and
the credibility for the Esscher premiums. The present article contains a method to
estimate risk premiums loaded by a fraction of the variance of the risk, as opposed
to the net premiums studied thus far in the credibility theory.

The first section shows that the Esscher premium approaches the variance prin-
ciple and that this premium is derived as an optimal estimator minimizing a suitable
loss function. In the first section it is shown that the Esscher premium can be used
as an approximation to the variance loaded premium, by truncating the development
of a power series. Also, the approach of the problem of Esscher premium, followed in
the first section is to consider the best linear credibility estimator which minimizes
the exponentially weighted squared error loss function. The second section analy-
ses and presents the linear non-homogeneous credibility estimators for the separate
parts of the variance premium.
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It turns out that the linear credibility approximations for each of the parts in
the variance premium to coincide with the unbiased estimates for the expected value
part, the variance part and the fluctuation part from the variance premium.

The approach of the problem of loaded premiums, followed in the second section
is to simply add credibility - like estimators for the separate parts of the variance
premium.

1 Techniques for estimating premiums for risks, containing
a fraction of the variance of the risk as a loading on the net risk
premium

1.1 The classical model of Bühlmann

Consider a portfolio of contracts j = 1, . . . , k satisfying the constraints (B1) and
(B2). The index contract j is a random vector consisting of the structural variables
θj and the observable variables: Xj1, . . . Xjt, where j = 1, . . . , k.

(B1) E[Xjr|θj ] = µ(θj) - the net premium for a contract with risk parameter
θj-,Cov[Xj |θj ] = σ2(θj)I(t,t), j = 1, . . . , k, and:

(B2) the contracts j = 1, . . . , k are independent, the variables θ1, . . . , θk are iden-
tically distributed, and the observations Xjr have finite variance, then the optimal
non-homogeneous linear estimators µ̂(θj) for µ(θj), j = 1, . . . , k, in the least squares

sense read: µ̂(θj) = (1− z)m + zMj , where Mj =
1
t

t∑

s=1

Xjs denotes the individual

estimator for µ(θj). The resulting credibility factor z which appears in the cred-
ibility adjusted estimator µ̂(θj) is found as: z = at/(s2 + at), with the structural
parameters m, a and s2 as defined by the following formulae:

m = E[Xjr] = E[µ(θj)], a = Var[µ(θj)], s2 = E[σ2(θj)], j = 1, . . . , k.

Here the identity or unit matrix I denotes a matrix with unities on the diagonal and
zeros elsewhere.

1.2 The credibility for the Esscher premiums

Minimizing weighted mean squared error
When X and Y are two random variables, and Y must be estimated using a

function g(X) of X, the choice yielding the minimal weighted mean squared error
E[(Y − g(X))2ehY ] is the quantity:

E[Y ehY |X]/E[ehY |X].

Indeed:
E[(Y − g(X))2ehY ] = E{E[(Y − g(X))2ehY |X]} =

=
∫

E[(Y − g(x))2ehY |X = x] · dFX(x).
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For a fixed x, the integrand can be written as: E[(Z − p)2ehZ ], with p = g(x)

and Z distributed as Y , given X = x (Z
(P )≡ [Y |(X = x)]). This quadratic form in p

is minimized taking p = E[ZehZ ]/E[ehZ ] or what is the same g(x) = E[Y ehY |X =
= x]/E[ehY |X = x].

Indeed:

ϕ(p) not= E[(Z − p)2ehZ ] = E(Z2ehZ) + p2E(ehZ)− 2pE(ZehZ),

so ϕ(p) is the following quadratic form in p : E[(Z − p)2ehZ ]. We have to solve the
following minimization problem: Min

p
ϕ(p). Since this problem is the minimum of a

positive definite quadratic form, it suffices to find a solution with the first derivative
equal to zero. Taking the first derivative with respect to p, we get the equation:
2pE(ehZ)− 2E(ZehZ) = 0. So: p = E(ZehZ)/E(ehZ), because: ϕ′′(p) = 2E(ehZ) >
0. If the integrand is chosen minimal for each x, the integral over all x is minimized,
too.
Definition. The quantity E[Y ehY |X]/E[ehY |X], denoted by H[Y |X] and which
minimizes the weighted mean squared error E[(Y − g(X))2ehY ] in the above the-
oretical result, entitled ”Minimizing weighted mean squared error” is called the
Esscher premium for Y , given X.

Applying the formula H[Y |X] = E[Y ehY |X]/E[ehY |X] to Y = Xt+1, j and
X = Xj = (Xj1, . . . , Xjt)′, we see that the best risk premium - in the sense of
minimal weighted mean squared error - to charge for period (t + 1) is the Esscher
premium for Xt+1,j , given Xj = (Xj1, Xj2, . . . , Xjt)′:

H[Xt+1,j |Xj ]
not= g(Xj) = E[Xt+1,je

hXt+1,j |Xj ]/E[ehXt+1,j |Xj ]. (1.1)

Apart from the optimal credibility result (1.1) for this situation we can obtain
the Esscher premium as an optimal estimator minimizing a suitable loss function.

The linear credibility formula for exponentially weighted squared error loss func-
tion requires not just the knowledge of a few natural structure parameters, but it
is necessary that for the structure function some values of the moment generating
function are known.

This is why the less refined approach followed in Section 2, is more useful in
practice.

2 The credibility for the variance premiums

For a small h, the optimal credibility estimated for the variance loaded premium
can be approximated as:

g(Xj) ∼= (E[Xt+1,j |Xj ] + hE[X2
t+1,j |Xj ] + O(h2))/(1 + hE[Xt+1,j |Xj ] + O(h2)) ∼=

≈ (E[Xt+1,j |Xj ] + hE[X2
t+1,j |Xj ] + O(h2))(1− hE[Xt+1,j |Xj ] + O(h2)) =

= E[Xt+1,j |Xj ] + hVar[Xt+1,j |Xj ] + O(h2) ∼= E[Xt+1,j |Xj ]+

+hVar[Xt+1,j |Xj ] = E[µ(θj)|Xj ] + h{E[σ2(θj)|Xj ] + Var[µ(θj)|Xj}

(2.1)
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approximating numerator and denominator of g(Xj) up to the first order in h.
The purpose of this section is to get linear approximations for each of the terms

in the right-hand side. We will derive unbiased estimates for the:




expected value part E[µ(θj)|Xj ] (2.2)

variance part E[σ2(θj)|Xj ] (2.3)

fluctuation part Var[µ(θj)|Xj ] (2.4)

Remark. Another problem appears if we want to find an estimate for the random
variable:

p(θ) := µ(θ) + ασ2(θ).

Minimizing the squared error would lead to the following credibility estimator:

E[p(θ)|X] = E[µ(θ)|X] + αE[σ2(θ)|X], (2.5)

without the fluctuation part, because there is the following basic result on finding
estimators with minimal mean squared error.

Minimizing mean squared error for conditional distributions

When X and Y are random variables, the function g(·) of X estimating Y with
minimal mean squared error is:

g∗(X) = E[Y |X].

Applying this theorem to Y = p(θ) and X = X = (X1, . . . , Xt)′ we obtain that
the verification of the equality (2.5) is readily performed.

One might argue that this premium is more reasonable, since the policyholder,
having himself a fixed though unknown risk parameter, should not pay for the un-
certainty concerning his own risk parameter, only for the variation of his claims.

2.1 The main results of this paper

Here and as follows we present the main results leaving the detailed calculation
to the reader.

A) An approximation for the expected value part:

The expected value part has been dealt with in Subsection 1.1. We recall the
result:

µ̂(θj) = (1− z)m + zMj (2.6)

where

z = at/(s2 + at), Mj =
1
t

t∑

r=1

Xjr, a = Var[µ(θj)], s2 = E[σ2(θj)], (j = 1, k)
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(for more details, see [5] or [6]). One could approximate the expected value part by
its best linear non-homogeneous credibility estimator (2.6).

B) An approximation of the fluctuation part:

Next we consider the fluctuation part:

Var[µ(θj)|Xj ]
def
= E{(µ(θj)− E[µ(θj)|Xj ])

2|Xj}. (2.7)

It is difficult to estimate this expression because of the appearance of E[µ(θj)|Xj ].
However, one could approximate this expectation by its best linear non-

homogeneous credibility estimator (2.6), and try to estimate:

E{[µ(θj)− (1− z)m− zMj ]2|Xj} (2.8)

(see (2.6)), where z = at/(s2 + at).
To obtain an approximation for the fluctuation part, this quantity is ave-

raged once more over the entire collective (the averaging is representative for the
conditioned variance, because:

Var[µ(θj)|Xj ]
(2.7)
= E{(µ(θj)− E[µ(θj)|Xj ])2|Xj}

(2.6)
= E{[µ(θj)− (1− z)m− zMj ]2|Xj}) :

E[E{[µ(θj)− (1− z)m− zMj ]2|Xj}] = E[E{[µ(θj)−m− z(Mj −m)]2|Xj}] =

= E{[µ(θj)−m− z(Mj −m)]2} = E[µ2(θj) + m2 + z2(Mj −m)2 − 2mµ(θj)+

+2mz(Mj −m)− 2µ(θj)z(Mj −m)] = E[µ2(θj)] + m2 + z2E[(Mj −m)2]−
−2mE[µ(θj)] + 2mzE[(Mj −m)]− 2zE[µ(θj)(Mj −m)] = E[µ2(θj)] + m2+

+z2E{[Mj −E(Mj)]2} − 2m ·m− 2zE{[µ(θj)−m][Mj −m]} = E[µ2(θj)]−
−m2 + z2Var(Mj)− 2zE{(µ(θj)− E[µ(θj)])[Mj −E(Mj)]} = E[µ2(θj)]−
−E2[µ(θj)] + z2Var(Mj)− 2zCov[µ(θj), Mj ] = Var[µ(θj)] + z2Var(Mj)−
−2zCov[µ(θj),Mj ] = Var[µ(θj)]− 2zCov[µ(θj),Mj ] + z2Var(Mj) =

= a− 2za + z2(a + s2/t) = a(1− 2z + z2) + z2s2/t = a(1− z)2 + z2s2/t,

(2.9)

because:
E(Mj) = m (2.10)

E[µ(θj)] = E[E(Xjr|θj)] = E(Xjr) (2.11)

Var[µ(θj)] = a (2.12)

(see the definition of the structure parameter a).

Cov[µ(θj),Mj ] =
1
t

t∑

r=1

Cov[µ(θj), Xjr] =
1
t

t∑

r=1

a =
1
t
ta = a, (2.13)



ON A METHOD FOR ESTIMATE RISK PREMIUMS . . . 33

Var(Mj) = Cov(Mj , Mj) =
1
t2

∑

r,r′
Cov(Xjr, Xjr′) =

1
t2

∑

r,r′
(a + δrr′s

2) =

=
1
t2

∑
r


(a + δrrs

2) +
∑

r′,r′ 6=r

(a + δrr′s
2)


 =

1
t2

t∑

r=1

[(a + s2) + (t− 1)a] =

=
1
t2

t∑

r=1

(s2 + at) =
t(s2 + at)

t2
=

s2 + at

t
= a +

s2

t
.

(2.14)

But inserting the value of the credibility factor z in the right hand side of (2.9)
shows that it equals (1− z)a, so:

Var[µ(θj)|Xj ] ∼= E[E{[µ(θj)− (1− z)m− zMj ]2|Xj}] =

= a(1− z)2 +
z2s2

t
= a

(
1− at

at + s2

)2

+
s2

t
· a2t2

(at + s2)2
=

=
as4 + a2s2t

(at + s2)2
=

as2(s2 + at)
(at + s2)2

=
as2

at + s2
= a(1− z) = (1− z)a,

(2.15)

C) An approximation for the variance part:

For the variance part, there is in analogy with the expected value part,
E[σ2(θj)|Xj ] that is approximated as a non-homogeneous linear combination:

E[σ2(θj)|Xj ] ∼= c0 + c1S
2
j (2.16)

where

S2
j =

t∑

s=1

(Xjs −Xj)2/(t− 1). (2.17)

The following distance will be minimized:

E{[σ2(θj)− c0 − c1S
2
j ]2}. (2.18)

So, for each j = 1, k we have to solve the following minimization problem:

Min
c0,c1

E{[σ2(θj)− c0 − c1S
2
j ]2}. (2.19)

As (2.19) is the minimum of a positive definitive quadratic form, it is enough to
find a solution with all partial derivates equal to zero. Taking the partial derivative
with respect to c0 results in:

c0 = E[σ2(θj)](1− c1), (2.20)

because if:

f(c0, c1)
not.= E{[σ2(θj)− c0 − c1S

2
j ]2} = E{[σ2(θj)]2}+ c2

0 + c2
1E[(S2

j )2]−
−2c0E[σ2(θj)] + 2c0c1E(S2

j )− 2c1E[σ2(θj)S2
j ],
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then
∂f

∂c0
= 0 implies: 2c0 − 2E[σ2(θj)] + 2c1E(S2

j ) = 0, that is the verification of

the equality (2.20) that is readily performed (see (2.24)). Inserting the result (2.20)
in (2.19) we obtain:

Min
c1

E{[σ2(θj)−E(σ2(θj))(1− c1)− c1S
2
j ]2}. (2.21)

Taking the derivative with respect to c1, gives:

Cov[σ2(θj), S2
j ] = c1Cov[S2

j , S2
j ], (2.22)

because if:

f(c1)
not.= E{[σ2(θj)− E(σ2(θj))(1− c1)− c1S

2
j ]2} = E{[σ2(θj)]2 + E2[σ2(θj)]·

·(1− c1)2 + c2
1(S

2
j )2 − 2σ2(θj)E[σ2(θj)](1− c1)− 2σ2(θj)c1S

2
j +

+2E[σ2(θj)](1− c1)c1S
2
j } = E{[σ2(θj)]2}+ E2[σ2(θj)](1− c1)2 + c2

1E[(S2
j )2]−

−2E2[σ2(θj)](1− c1)− 2c1E[σ2(θj)S2
j ] + 2E[σ2(θj)](1− c1)c1E(S2

j ),

then
∂f

∂c1
= 0 implies:

−2E2[σ2(θj)](1− c1) + 2c1E[(S2
j )2] + 2E2[σ2(θj)]− 2E[σ2(θj)S2

j ]+

+2E[σ2(θj)]E(S2
j ) · (1− 2c1) = 0,

that is:

−E2[σ2(θj)] + c1E
2[σ2(θj)] + c1E[(S2

j )2] + E2[σ2(θj)]− E[σ2(θj)S2
j ]+

+E[σ2(θj)]E(S2
j )− 2E[σ2(θj)]E(S2

j )c1 = 0.
(2.23)

But

σ2(θj) = E(S2
j |θj) and so E[σ2(θj)] = E[E(S2

j |θj)] = E(S2
j ). (2.24)

Now after plugging (2.24) in (2.23) we obtain:

E[σ2(θj)S2
j ]− E[σ2(θj)]E(S2

j ) = c1{E[(S2
j )2]− E2(S2

j )},
that is

Cov[σ2(θj), S2
j ] = c1Cov(S2

j , S2
j ), or Cov[σ2(θj), S2

j ] = c1Var(S2
j )

and so the verification of the equality (2.22) is readily performed. But:

Cov[σ2(θj), S2
j ] = E{Cov[σ2(θj), S2

j |θj ]}+ Cov{E[σ2(θj)|θj ], E(S2
j |θj)} =

= E{E[σ2(θj)S2
j |θj ]−E[σ2(θj)|θj ]E(S2

j |θj)}+ Cov[σ2(θj), σ2(θj)] =

= E[σ2(θj)E(S2
j |θj)− σ2(θj)σ2(θj)] + Var[σ2(θj)] = E[σ2(θj)σ2(θj)−

−σ2(θj)σ2(θj)] + Var[σ2(θj)] = Var[σ2(θj)],

(2.25)
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Var(S2
j ) = Var[E(S2

j |θj)] + E[Var(S2
j |θj)] = Var[σ2(θj)] + E[Var(S2

j |θj)]. (2.26)

Inserting (2.25) and (2.26) in (2.22), the value of c1 follows as:

c1 = Var[σ2(θj)]/{Var[σ2(θj)] + E[Var(S2
j |θj)]}. (2.27)

We have
Var(S2

j |θj) = 2σ4(θj)/(t− 1) + O(t−2) ∼= 2σ4(θj)/(t− 1), (2.28)

for large values of t, and under the assumption of normality we get:

µ4(θj) = 3σ4(θj), (2.29)

because from statistics we recall some basic theorems:

(I) Suppose that X is a random variable, with Normal (µ, σ2) distribution and
in addition for all r ∈ N:

µ2r = E[(X − µ)2r],

then:
µ2r =

(2r)!
2rr!

σ2r.

(II) Suppose that X1, X2, . . . , Xn are independent random variables with the
same expectations µ and the variance σ2, and in addition for each r:

µ4 = E[(Xr − µ)4].

Let S̃2 be defined as: S̃2 =
1

n− 1

n∑

i=1

(Xi− X̄)2 the sample variance, where X̄ is

the sample mean of n i. i. d. random variables X1, X2, . . . , Xn , that is:

X̄ =
1
n

n∑

i=1

Xi.

Then the following relation is valid:

Var (S̃2) =
1
n

(
µ4 − n− 3

n− 1
σ4

)
.

Here (Xjs|θj), s = 1, t are n i. i. d. random variables, with: E(Xjs|θj) = µ(θj),
Var (Xjs|θj) = σ2(θj) and E{[Xjs − E(Xjs|θj)]4|θj} = µ4(θj) for all s = 1, t.

Let j be fixed. Under the assumption of normality we get: (Xjs|θj) ∈
N(µ(θj), σ2(θj)) for all s = 1, t. Applying result (I) to X = (Xjs|θj), for all s = 1, t
and r = 2 we have:

µ4(θj) =
(2 · 2)!
22 · 2!

(σ2(θj))2 = 3σ4(θj).

So the verification of the equality (2.29) is readily performed. Applying result
(II) to S̃2 = (S2

j |θj) we obtain:

Var (S2
j |θj) =

1
t

[
µ4(θj)− t− 3

t− 1
σ4(θj)

]
=

1
t

[
3σ4(θj)− t− 3

t− 1
σ4(θj)

]
=
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=
1
t
· 3(t− 1)− t + 3

t− 1
· σ4(θj) =

2t

t(t− 1)
σ4(θj) =

2σ4(θj)
t− 1

.

So the verification of the equality (2.28) is already performed.
Let a∗ = Var[σ2(θj)], s2∗ = E[σ4(θj)], then we obtain for large values of t the

following approximation:

c1
(2.27)
= a∗/{a∗+E[Var(S2

j |θj)]} (2.28)
= a∗/{a∗+2E[σ4(θj)]/(t−1)} = a∗/{a∗+2s2∗/(t−1)}.

Consequently one obtains the following linear estimator for the variance part of
the loading, i.e. the conditional expectation of σ2(θj):

E[σ2(θj)|Xj ] ∼= (1− c1)E[σ2(θj)] + c1S
2
j

(see (2.16) and (2.20)).

3 Conclusions

In this paper we have obtained linear approximations which are unbiased esti-
mates for the expected value part (i.e. for the conditional expectation of µ(θj)),
respectively for the variance part (i.e. for the conditional expectation of σ2(θj)) and
finally for the fluctuation part (the conditional variance of µ(θj)) of the loading from
the variance premium, using the greatest accuracy theory.

The present article contains a method to estimate risk premiums loaded by a
fraction of the variance of the risk, as opposed to the net premiums studied thus far
in the credibility theory.

The first section shows that the Esscher premium approaches the variance prin-
ciple and that this premium is derived as an optimal estimator minimizing a suitable
loss function. So, in the first section it is shown that it can be used as an approx-
imation to the variance loaded premium, by truncating a series expansion. Also,
the approach of the problem of Esscher premium, followed in the first section is
to consider the best linear credibility estimator which minimizes the exponentially
weighted squared error loss function.

The second section analyses and presents the linear non-homogeneous credibility
estimators for the separate parts of the variance premium. It happens that the
linear credibility approximations for each of the parts in the variance premium to
coincide with the unbiased estimates for the expected value part, the variance part
and the fluctuation part from the variance premium. The approach of the problem
of loaded premiums, followed in the second section is to simply add ”credibility” like
estimators for the separate parts of the variance premium.

So, the problem under discussion is to get linear approximations, which are un-
biased estimates for the expected value part, variance part, fluctuation part, i.e. for
the separate parts of the variance premium, using the classical model of Bühlmann
and the credibility for the Esscher premiums.
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