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Abstract. A generalized Lagrangian mechanics is a triple ΣGL = (M, E , Fe) formed
by a real n-dimensional manifold M , the generalized kinetic energy E and the external
forces Fe. The Lagrange equations (or fundamental equations) can be defined for a
generalized Lagrangian mechanical system ΣGL. We get a straightforward extension
of the notions of Riemannian, or Finslerian, or Lagrangian mechanical systems studied
in the recent book [7]. The applications of this systems in Mechanics, Physical Fields
or Relativistic Optics are pointed out. Much more information can be found in the
books or papers from References [1–10].
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1 Introduction

A generalized Lagrangian mechanical system

ΣGL = (M, E , Fe)

has the absolute energy

E(x, y) = gij(x, y)yiyj, (yi =
dxi

dt
),

or the kinetic energy

T (x, y) =
1

2
gij(x, y)yiyj,

where gij(x, y) is a d-tensor field on TM , covariant of order two, symmetric, non-
singular and of the constant signature.

The function Fe(x, y) is the external force a priori given as a vertical vector field
on TM :

Fe(x, y) = F i(x, y)
∂

∂yi
.

The Lagrange equations of the system ΣGL are:

Ei(E) = Fi(x, y), Fi(x, y) = gij(x, y)F j(x, y),
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where

Ei(E) =
d

dt

∂E

∂yi
−

∂E

∂xi
, yi =

dxi

dt
.

Thus, M is called the configuration space, TM is the velocity space, gij(x, y) is
the fundamental tensor and the pair GLn = (M,gij(x, y)) is a generalized Lagrange
space.

In some conditions we can associate to the mechanical system ΣGL a canonical
semi-spray S̆ depending on the system ΣGL only. The semi-spray S̆ is a dynamical
system on the velocity space TM , having the integral curves given by the evolution
curves Ei(E) = Fi.

Consequently, the pair (TM, S̆) determines the geometrical theory of the me-
chanical system ΣGL. The Riemannian, Finslerian and Lagrangian mechanical sys-
tems are pointed out as the particular cases of the mechanical systems ΣGL. The
fundamental geometric object field on the velocity spaces TM of the systems ΣGL

and its applications are studied too.
The geometry of Lagrange and Hamilton spaces was studied in [6, 7, 9]. The

works [1–6, 8, 10] contains distinct applications of the theory of Lagrange spaces.
We use the terminology from [7].

2 Generalized Lagrange space

The notion of generalized Lagrange space GLn can be introduced by the following
definition:

Definition 2.1. A generalized Lagrange space (or a GLn-space) is a pair GLn =
(M,g(x, y)), where M is a real n-dimensional manifold and gij(x, y) is a d-tensor
on the tangent manifold TM , covariant of order 2, symmetric, non-singular and of
constant signature. This tensor is called fundamental for the GLn-space.

We mentioned that a Lagrange space Ln = (M,L(x, y)) is a generalized Lagrange
space with the fundamental tensor

gij(x, y) =
1

2

∂2L(x, y))

∂yi∂yj
, (x, y) ∈ π−1(U) ∈ TM. (2.1)

But not any GLn-space is an Ln-space. Indeed, if GLn-space is given by its
fundamental tensor gij(x, y), it may happen that the system of the partial differential
equations (2.1) does not admit solutions with respect to L(x, y).

In this context the following assertions are important which contain large neces-
sary and sufficient conditions of the existence of solutions for the partial differential
equations (2.1):

Proposition 2.1. 10. If the system (2.1) admits a solution L(x, y), then the

d-tensor field
∂gij

∂yk is completely symmetric.

20. If the condition 10 is verified, i.e. the d-tensor field
∂gij

∂yk is completely sym-

metric, and the functions gij(x, y) are 0-homogeneous with respect to yi, then the
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function
L(x, y) = gij(x, y)yiyj + Ai(x)yi + U(x) (2.2)

is a solution of the system of equations (2.1) for any arbitrary d-co-vector field Ai(x)
and any arbitrary function U(x) on the manifold M .

The proof of Proposition 2.1 is not complicated. Of course, the Lagrange space
Ln = (M,L(x, y)) with the fundamental function (2.2) gives us an important class of
Lagrange spaces which describe the gravitational and electromagnetic phenomena.

Example 2.1. The pair GLn = (M,gij) with gij(x, y) = e2σ(x, y)γij(x), where
γij(x) is a semi-defined Riemannian tensor on the base manifold M and σ(x, y) is
a function on TM with the property ∂σ

∂yi is a non-vanishing co-vector field, is a
generalized semi-defined space.

Example 2.2. The pair GLn = (M,gij(x, y)) with

gij = γij(x) + (1 −
1

n2(x, y)
)yiyj, yi = gijy

j ,

where yij(x) is a semi-defined Riemannian tensor on the base manifold M and
n(x, y) > 1 is a smooth function (n is a refractive index), gives us a generalized
semi-defined Lagrange space. This metric is caled by R.G Bell (see [5, 6, 8]) the
Miron’s metric of Relativistic Optics.

Example 2.3. Any semi-defined Finsler space Fn = (M,F (x, y)) is a generalized
semi-defined Lagrange space.

For a generalized Lagrange space GLn = (M,gij(x, y)) to determine the non-
linear connection, obtained from the fundamental tensor gij(x, y), is an important
problem. In the previous three examples this is possible but, in general, it is not
possible. In the book [9] we pointed out a method for determining a non-linear
connection in the weakly regular spaces GLn, where the absolute energy

E(x, y) = gij(x, y)yiyj (2.3)

of the GLn-space is a regular Lagrangian.

We end the section with the following remarks:

Remarks: 2.1. The following sequence of inclusions holds:

{Rn} ⊂ {Fn} ⊂ {Ln} ⊂ {GLn}.

2.2. The Lagrange geometry is the geometrical theory of the spaces included in the
above sequence of inclusions.

3 The mechanical systems ΣGL

In this section the generalized Lagrangian mechanical systems are defined and
studied.
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Definitions 3.1. A generalized Lagrangian mechanical system is a triple

ΣGL = (M,
1

2
E(x, y), Fe(x, y)),

where:

a) M is an n-dimensional real manifold (configuration space);

b) 1

2
E(x, y) = T (x, y) is the kinetic energy, E(x, y) = gij(x, y)yiyj being the

absolute energy of a generalized Lagrange space GLn = (M,gij(x, y));

c) Fe = F i(x, y) ∂
∂yi is a given vertical vector field on TM (called the external

forces).

Of course, this definition has a geometrical meaning. The examples of GLn-
spaces, expressed in Section 2, give us very good examples of generalized Lagrangian
mechanical systems if we fix the components F i(x, y) of the external forces. For
instance, we can consider the external forces of the Liouville type: F i = a(x, y)yi,
where a(x, y) is a scalar function.

The covariant components of the external forces Fe are as follows:

Fi(x, y) = gij(x, y)F j(x, y). (3.1)

In the following, one may consider only the generalized Lagrangian mechanical
systems for which we can determine a non-linear connection N by means of the
fundamental tensor gij(x, y) of ΣGL. For instance, in the case when gij(x, y) is
weakly regular. Thus the absolute energy E(x, y) is a regular Lagrangian. So, the
kinetic energy T (x, y) = 1

2
E(x, y) is a regular Lagrangian. This property holds for

the Riemanian mechanical systems ΣR, for the Finslerian mechanical systems ΣF

and for the Lagrangian mechanical systems ΣL.

Therefore, further we can assume that the generalized Lagrangian mechanical
systems ΣGL = (M,T (x, y), Fe(x, y)) have a weakly regular fundamental tensor
gij(x, y), i.e. T (x, y) = 1

2
gij(x, y)yiyj is a regular Lagrangian.

Consequently, we have:

Proposition 3.1. The following entries are the components of a co-vector fields

Ei(E) =
d

dt

∂E

∂yi
−

∂E

∂xi
, yi =

dxi

dt
.

Thus, we can give now the following Postulate.

Postulate. The evolution equations (or the Lagrange equations) of a generalized
Lagrangian mechanical system ΣGL are:

Ei(E) = Fi(x, y), yi = (dxi)/dt. (3.2)
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Of course, the Lagrange equations can be written as follows

d

dt

∂T (x, y)

∂yi
−

∂T (x, y)

∂xi
=

1

2
Fi(x, y), yi =

dxi

dt
. (3.2)′

But (3.2) or (3.2)′ has a geometrical meaning. It is convenient to write the
Lagrange equations in the following form:

d2xi

dt2
+ 2Ği(x,

dx

dt
) =

1

2
F i(x,

dx

dt
),

2Ği(x, y) =
1

2
gis(

∂2E

∂yi∂xj
yj −

∂E

∂xi
).

(3.3)

Therefore, we can apply this method in the case of the mechanical systems
ΣR, ΣF , ΣL.

One gets an important result:

Theorem 3.1. We have:

10. The operator

S̆ = yi ∂

∂xi
− 2(Ği(x, y) −

1

2
F i(x, y)

∂

∂yi
) (3.4)

is a semi-spray on the velocity space TM = TM\{∅}.

20. The integral curves of the vector field S̆ are the evolution curves (3.3) of the
mechanical system ΣGL.

30. S̆ is a dynamical system, determined only by the mechanical system ΣGL.

The proof of this fundamental theorem can be found in the book [7].
Now, we can develop theory of the mechanical systems ΣGL = (M, E , Fe) only

by means of the mechanical entries gij(x, y), E(x, y), Fe(x, y), S(x, y).
Let us consider the energy of the systems ΣGL:

EE = yi ∂E

∂yi
− E . (3.5)

We can prove:

Theorem 2.2. The variation of energy EE along the evolution curves (3.3) is given
by:

dEE

dt
=

dxi

dt
F i(x,

dx

dt
). (3.6)

The external force Fe(x, y) is called dissipative if

gijF
iyj ≤ 0. (3.7)

From the previous theorem, follows

Theorem 3.3. The energy EE of the mechanical system ΣGL is decreasing on the
evolution curves (3.3) if and only if the external forces Fe are dissipative.
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Moreover, for the mechanical systems ΣGL the following assertions are true:

10. The canonical non-linear connection N̆ has the local components:

N̆ i
j =

∂Ği

∂yj
−

1

4

∂F i

∂yj
. (3.8)

20. The canonical metrical connection N̆ of the mechanical system ΣGL are the
generalized Christoffel equations:

L̆i
jk =

1

2
gis

( δ̆gjs

δxk
+

δ̆gsk

δxj
−

δ̆gjk

δxs

)

,

C̆i
jk =

1

2
gis

( ∂gj

∂yk
+

∂gsk

∂yj
+

∂gsk

∂ys

)

,

(3.9)

where δ̆
δxi = ∂

∂xi - ∂Ğs

∂yi
∂

∂ys .

Thus DΓ(N̆) = (L̆jk, C̆jk) is the canonical N̆ -linear connection of ΣGL with
respect to the fundamental tensor gij(x, y).

Conclusion. By using the geometrical object fields S̆, N̆ , DΓ(N̆) we can study
the theory of Generalized Lagrangian Mechanical Systems ΣGL.
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