Method of construction of topologies on any finite set

V. I. Arnautov

Abstract. Let a topology τ be defined on a finite set. We give the definition of quasiatoms in the lattice (τ, \subseteq) and study their properties. For any splitting of a finite set X into k subsets we give a method of constructing any topology on the set X for which this splitting is the set of all quasiatoms and the weight of this topological space is equal to k.

Mathematics subject classification: 54A10.

Keywords and phrases: finite set, topologies, lattice of all open sets, atoms, quasiatoms.

1 Introduction

In this article we study the properties of topologies which are defined on a finite set. This article is a continuation of the articles [1] and [2]. For any topology which is defined on a finite set we give the definition of quasiatoms in the lattice of all open sets in this topology 1 and we study their properties (see Theorem 1).

Moreover, for any splitting of a finite set X into k subsets we give a method of constructing any topology on X for which this splitting is the set of all quasiatoms and the weight of this topological space is equal to k (see Theorem 3).

2 Quasiatoms and their properties

1. Construction of quasiatoms.

Let τ be a topology on a finite set X. We construct by induction:

- The sequences $X_1(\tau), \ldots, X_t(\tau)$ and $X'_1(\tau), \ldots, X'_t(\tau)$ of subsets of the set X;
- The sequence of natural numbers s_1, \ldots, s_t ;

- The sequence $\widetilde{X}_1(\tau), \ldots, \widetilde{X}_t(\tau)$, where $\widetilde{X}_i(\tau)$ is a subset of the set X for any $1 \le i \le t$;

- The set $\widetilde{X}(\tau)$ of subsets of the set X as follows:

1.1. We take: $X_1(\tau) = X;$ The set $\widetilde{X}_1(\tau)$ is equal to the set of all atoms in the lattice $(\tau, \subseteq);$ $X'_1(\tau) = \bigcup_{U \in \widetilde{X}_1(\tau)} U.$

[©] V.I. Arnautov, 2012

¹It is known that (τ, \subseteq) is a lattice for any topology τ . Necessary concepts from lattice theory can be found in [3] and [4].

1.2. Suppose that for natural number t have already been defined:

- The sequences $X_1(\tau), \ldots, X_t(\tau)$ and $X'_1(\tau), \ldots, X'_t(\tau)$ of the subsets $X_i(\tau)$ and $X'_1(\tau)$ of the set X;

- The sequence of natural numbers s_1, \ldots, s_t ;

- The sequence $X_1(\tau), \ldots, X_t(\tau)$, where $X_i(\tau)$ is some subset of the set X, for $1 \le i \le t$.

1.3. We take:

$$X_{t+1}(\tau) = X \setminus \bigcup_{j=1}^{t} X'_{i}(\tau) \text{ and } \tau_{t+1} = \tau|_{X_{t+1}(\tau)} = \{U \bigcap X_{t+1}(\tau) | U \in \tau\}.$$

Let's consider the set $X_{t+1}(\tau)$ of all atoms in the lattice (τ_{t+1}, \subseteq) and also we take $X'_{t+1}(\tau) = \bigcup_{U \in \widetilde{X}_{t+1}(\tau)} U$.

1.4. As $X_{i+1}(\tau) \subset X_i(\tau)$ for any *i*, then from the finiteness of the set X it follows that there exists such natural number k that $X_{k+1} = \emptyset$. Then we take $\widetilde{X}(\tau) = \bigcup_{i=1}^{k} \widetilde{X}_i(\tau)$.

Remark 1. It is easy to notice that $X'_i(\tau) \subseteq X_i(\tau)$ for any $1 \le i \le k$.

Definition 1. If τ is a topology on a finite set X, then any nonempty subset $U \in \widetilde{X}_i(\tau)$ of the set X is called an atom of the level *i* in the lattice (τ, \subseteq) .

Every atom of some level is called a quasiatom if there is no necessity to specify its level.

Theorem 1. (Necessary designations see above in the construction of quasiatoms.) Let:

 $\tau \text{ be a topology on a finite set } X;$ $U \in \widetilde{X}(\tau) \text{ and } V(U) = \bigcap_{\substack{W \in \tau, U \subseteq W \\ W \in \tau, U \subseteq W}} W;$ $S_i(U,\tau) = V(U) \bigcap X'_i(\tau) \text{ for } 1 \leq i \leq k.$ Then the following statements are true: **Statement 1.** The set $\{U \mid U \in \widetilde{X}(\tau)\}$ is a splitting of the set X. **Statement 2.** The set $\{X'_1(\tau), \dots, X'_k(\tau)\}$ is a splitting of the set X. **Statement 3.** The set $\{X'_1(\tau), \dots, X'_k(\tau)\}$ is a splitting of the set $\widetilde{X}(\tau)$. **Statement 4.** If $U \in \widetilde{X}(\tau)$ and i(U) is a natural number such that $U \in \widetilde{X}_{i(U)}(\tau)$ (the existence and uniqueness of the number i(U) follow from the fact that $\{\widetilde{X}_i(\tau) \mid 1 \leq i \leq k\}$ is a splitting of the set $\widetilde{X}_i(\tau) \mid 1 \leq i \leq k\}$ is a splitting of the set $\widetilde{X}_i(\tau) \mid 1 \leq i \leq k\}$ is a splitting of the set $\widetilde{X}_i(\tau) \mid 1 \leq i \leq k\}$ is a splitting of the set $\widetilde{X}_i(\tau) \mid 1 \leq i \leq k\}$ is a splitting of the set $\widetilde{X}_i(\tau) \mid 1 \leq i \leq k\}$ is a splitting of the set $\widetilde{X}_i(\tau) \mid 1 \leq i \leq k\}$ is a splitting of the set $\widetilde{X}(\tau)$ (see Statement 3)) then: $U = S_t(U,\tau) \text{ for } t = i(U);$ $S_t(U,\tau) \neq \emptyset \text{ for } 1 \leq t < i(U);$ $S_t(U,\tau) = \emptyset \text{ for } i(U) < t \leq k.$ **Statement 5.** If $U, U' \in X(\tau)$ and $U' \bigcap S_t(U, \tau) \neq \emptyset$ for some $1 < t \le k$, then $S_q(U', \tau) \subseteq S_q(U, \tau)$ for any $1 \le q \le i(U')$.

Statement 6. If $U \in \widetilde{X}(\tau)$, then $V(U) = \bigcup_{t=1}^{i(U)} S_t(U, \tau)$.

Statement 7. If $U \in \widetilde{X}(\tau)$, then $U = V(U) \cap X'_{i(U)} = V(U) \cap X_{i(U)}$.

Statement 8. The set $\{V(U) \mid U \in \widetilde{X}(\tau)\}$ is the minimal base of the topological space (X, τ) and the cardinal of the set $\widetilde{X}(\tau)$ is equal to the weight of the topological space (X, τ) .

Proof. Statement 1. Let $x \in X$ and $m = \max\{i \mid x \in X_i(\tau)\}$. Then $x \notin X_{m+1}(\tau) = X \setminus \bigcup_{i=1}^{m} X'_i(\tau)$ and $x \in X_m(\tau) = X \setminus \bigcup_{i=1}^{m-1} X'_i(\tau)$, and hence, $x \in X'_m(\tau)$. As $X'_m = \bigcup_{U \in \widetilde{X}_m} U$, then $x \in U$ for some $U \in \widetilde{X}_m(\tau) \subseteq \widetilde{X}(\tau)$. From the randomness of the element $x \in X$ it follows that $X = \bigcup_{U \in \widetilde{X}(\tau)} U$.

Let now $U_1, U_2 \in \widetilde{X}(\tau)$ and $U_1 \neq U_2$. Then there are natural numbers $1 \leq i, j \leq k$ such that $U_1 \in \widetilde{X}_i(\tau)$ and $U_2 \in \widetilde{X}_j(\tau)$.

If $i \neq j$ and i < j (see 1.3 and Remark 1), then $U_2 \subseteq X'_j(\tau) \subseteq X_j \subseteq X \setminus \bigcup_{l < j} X'_l(\tau)$ and $U_1 \subseteq X'_i(\tau)$, and hence,

$$U_1 \bigcap U_2 \subseteq X'_i(\tau) \bigcap \left(X \setminus \bigcap_{l < j} X'_l(\tau) \right) = \emptyset,$$

i.e. in this case $U_1 \cap U_2 = \emptyset$.

For the case when j < i the equation $U_1 \cap U_2 = \emptyset$ is proved analogously. Let now i = j. Then U_1 and U_2 are atoms in a lattice (τ_i, \subseteq) . As $U_1 \cap U_2 \in \tau_i$ and $U_1 \cap U_2 \subset U_1$, then $U_1 \cap U_2 = \emptyset$ in this case, too.

Statement 1 is proved.

Statement 2. We prove this statement by induction on the number k.

If k = 1, then $X_2(\tau) = \emptyset$, and hence, the set X is the union of all atoms of the lattice (τ, \subseteq) , i.e. $X = \bigcup_{U \in \widetilde{X}_1(\tau)} U = X'_1(\tau)$. Then $\{X'_1(\tau)\}$ is a splitting of

the set X.

Let now for k = t and for any finite topological space Statement 2 be proved and let k = t + 1.

As the set of all atoms of the level i-1 in the lattice $(\tau|_{X_2(\tau)}, \subseteq)$ of topological space

$$(X_2(\tau),\tau|_{X_2(\tau)}) = (X \setminus X'_1(\tau),\tau|_{X \setminus X'_1(\tau)})$$

coincides with the set of all atoms of a level i in the lattice (τ, \subseteq) of topological space (X, τ) for any $2 \le i \le t+1$, then by the inductive assumption,

$$\{X'_{2}(\tau),\ldots,X'_{t+1}(\tau)\} = \{X'_{1}(\tau|_{X \setminus X'_{1}(\tau)}),\ldots,X'_{t}(\tau|_{X \setminus X'_{1}(\tau)}\})$$

is a splitting of the set $X \setminus X'_1(\tau)$. Then $\{X'_1(\tau), X'_2(\tau), \ldots, X'_{t+1}(\tau)\}$ will be a splitting of the set X.

Statement 2 is proved.

Statement 3. As, according to 1.4, $\widetilde{X}(\tau) = \bigcup_{i=1}^{k} \widetilde{X}_{i}(\tau)$, then it should be checked up that $\widetilde{X}_{i} \cap \widetilde{X}_{j} = \emptyset$ for $i \neq j$.

We assume that contrary, i.e. that $\widetilde{X}_i(\tau) \cap \widetilde{X}_j(\tau) \neq \emptyset$ for some numbers $i \neq j$. We can assume that i < j. Then $U \subseteq X'_i(\tau)$ and

$$U \subseteq X'_j(\tau) = X \setminus \left(\bigcup_{l=1}^{j-1} X'_l(\tau)\right) \subseteq X \setminus X'_i(\tau).$$

We have received the contradiction, hence $\widetilde{X}_i(\tau) \cap \widetilde{X}_j(\tau) = \emptyset$. Statement 3 is proved.

Statement 4. Let $U \in \widetilde{X}(\tau)$. Then (see the definition of the number i(U)) $U \in \widetilde{X}_{i(U)}(\tau)$, and hence, $U \subseteq X'_{i(U)}(\tau)$. As U is an atom of the level i(U) then there exists such $V_0 \in \tau$ that $U = V_0 \bigcap X_{i(U)}(\tau)$, and as (see Remark 2) $X'_{i(U)}(\tau) \subseteq X_{i(U)}(\tau)$, then $U \subseteq X'_{i(U)}(\tau) \bigcap V_0 \subseteq X_{i(U)}(\tau) \bigcap V_0 = U$, and hence, $U = V_0 \bigcap X'_{i(U)}(\tau)$.

If t = i(U), then $U \in \widetilde{X}_t(\tau)$, and hence, $U \subseteq X'_t(\tau)$. As $U \subseteq \bigcap_{W \in \tau, U \subseteq W} W = V(U)$ then $U \subseteq V(U) \cap X'_t(\tau) = S_t(U, \tau)$.

If now $x \in S_t(U,\tau) = V(U) \bigcap X'_t(\tau)$ then $x \in X'_t(\tau) = \bigcup_{W \in \widetilde{X}_t(\tau)} W$, and hence,

 $x \in W_0$ for some $W_0 \in \widetilde{X}_t(\tau)$ and $x \in V(U)$. As $\emptyset \neq W_0 \bigcap V(U) \in \tau|_{X_t(\tau)}$ and W_0 is an atom in the lattice $(\tau|_{X_t(\tau)}, \subseteq)$, then $W_0 \subseteq X'_t(\tau)$ and $W_0 \subseteq V(U)$. Then

$$x \in W_0 \subseteq V(U) \bigcap X'_t(\tau) = \left(\bigcap_{W \in \tau, U \subseteq W} W\right) \bigcap X'_t(\tau) \subseteq V_0 \bigcap X'_t(\tau) = U.$$

From the randomness of the element x it follows that $S_t(U,\tau) = V(U) \bigcap X'_t(\tau) \subseteq U$, and hence, $S_t(U,\tau) = V(U) \bigcap X'_t(\tau) = U$.

We prove Statement 4 for the case when t = i(U).

Let now $1 \le t < i(U) \le k$. As (see 1.3) $X_{i(U)}(\tau) \subseteq X_t(\tau)$, then

 $U \subseteq X_{i(U)}(\tau) \bigcap V(U) \subseteq V(U) \bigcap X_t(\tau) \in \tau_t$ (the definition of τ_t see in 1.3). From the finiteness of the set τ_t it follows that there exists an atom W in the lattice (τ_t, \subseteq) such that $W \subseteq V(U) \bigcap X_t(\tau)$. Then $W \in \widetilde{X}_t$, and hence, $\emptyset \neq W \subseteq X'_t(\tau) \bigcap V(U) =$ $S_t(U, \tau)$. We have proved Statement 4 for the case when t < i(U). Let now $i(U) < t \le k$. Then (see the construction of the sets $X_i(\tau)$ in 1.3)

$$X_t(\tau) = X \setminus \bigcup_{l=1}^{t-1} X'_l(\tau) \subseteq X \setminus X'_{i(U)}(\tau),$$

and hence,

$$S_t(U,\tau) = V(U) \bigcap X'_t(\tau) \subseteq V_0 \bigcap X'_t \subseteq V_0 \bigcap \left(X_{i(U)}(\tau) \bigcap X'_t \right) = \left(V_0 \bigcap X_{i(U)}(\tau) \right) \bigcap X'_t = U \bigcap X'_t(\tau) \subseteq X'_{i(U)}(\tau) \bigcap X'_t(\tau) = \emptyset$$

(the definition of the set V_0 see above), i.e. $S_t(U, \tau) = \emptyset$.

Statement 4 is proved.

Statement 5. Let $U, U' \in \widetilde{X}(\tau)$ and $U' \bigcap S_t(U, \tau) \neq \emptyset$ for some $1 < t \le k$. If $x \in U' \bigcap S_t(U, \tau)$ then $x \in U' = S_{i(U')}(U', \tau) \subseteq X'_{i(U')}(\tau)$ and $x \in S_t(U, \tau) \subseteq X'_t(\tau)$. As (see Statement 2) $X'_i(\tau) \bigcap X'_i(\tau) = \emptyset$ for $i \neq j$ then t = i(U').

From the definition of the number i(U') (see Statement 4) it follows that U' is an atom in the lattice $(\tau_{i(U')}, \subseteq)$. As $V(U) \cap X_{i(U')}(\tau) \in \tau_{i(U')}$ and

$$U' \bigcap \left(V(U) \bigcap X_{i(U')}(\tau) \right) = U' \bigcap (S_{i(U')}(U,\tau) \neq \emptyset$$

then $U' \bigcap S_{i(U')}(U, \tau) = U'$, and hence, $U' \subseteq S_{i(U')}(U, \tau) \subseteq V(U)$. Then $V(U') = \bigcap_{W \in \tau, U' \subseteq W} W \subseteq V(U)$, and hence,

$$S_q(U',\tau) = X'_q(\tau) \bigcap V(U') \subseteq X'_q(\tau) \bigcap V(U) = S_q(U,\tau)$$

for any $q \leq i(U')$.

Statement 5 is proved.

Statement 6. Let $U \in \widetilde{X}(\tau)$.

From the definition of the sets $S_t(U, \tau)$ (see the formulation of this theorem) it follows that

$$\bigcup_{t=1}^{i(U)} S_t(U,\tau) = \bigcup_{t=1}^{i(U)} \left(V(U) \bigcap X'_t(U,\tau) \right) \subseteq V(U)$$

Let now $z \in V(U)$. As (see Statement 2) $\{X'_1(\tau), \ldots, X'_k(\tau)\}$ is a splitting of the set X then $z \in X'_q(\tau)$ for some $1 \leq q \leq k$, and hence, $z \in V(U) \cap X'_q(\tau) = S_q(U, \tau)$. Then (see Statement 4) $q \leq i(U)$, and hence, $z \in \bigcup_{t=1}^{i(U)} S_t(U, \tau)$. From the randomness of the element $z \in V(U)$ it follows that $V(U) \subseteq$

From the randomness of the element $z \in V(U)$ it follows that $V(U) \subseteq \bigcup_{t=1}^{i(U)} S_t(U,\tau)$, and hence, $V(U) = \bigcup_{t=1}^{i(U)} S_t(U,\tau)$.

Statement 6 is proved.

Statement 7. If we apply successively Remark 2, Statement 6, Remark 2, and Statement 4 then we obtain

$$U \subseteq V(U) \bigcap X'_{i(U)}(\tau) \subseteq V(U) \bigcap X_{i(U)}(\tau) = \left(\bigcup_{i=1}^{i(U)} S_i(U,\tau)\right) \bigcap X_{i(U)}(\tau) \subseteq \left(\left(\bigcup_{i=1}^{i(U)-1} X'_i(\tau)\right) \bigcup S_{i(U)}(U,\tau)\right) \bigcap X_{i(U)}(\tau) = \left(\left(\bigcup_{i=1}^{i(U)-1} X'_i(\tau)\right) \bigcap X_{i(U)}(\tau)\right) \bigcup \left(S_{i(U)}(U,\tau) \bigcap X_{i(U)}(\tau)\right) = S_{i(U)}(U,\tau) \bigcap X_{i(U)}(\tau) = U,$$

and hence, $U = V(U) \bigcap X'_{i(U)}(\tau) = V(U) \bigcap X_{i(U)}(\tau)$. Statement 7 is proved.

Statement 8. In the beginning we shall show that the set $\{V(U) \mid U \in \widetilde{X}(\tau)\}$ is a base of the topological space (X, τ) .

Let $W \in \tau$ and $x \in W$. Then (see Statement 1) $x \in U_x$ for some $U_x \in \widetilde{X}(\tau)$. As (see Statement 4) $U_x \in \widetilde{X}_{i(U_x)}(\tau)$ then U_x is an atom in the lattice $(\tau_{i(U_x)}, \subseteq)$ and $x \in W \cap U_x \in \tau_{i(U_x)}$. Then $W \cap U_x = U_x$, and hence, $U_x \subseteq W$. From the definition of the set V(U) for $U \in \widetilde{X}$ it follows that $V(U_x) \subseteq W$. Then $W = \bigcup_{x \in W} \{x\} \subseteq$

 $\bigcup_{x \in W} V(U_x) \subseteq W$, and hence, $W = \bigcup_{x \in W} V(U_x)$.

From the randomness of the set $W \in \tau$ it follows that the set $\{V(U) \mid U \in \widetilde{X}(\tau)\}$ is a base of the topological space (X, τ) .

Now let's show that the set $\{V(U) \mid U \in \widetilde{X}(\tau)\}$ is the minimal base of the topological space (X, τ) .

Let \mathcal{B} be the minimal base of the topological space (X, τ) .

If $U_0 \in X(\tau)$ and $x \in U_0$ then there exists $W_0 \in \mathcal{B}$ such that $x \in W_0 \subseteq V(U_0)$. As $U_0 \in \widetilde{X}_{i(U_0)}(\tau)$ and $x \in U_0 \cap W_0$ then

$$\emptyset \neq U_0 \bigcap W_0 = U_0 \bigcap \left(W_0 \bigcap X_{i(U_0)}(\tau) \right) \in \tau_{i(U_0)},$$

and as U_0 is an atom in the lattice $(\tau_{i(U_0)}, \subseteq)$ then $U_0 \subseteq W_0$.

Then $V(U_0) = \bigcap_{W \in \tau, U_0 \subseteq W} W \subseteq W_0 \subseteq V(U_0)$, and hence, $V(U_0) = W_0 \in \mathcal{B}$.

From the randomness $U_0 \in \widetilde{X}(\tau)$ it follows that $\{V(U) \mid U \in \widetilde{X}(\tau)\} \subseteq \mathcal{B}$, and as \mathcal{B} is the minimal base of the topological space (X, τ) then $\{V(U) \mid U \in \widetilde{X}(\tau)\} = \mathcal{B}$, and hence, $\{V(U) \mid U \in \widetilde{X}(\tau)\}$ is the minimal base of the topological space (X, τ) .

To complete the proof of this statement it remains to check up that $V(U) \neq V(U')$ for any $U, U' \in \widetilde{X}(\tau)$ such that $U \neq U'$.

We suppose the contrary, i.e. that V(U) = V(U') for some $U, U' \in \widetilde{X}(\tau)$ and $U \neq U'$.

We can assume that $i(U) \leq i(U')$.

If i(U) = i(U') then (see Statement 7) $U = V(U) \bigcap X_{i(U)}(\tau) =$

 $V(U') \bigcap X_{i(U')}(\tau) = U'$. We have received the contradiction, and hence, $V(U) \neq V(U')$ for the case when i(U) = i(U').

If i(U) < i(U') (see 1.3) then $X_{i(U)}(\tau) \supset X_{i(U')}(\tau)$. Then (see Statement 7 and Remark 2)

$$X'_{i(U)}(\tau) \supseteq U = V(U) \bigcap X_{i(U)}(\tau) \supseteq V(U') \bigcap X_{i(U')}(\tau) = U'$$

and $U' \subseteq X'_{i(U')}(\tau)$, and hence, $X'_{i(U)}(\tau) \cap X'_{i(U')}(\tau) \neq \emptyset$.

We have received the contradiction with the statement 2, and hence, $V(U) \neq V(U')$ and for the case when $i(U) \neq i(U')$.

Statement 8 is proved, and hence, the theorem is completely proved.

Theorem 2. Let:

- τ and τ' be topologies on a finite set X;

- $\widetilde{X}(\tau)$ and $\widetilde{X}(\tau')$ be the sets of all quasiatoms in the lattices (τ, \subseteq) and (τ', \subseteq) , accordingly;

- $X_i(\tau)$ and $X_i(\tau')$ be the sets of all atoms of a level *i* in the lattices (τ, \subseteq) and (τ', \subseteq) , accordingly, for $i \in \mathbb{N}$;

- $k = \max\{i \mid \widetilde{X}'_i(\tau) \neq \emptyset\}$ and $k' = \max\{i \mid \widetilde{X}'_i(\tau') \neq \emptyset\};$

$$X'_{i}(\tau) = \bigcup_{U \in \widetilde{X}_{i}(\tau)} U \text{ and } X'_{i}(\tau') = \bigcup_{U' \in \widetilde{X}_{i}(\tau')} U \text{ for } 1 \le i \le k;$$

 $-S_i(U,\tau) = \left(\bigcap_{W \in \tau, U \subseteq W} W\right) \bigcap X'_i(\tau) \text{ for any } U \in \widetilde{X}(\tau) \text{ and any } 1 \le i \le k \text{ and}$

$$S_i(U',\tau') = \left(\bigcap_{W' \in \tau', U' \subseteq W'} W'\right) \bigcap X'_i(\tau') \text{ for any } U' \in \widetilde{X}(\tau') \text{ and any } 1 \le i \le k';$$

- i(U) and i'(U') be such natural numbers that $U \in X'_{i(U)}(\tau)$ and $U' \in X'_{i(U')}(\tau')$ for $U \in \widetilde{X}(\tau)$ and $U' \in \widetilde{X}(\tau')$.

Then $\tau = \tau'$ if and only if the following equalities are true:

- 1. k = k' and $\widetilde{X}_i(\tau) = \widetilde{X}_i(\tau')$ for any $1 \le i \le k$;
- 2. $X'_{i}(\tau) = X'_{i}(\tau')$ for any $1 \le i \le k$;
- 3. $\widetilde{X}(\tau) = \widetilde{X}(\tau');$
- 4. i(U) = i'(U) for any $U \in \widetilde{X}(\tau) = \widetilde{X}(\tau')$;
- 5. $S_i(U,\tau) = S_i(U,\tau')$ for any $U \in \widetilde{X}(\tau)$ and any $1 \le i \le i(U)$.

Proof. Necessity. Let $\tau = \tau'$.

From the construction of atoms of a level i (see 1.4) it follows that $\widetilde{X}_i(\tau) = \widetilde{X}_i(\tau')$ for any $i \in \mathbb{N}$.

Then k = k' and $X'_i(\tau) = X'_i(\tau')$ for any $1 \le i \le k$.

Moreover,
$$\widetilde{X}(\tau) = \bigcup_{i=1}^{n} \widetilde{X}_i(\tau) = \bigcup_{i=1}^{n} \widetilde{X}_i(\tau') = \widetilde{X}(\tau')$$
 and $i(U) = i'(U)$ for any $U \in \widetilde{X}$.

As
$$\bigcap_{W \in \tau, U \subseteq W} W = \bigcap_{W \in \tau', U \subseteq W} W$$
 for any $U \in \widetilde{X}$ then

$$S_i(U,\tau) = \left(\bigcap_{W \in \tau, U \subseteq W} W\right) \bigcap X'_i(\tau) = \left(\bigcap_{W \in \tau', U \subseteq W} W\right) \bigcap X'_i(\tau') = S_i(U,\tau'),$$

for any $U \in \widetilde{X}$ and any $1 \leq i \leq i(U)$. Necessity is proved.

Sufficiency. Let topologies τ and τ' be defined on a finite set X and let equalities 1-5 be true.

 $\bigcap_{W\in \tau, U\subseteq W} W$ and $V'(U)=\bigcap_{W\in \tau', U\subseteq W} W,$ then (see Statement 8 of If V(U) =

Theorem 1) $\{V(U) \mid U \in \widetilde{X}(\tau)\}$ and $\{V'(U) \mid U \in \widetilde{X}(\tau')\}$ are bases in topological spaces (X, τ) and (X, τ') , accordingly.

Then (see Statement 6 of Theorem 1)

$$V(U) = \bigcup_{t=1}^{i(U)} S_t(U,\tau) = \bigcup_{t=1}^{i(U)} S_t(U,\tau') = V'(U),$$

and hence, $\{V(U) \mid U \in \widetilde{X}(\tau)\} = \{V'(U) \mid U \in \widetilde{X}(\tau')\}.$

As any topology is defined unique by any its base then $\tau = \tau'$. The theorem is completely proved.

2. A method of the construction of topology on any finite set

Theorem 3. Let us have:

- 1. A finite set X which has the cardinality n;
- 2. A natural number k, $1 \le k \le n$;
- 2. A natural number κ , $1 \leq n \leq \dots$, 3. A splitting $\widetilde{X} = \{U_1, \dots, U_k\}$ of the set X; 4. A splitting $\{\widetilde{X}_1, \dots, \widetilde{X}_t\}$ of the set \widetilde{X} and let $X'_j = \bigcup_{U \in \widetilde{X}_j} U$ for any $1 \leq j \leq t$;

5. For every $U \in \widetilde{X}$ we shall designate by i(U) such a natural number that $U \in \widetilde{X}_{i(U)}$ (as $\{\widetilde{X}_i \mid 1 \leq i \leq t\}$ is a splitting of the set \widetilde{X} then the number i(U)exists and is unique);

6. For any $U \in X$ and any $1 \leq j \leq i(U)$ there exists such a nonempty subset $S_j(U) \subseteq X'_j$ that:

- $S_{i(U)}(U) = U$ for any $U \in X$;

- If $U, U' \in \widetilde{X}$ and $S_i(U) \cap U' \neq \emptyset$ for some $i \leq i(U)$, then $S_l(U') \subseteq S_l(U)$ for any $1 \leq l \leq i(U')$.

Then the following statements are true:

Statement 3.1. $\{X'_j \mid 1 \le j \le t\}$ is a splitting of the set X.

Statement 3.2. There exists the unique topology τ on the set X such that the following statements are true:

3.2.1.
$$\bigcup_{j=1}^{i(U)} S_j(U) = \bigcap_{W \in \tau, U \subseteq W} W;$$

3.2.2. The weight of the topological space (X, τ) is equal to k;

3.2.3. $\widetilde{X}_i = \widetilde{X}_i(\tau)$ and $X'_i = X'_i(\tau)$ for any $1 \le i \le t$, and hence,

$$\widetilde{X} = \bigcup_{i=1}^{t} \widetilde{X}_i = \bigcup_{i=1}^{t} \widetilde{X}_i(\tau) = \widetilde{X}(\tau)$$

(the definition of the set $\widetilde{X}(\tau)$), the set $\widetilde{X}_i(\tau)$), and the set $X'_i(\tau)$ see in 1.3);

3.2.4. $S_i(U,\tau) = S_i(U)$ for any $U \in \widetilde{X}$ and any $1 \leq i \leq i(U)$ (the definition of the set $S_i(U,\tau)$ see in Theorem 1).

Proof. Statement 3.1. If $x \in X$ then there exists $U \in \widetilde{X}$ such that $x \in U$ (see the condition 3 of this theorem). Then (see the condition 6 of this theorem) $x \in U = S_{i(U)}(U) \subseteq X'_{i(U)}$.

From the randomness of the element $x \in X$ it follows that $X = \bigcup_{i=1}^{l} X'_{i}$.

To complete the proof of this statement we need to check up that $X'_i \cap X'_j = \emptyset$ for $i \neq j$.

We assume the contrary, i.e. that $X'_i \cap X'_j \neq \emptyset$ for some $i \neq j$, and let $z \in X'_i \cap X'_j$. Then (see the condition 4 of this theorem) there are $U \in \widetilde{X}_i \subseteq \widetilde{X}$ and $U' \in \widetilde{X}_j \subseteq \widetilde{X}_i(\tau)$ such that $z \in U$ and $z \in U'$.

As $\widetilde{X}_1, \ldots, \widetilde{X}_t$ is a splitting of the set \widetilde{X} and $i \neq j$ then $U \neq U'$, and as $z \in U \cap U'$ then we receive the contradiction whit the condition 3 of this theorem.

Statement 3.1 is proved.

Statement 3.2. For any $U \in \widetilde{X}$ we consider the set $W(U) = \bigcup_{i=1}^{i(U)} S_i(U)$, and let $\mathbf{B} = \{W(U) \mid U \in \widetilde{X}\}.$

We designate by τ the set of all subsets of the set X each of which can be presented as a union of some sets from **B**.

We show that τ is the required topology on the set X.

As
$$\emptyset = \bigcup_{U \in \emptyset} U$$
 then $\emptyset \in \tau$.

Let now $x \in X$. Then (see the condition 3) $x \in U$ for some $U \in \widetilde{X}$, and hence, $x \in U = S_{i(U)}(U) \subseteq \bigcup_{i=1}^{i(U)} S_i(U) = W(U).$

From the randomness of the element $x \in X$ it follows that $\bigcup_{U \in \widetilde{X}} W(U) = X$, and

hence, $X \in \tau$.

Let now $A, C \in \tau$ and $x \in A \cap C$.

As \widetilde{X} is a splitting of the set X then there exists $U_x \in \widetilde{X}$ such that $x \in U_x = S_{i(U_x)}(U_x)$.

37

From the definition of the set τ it follows that there are $U \in \widetilde{X}$ and $U' \in \widetilde{X}$ such that $x \in W(U) \subseteq A$ and $x \in W(U') \subseteq C$.

As
$$W(U) = \bigcup_{i=1}^{\infty} S_i(U)$$
, then $x \in S_{i_1}(U)$ for some $1 \le i_1 \le i(U)$.

So, we have that $U, U_x \in X$ and $x \in S_{i_1}(U) \cap U_x$.

As $x \in U_x = S_{i(U_x)} \subseteq X'_{i(U_x)}$ and $x \in S_{i_1}(U) \subseteq X'_{i_1}$ then (see Statement 3.1) $i(U_x) = i_1 \leq i(U)$. Then (see the condition 6) $S_l(U_x) \subseteq S_l(U)$ for any $1 \leq l \leq i(U_x)$, and hence,

$$W(U_x) = \bigcup_{l=1}^{i(U_x)} S_l(U_x) \subseteq \bigcup_{l=1}^{i(U_x)} S_l(U) \subseteq \bigcup_{l=1}^{i(U)} S_l(U) = W(U) \subseteq A.$$

Similarly, it is proved that $W(U_x) \subseteq W(U') \subseteq C$.

Then $W(U_x) \subseteq A \cap C$ for any element $x \in A \cap C$, and hence,

$$A\bigcap C = \bigcup_{x \in A \cap C} \{x\} \subseteq \bigcup_{x \in A \cap C} W(U_x) \subseteq A \bigcap C,$$

i.e. $A \cap B = \bigcup_{x \in A \cap C} W(U_x)$. From the definition of the set τ it follows that

 $A \bigcap C \in \tau.$

As any union of sets each of which is some union of sets from **B** is a union of sets from **B** then τ is a topology on the set X.

Now let's check up that for the topology τ Statements 3.2.1 – 3.2.4 are true.

3.2.1. Let $U \in X$ and let $W \in \tau$ be such that $U \subseteq W$.

Let's choose some element $x \in U$. From the definition of the topology τ it follows that there exists $U' \in \widetilde{X}$ such that $x \in W(U') \subseteq W$. As $W(U') = \bigcup_{j=1}^{i(U')} S_j(U')$ then $x \in S_{j_0}(U')$ for some $j_0 \leq i(U')$.

Then $x \in U \bigcap S_{j_0}(U')$, and hence, (see the condition 6) $S_l(U) \subseteq S_l(U')$ for any $1 \leq l \leq i(U)$.

As $x \in U = S_{i(U)}(U) \subseteq X'_{i(U)}$ and $x \in S_{j_0}(U') \subseteq X'_{j_0}$ then from Statement 3.1 it follows that $i(U) = j_0 \leq i(U')$.

Then $W(U) = \bigcup_{l=1}^{i(U)} S_l(U) \subseteq \bigcup_{l=1}^{i(U')} S_l(U') = W(U') \subseteq W.$

From the randomness of the set $W \in \tau$ it follows that $W(U) \subseteq \bigcap_{W \in \tau, U \subseteq W} W$.

Moreover, as $U = S_{i(U)}(U) \subseteq \bigcup_{i=1}^{i(U)} S_i(U) = W(U) \in \tau$ then $\bigcap_{W \in \tau, U \subseteq W} W \subseteq W(U)$, and hence, $\bigcap_{W \in \tau, U \subseteq W} W = W(U)$.

Statement 3.2.1 is proved.

3.2.2. We notice that from the definition of the topology τ it follows that the set **B** is a base of the topological space (X, τ) .

Let's show that **B** is the minimal base of the topological space (X, τ) .

Let **B'** be the minimal base of the topological space (X, τ) and let $W \in \mathbf{B}$. Then $W = W(U) = \bigcup_{t=1}^{i(U)} S_t(U)$ for some $U \in \widetilde{X}$.

We choose some element $x \in U$. Then $x \in U = S_{i(U)}(U) \subseteq W(U)$, and as $W(U) \in \tau$ then there exists $W' \in \mathbf{B}'$ such that $x \in W' \subseteq W(U)$.

As $W' \in \tau$ then (see the definition of the topology τ) there exists $U' \in \widetilde{X}$ such that $x \in W(U') = \bigcup_{i=1}^{i(U')} S_i(U') \subseteq W'$, and hence, $x \in S_{j_0}(U')$ for some $1 \leq j_0 \leq i(U')$. Then $x \in U \bigcap S_{j_0}(U')$, and according to the condition 6 $S_l(U) \subseteq S_l(U')$ for any $l \leq i(U)$.

Moreover, as in the proof of Statement 3.2.1 it can be proved that $i(U) = j_0 \le i(U')$. Then

$$W(U) = \bigcup_{j=1}^{i(U)} S_j(U) \subseteq \bigcup_{j=1}^{i(U)} S_j(U') \subseteq \bigcup_{j=1}^{i(U')} S_j(U) = W(U') \subseteq W' \subseteq W(U),$$

i.e. $W(U) = W' \in \mathbf{B}'$. From the randomness of $U \in \widetilde{X}$ it follows that $\mathbf{B} \subseteq \mathbf{B}'$.

Then from the minimality of the base \mathbf{B}' it follows that $\mathbf{B} = \mathbf{B}'$.

To complete the proof of Statement 3.2.2 it remains to prove that $W(U) \neq W(U')$ for any $U, U' \in \widetilde{X}$ and $U \neq U'$

We can assume that $i(U) \leq i(U')$.

If i(U) < i(U') (see the definition of the set W(U), the property 6, and Statement 3.2.1) then

$$W(U) \bigcap X'_{i(U')} = \left(\bigcup_{i=1}^{i(U)} S_i(U)\right) \bigcap X'_{i(U')} \subseteq \left(\bigcup_{i=1}^{i(U)} X'_i\right) \bigcap X'_{i(U')} = \emptyset \neq$$
$$S_{i(U')}(U') = \left(\left(\bigcup_{i=1}^{i(U')-1} S_i(U)\right) \bigcap X'_{i(U')}\right) \bigcup \left(S_{i(U')} \bigcap X'_{i(u')}\right) =$$
$$\left(\bigcup_{i=1}^{i(U')} S_i(U')\right) \bigcap X'_{i(U')} = W(U') \bigcap X'_{i(U')},$$

and hence, $W(U) \neq W(U')$ for the case i(U) < i(U'). If i(U) = i(U') then (see Statement 3.2.1)

$$W(U)\bigcap X'_{i(U)} = \left(\bigcup_{i=1}^{i(U)} S_i(U)\right)\bigcap X'_{i(U)} = S_{i(U)} = U \neq$$

$$U' = S_{i(U')} = \left(\bigcup_{i=1}^{i(U)} S_i(U')\right) \bigcap X'_{i(U)} = W(U') \bigcap X'_{i(U)},$$

and hence, $W(U) \neq W(U')$ for the case i(U) = i(U'), too. Statement 3.2.2 is proved.

3.2.3. We prove the equalities $\widetilde{X}_i = \widetilde{X}_i(\tau)$ and $X_i = X'_i(\tau)$ by induction on *i*. Let i = 1.

In the beginning let's prove that $\widetilde{X}_1 \subseteq \widetilde{X}_1(\tau)$. We assume the contrary, i.e. that $\widetilde{X}_1 \nsubseteq \widetilde{X}_1(\tau)$, and let $U \in \widetilde{X}_1 \setminus \widetilde{X}_1(\tau)$. Then i(U) = 1, and hence, $U = S_1(U) = \bigcup_{i=1}^{1} S_i(U) \in \tau$. As $U \notin \widetilde{X}_1(\tau)$, then $W \subset U$, for some $W \in \tau$. From the definition of the topology τ it follows that there exists $U' \in \widetilde{X}$ such that $\bigcup_{i=1}^{i(U')} S_i(U') \subseteq W \subset U$, and hence, $S_1(U') \cap U = S_1(U') \neq \emptyset$. Then by the condition $6 U = S_1(U) \subseteq S_1(U') \subseteq W \subset U$, and hence, U = W.

We have received the contradiction (see the choice of U), and hence, $X_1 \subseteq X_1(\tau)$. Let now $U \in X_1(\tau)$. Then U is an atom in the lattice (τ, \subseteq) , and hence, $U \in \tau$. From the definition of the topology τ it follows that there exists $U' \in \widetilde{X}$ such that $W(U') = \bigcup_{i=1}^{i(U')} S_i(U') \subseteq U.$ By the condition 6 of this theorem $X'_1 \supseteq S_1(U') \neq \emptyset.$ As $X'_1 = \bigcup_{W \in \widetilde{X}_1}$ then $U_0 \cap S_1(U') \neq \emptyset$ for some $U_0 \in \widetilde{X}_1$. Then $i(U_0) = 1$ and

by the condition 6, we receive that $U_0 = S_1(U_0) \subseteq S_1(U') \subseteq \bigcup_{i=1}^{i(U')} S_i(U') \subseteq U$. As

 $U_0 = \bigcup_{i=1}^{1} S_i(U_0) \in \tau$ and U is an atom in the lattice (τ, \subseteq) then $U = U_0 \in \widetilde{X}_1$.

From the randomness of the set $U \in \widetilde{X}_1(\tau)$ it follows that $\widetilde{X}_1(\tau) \subseteq \widetilde{X}_1$, and hence, $X_1(\tau) = X_1$.

Then
$$X'_1 = \bigcup_{U \in \widetilde{X}_1} U = \bigcup_{\substack{U \in \widetilde{X}_1(\tau) \\ \sim}} U = X'_1(\tau)$$

Hence, the equalities $\widetilde{X}_i = \widetilde{X}_i(\tau)$ and $X_i = X'_i(\tau)$ for i = 1 are true.

We suppose that the equalities $\widetilde{X}_i(\tau) = \widetilde{X}_i$ and $X'_i(\tau) = X'_i$ are true for $i \leq s$ and any finite set, any natural number k, any set \widetilde{X} , the sets $\widetilde{X}_1, \ldots, \widetilde{X}_k$, and the subsets $S'_{i}(U) = S_{s+j}(U)$ for $U \in \widetilde{Y}$ and $j \leq k-s$ for which the conditions of this theorem are satisfied.

Let's consider:

- The set $Y = X \setminus \left(\bigcup_{i=1}^{s} X'_{i}\right);$
- The natural number k s;
- The set $\widetilde{Y} = \bigcup_{i=s+1}^{k} \widetilde{X}_i$; The sets $\widetilde{Y}_1 = \widetilde{X}_{s+1}, \dots, \widetilde{Y}_{k-s} = \widetilde{X}_k$; The subsets $S'_j(U) = S_{s+j}(U)$ for $U \in \widetilde{Y}$ and $j \leq k-s$.

It is easy to notice that the conditions of this theorem are satisfied for them. Then applying Statements 3.2.1, 3.2.2 and 3.2.3 for the case i = 1 we can construct a topology τ' on the set Y such that the set $\{W'(U) = \bigcup_{i=1}^{i(U)-s} S'_i(U) \mid U \in \widetilde{Y}\}$ is a base of the topological space (Y, τ') and $\widetilde{Y}_1 = \widetilde{Y}_1(\tau')$.

As $S_i \subseteq X'_i$ for $1 \le i \le s$ and $X'_i \bigcap X'_j = \emptyset$ for $i \ne j$ then

$$W'(U) = \bigcup_{i=1}^{i'(U)} S'_i(U) = \bigcup_{i=s+1}^{i(U)} S_i(U) = \left(\bigcup_{i=1}^{i(U)} S_i(U)\right) \bigcap \left(X \setminus \left(\bigcup_{i=1}^s X'_i\right)\right) = \left(\bigcup_{i=1}^{i(U)} S_i(U)\right) \bigcap \left(X \setminus \left(\bigcup_{i=1}^s X'_i(\tau)\right)\right) = W(U) \bigcap X_{s+1}(\tau).$$

As the sets $\{W'(U) \mid U \in \widetilde{Y}\}$ and $\{W(U) \mid U \in \widetilde{X}\}$ are bases of the topological spaces (Y, τ') and (X, τ) , accordingly, and

$$Y = X \setminus \left(\bigcup_{i=1}^{s} X_{i}^{\prime}\right) = X \setminus \left(\bigcup_{i=1}^{s} X_{i}^{\prime}(\tau)\right) = X_{s+1}(\tau)$$

then $\tau' = \tau|_{X_{s+1}} = \tau_{s+1}$, and hence, the set $\widetilde{X}_{s+1} = \widetilde{Y}_1$ is the set of all atoms in the lattice (τ_{s+1}, \subseteq) , i.e. $\widetilde{X}_{s+1} = \widetilde{X}_{s+1}(\tau)$.

Then

$$X'_{s+1} = \bigcup_{U \in \tilde{X}_{s+1}} U = \bigcup_{U \in \tilde{X}_{s+1}(\tau)} U = X'_{s+1}(\tau).$$

Statement 3.2.3 is proved for case i = s + 1.

3.2.4. As $X'_i(\tau) = X'_i$ for any $1 \le i \le t$ then (see Statements 3.2.1, 3.1, and the condition 6) $S_j(U,\tau) = V(U) \cap X'_j(\tau) = \left(\bigcap_{V \in \tau, U \subseteq V} V\right) \cap X'_j(\tau) = \left(\bigcup_{i=1}^{i(U)} S_i(U)\right) \cap X'_j = S_j(U).$

So, we have proved that $S_j(U,\tau) = S_j(x)$ for any $1 \le j \le t$ and any $U \in \widetilde{X}$. Statement 3.2.4 is proved.

To complete the proof of Statement 3.2 it is necessary to check up the uniqueness of the topology for which Statements 3.2.1 - 3.2.4 are true. But it follows from Theorem 2.

Statement 3.2 is proved, and hence, the theorem is completely proved.

Example 1. The method which has been specified in Theorem 3 will be applied now for constructing a topology τ on a finite set X of cardinality n.

1. We fix a positive integer $k \leq n$ (number k be the weight of the topological space (X, τ)).

2. Consider a partition \widetilde{X} of the set X into k subsets (the set \widetilde{X} be the set of all quasiatoms in the topological space (X, τ)).

V. I. ARNAUTOV

3. Fix a natural number $t \leq k$ and consider a sequence k_1, \ldots, k_t of positive integers such that $\sum_{i=1}^{t} k_i = k$.

4. Consider a sequence $\widetilde{X}_1, \ldots, \widetilde{X}_t$ such that the set $\{\widetilde{X}_1, \ldots, \widetilde{X}_t\}$ is a partition of the set \widetilde{X} and $|X_i| = k_i$ for $1 \le i \le t$. (For every $1 \le i \le t$ the set \widetilde{X}_i be the set of all quasiatoms of level i in the topological space (X, τ) .)

5. For any integer $1 \leq i < t$ we consider the set \overline{X}_i of all nonempty subsets of the set \widetilde{X}_i .

6. For any integer $2 \leq i \leq t$ we consider a map $f_i : \widetilde{X}_i \to \overline{X}_{i-1}$.

7. For any positive integers $1 < i \leq j \leq t$ and any $U \in \widetilde{X}_j$ we consider the positive integer i(U) = j and the subset $S_i(U)$ of the set \overline{X}_i such that $S_i(U) = \{U\}$ for i = j and $S_i(U) = f_{i+1}(f_{i+2}(\dots f_j(U)\dots))$ for 1 < i < j.

It is easy to see that the natural number k, the partition \widetilde{X} of the set X, the sequence $\widetilde{X}_1, \ldots, \widetilde{X}_t$, and subsets $S_i(U)$ of the set \overline{X}_i satisfy the conditions of Theorem 2, and hence, on the set X there exists the unique topology τ for which the i(U) set $\{\bigcup | U \in \widehat{X}\}$ is a base of the topological space (X, τ) .

References

- ARNAUTOV V. I., KOCHINA A. V. The method of construction of one-point expansions of a topology on a finite set and its application, Bul. Acad. Ştiinţe Repub. Moldova. Mat., 2010, No. 3(64), 67–76.
- [2] ARNAUTOV V. I. Estimation of the number of one-point expansions of a topology which is given on a finite set, Bul. Acad. Stiinte Repub. Moldova, Mat., 2011, No. 2 (65), 17–22
- [3] SKORNYAKOV L. A. Elements of the theory of structures, Moscow, Nauka, 1982 (in Russian).
- [4] BIRKGOFF G. Theory of lattices, Moscow, Nauka, 1984 (in Russian).

V. I. ARNAUTOV Institute of Mathematics and Computer Science Academy of Sciences of Moldova 5 Academiei str. Chişinău MD-2028 Moldova Received May 24, 2012 Revised September 21, 2012

E-mail: arnautov@math.md