
BULETINUL ACADEMIEI DE ŞTIINŢE
A REPUBLICII MOLDOVA. MATEMATICA
Number 2(69), 2012, Pages 29–42
ISSN 1024–7696

Method of construction of topologies on any finite set

V. I.Arnautov

Abstract. Let a topology τ be defined on a finite set. We give the definition of
quasiatoms in the lattice (τ,⊆) and study their properties. For any splitting of a finite
set X into k subsets we give a method of constructing any topology on the set X for
which this splitting is the set of all quasiatoms and the weight of this topological space
is equal to k.
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1 Introduction

In this article we study the properties of topologies which are defined on a finite
set. This article is a continuation of the articles [1] and [2]. For any topology which
is defined on a finite set we give the definition of quasiatoms in the lattice of all open
sets in this topology 1 and we study their properties (see Theorem 1).

Moreover, for any splitting of a finite set X into k subsets we give a method of
constructing any topology on X for which this splitting is the set of all quasiatoms
and the weight of this topological space is equal to k (see Theorem 3).

2 Quasiatoms and their properties

1. Construction of quasiatoms.

Let τ be a topology on a finite set X. We construct by induction:

- The sequences X1(τ), . . . ,Xt(τ) and X ′
1(τ), . . . ,X ′

t(τ) of subsets of the set X;

- The sequence of natural numbers s1, . . . , st;

- The sequence X̃1(τ), . . . , X̃t(τ), where X̃i(τ) is a subset of the set X for any
1 ≤ i ≤ t;

- The set X̃(τ) of subsets of the set X as follows:

1.1. We take:

X1(τ) = X;

The set X̃1(τ) is equal to the set of all atoms in the lattice (τ,⊆);

X ′
1(τ) =

⋃

U∈X̃1(τ)

U .

c© V. I.Arnautov, 2012
1It is known that (τ,⊆) is a lattice for any topology τ . Necessary concepts from lattice theory

can be found in [3] and [4].
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1.2. Suppose that for natural number t have already been defined:
- The sequences X1(τ), . . . ,Xt(τ) and X ′

1(τ), . . . ,X ′
t(τ) of the subsets Xi(τ) and

X ′
1(τ) of the set X;

- The sequence of natural numbers s1, . . . , st;

- The sequence X̃1(τ), . . . , X̃t(τ), where X̃i(τ) is some subset of the set X, for
1 ≤ i ≤ t.

1.3. We take:

Xt+1(τ) = X \
t⋃

j=1
X ′

i(τ) and τt+1 = τ |Xt+1(τ) = {U
⋂

Xt+1(τ)|U ∈ τ}.

Let’s consider the set X̃t+1(τ) of all atoms in the lattice (τt+1,⊆) and also we
take X ′

t+1(τ) =
⋃

U∈X̃t+1(τ)

U .

1.4. As Xi+1(τ) ⊂ Xi(τ) for any i, then from the finiteness of the set X it
follows that there exists such natural number k that Xk+1 = ∅. Then we take

X̃(τ) =
k⋃

i=1
X̃i(τ).

Remark 1. It is easy to notice that X ′
i(τ) ⊆ Xi(τ) for any 1 ≤ i ≤ k.

Definition 1. If τ is a topology on a finite set X, then any nonempty subset
U ∈ X̃i(τ) of the set X is called an atom of the level i in the lattice (τ,⊆).

Every atom of some level is called a quasiatom if there is no necessity to specify
its level.

Theorem 1. (Necessary designations see above in the construction of quasiatoms.)
Let:

τ be a topology on a finite set X;
U ∈ X̃(τ) and V (U) =

⋂
W∈τ,U⊆W

W ;

Si(U, τ) = V (U)
⋂

X ′
i(τ) for 1 ≤ i ≤ k.

Then the following statements are true:

Statement 1. The set {U | U ∈ X̃(τ)} is a splitting of the set X.

Statement 2. The set {X ′
1(τ), . . . ,X ′

k(τ)} is a splitting of the set X.

Statement 3. The set {X̃i(τ) | 1 ≤ i ≤ k} is a splitting of the set X̃(τ).

Statement 4. If U ∈ X̃(τ) and i(U) is a natural number such that U ∈ X̃i(U)(τ)

(the existence and uniqueness of the number i(U) follow from the fact that {X̃i(τ) |
1 ≤ i ≤ k} is a splitting of the set X̃(τ) (see Statement 3)) then:

U = St(U, τ) for t = i(U);
St(U, τ) 6= ∅ for 1 ≤ t < i(U);
St(U, τ) = ∅ for i(U) < t ≤ k.
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Statement 5. If U,U ′ ∈ X̃(τ) and U ′
⋂

St(U, τ) 6= ∅ for some 1 < t ≤ k, then
Sq(U

′, τ) ⊆ Sq(U, τ) for any 1 ≤ q ≤ i(U ′).

Statement 6. If U ∈ X̃(τ), then V (U) =
i(U)⋃
t=1

St(U, τ).

Statement 7. If U ∈ X̃(τ), then U = V (U)
⋂

X ′
i(U) = V (U)

⋂
Xi(U).

Statement 8. The set {V (U) | U ∈ X̃(τ)} is the minimal base of the topological
space (X, τ) and the cardinal of the set X̃(τ) is equal to the weight of the topological
space (X, τ).

Proof. Statement 1. Let x ∈ X and m = max{i | x ∈ Xi(τ)}. Then x /∈

Xm+1(τ) = X \
m⋃

i=1
X ′

i(τ) and x ∈ Xm(τ) = X \
m−1⋃
i=1

X ′
i(τ), and hence, x ∈ X ′

m(τ).

As X ′
m =

⋃

U∈X̃m

U , then x ∈ U for some U ∈ X̃m(τ) ⊆ X̃(τ).

From the randomness of the element x ∈ X it follows that X =
⋃

U∈X̃(τ)

U .

Let now U1, U2 ∈ X̃(τ) and U1 6= U2. Then there are natural numbers
1 ≤ i, j ≤ k such that U1 ∈ X̃i(τ) and U2 ∈ X̃j(τ).

If i 6= j and i < j (see 1.3 and Remark 1), then U2 ⊆ X ′
j(τ) ⊆ Xj ⊆ X \

⋃
l<j

X ′
l(τ)

and U1 ⊆ X ′
i(τ), and hence,

U1

⋂
U2 ⊆ X ′

i(τ)
⋂(

X \
⋂

l<j

X ′
l(τ)

)
= ∅,

i.e. in this case U1
⋂

U2 = ∅.

For the case when j < i the equation U1
⋂

U2 = ∅ is proved analogously.

Let now i = j. Then U1 and U2 are atoms in a lattice (τi,⊆). As U1
⋂

U2 ∈ τi

and U1
⋂

U2 ⊂ U1, then U1
⋂

U2 = ∅ in this case, too.

Statement 1 is proved.

Statement 2. We prove this statement by induction on the number k.

If k = 1, then X2(τ) = ∅, and hence, the set X is the union of all atoms
of the lattice (τ,⊆), i.e. X =

⋃

U∈X̃1(τ)

U = X ′
1(τ). Then {X ′

1(τ)} is a splitting of

the set X.

Let now for k = t and for any finite topological space Statement 2 be proved and
let k = t + 1.

As the set of all atoms of the level i − 1 in the lattice (τ |X2(τ),⊆) of topological
space

(X2(τ), τ |X2(τ)) = (X \ X ′
1(τ), τ |X\X′

1(τ))
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coincides with the set of all atoms of a level i in the lattice (τ,⊆) of topological
space (X, τ) for any 2 ≤ i ≤ t + 1, then by the inductive assumption,

{X ′
2(τ), . . . ,X ′

t+1(τ)} = {X ′
1(τ |X\X′

1(τ)), . . . ,X
′
t(τ |X\X′

1(τ)})

is a splitting of the set X \ X ′
1(τ). Then {X ′

1(τ),X ′
2(τ), . . . ,X ′

t+1(τ)} will be a
splitting of the set X.

Statement 2 is proved.

Statement 3. As, according to 1.4, X̃(τ) =
k⋃

i=1
X̃i(τ), then it should be checked

up that X̃i

⋂
X̃j = ∅ for i 6= j.

We assume the contrary, i.e. that X̃i(τ)
⋂

X̃j(τ) 6= ∅ for some numbers i 6= j.
We can assume that i < j. Then U ⊆ X ′

i(τ) and

U ⊆ X ′
j(τ) = X \

(j−1⋃

l=1

X ′
l(τ)

)
⊆ X \ X ′

i(τ).

We have received the contradiction, hence X̃i(τ)
⋂

X̃j(τ) = ∅.
Statement 3 is proved.

Statement 4. Let U ∈ X̃(τ). Then (see the definition of the number i(U))
U ∈ X̃i(U)(τ), and hence, U ⊆ X ′

i(U)(τ). As U is an atom of the level i(U)
then there exists such V0 ∈ τ that U = V0

⋂
Xi(U)(τ), and as (see Remark 2)

X ′
i(U)(τ) ⊆ Xi(U)(τ), then U ⊆ X ′

i(U)(τ)
⋂

V0 ⊆ Xi(U)(τ)
⋂

V0 = U , and hence,

U = V0
⋂

X ′
i(U)(τ).

If t = i(U), then U ∈ X̃t(τ), and hence, U ⊆ X ′
t(τ). As U ⊆

⋂
W∈τ,U⊆W

W =

V (U) then U ⊆ V (U)
⋂

X ′
t(τ) = St(U, τ).

If now x ∈ St(U, τ) = V (U)
⋂

X ′
t(τ) then x ∈ X ′

t(τ) =
⋃

W∈X̃t(τ)

W , and hence,

x ∈ W0 for some W0 ∈ X̃t(τ) and x ∈ V (U). As ∅ 6= W0
⋂

V (U) ∈ τ |Xt(τ) and W0

is an atom in the lattice (τ |Xt(τ),⊆), then W0 ⊆ X ′
t(τ) and W0 ⊆ V (U). Then

x ∈ W0 ⊆ V (U)
⋂

X ′
t(τ) =

( ⋂

W∈τ,U⊆W

W
)⋂

X ′
t(τ) ⊆ V0

⋂
X ′

t(τ) = U.

From the randomness of the element x it follows that St(U, τ) = V (U)
⋂

X ′
t(τ) ⊆ U ,

and hence, St(U, τ) = V (U)
⋂

X ′
t(τ) = U .

We prove Statement 4 for the case when t = i(U).
Let now 1 ≤ t < i(U) ≤ k. As (see 1.3) Xi(U)(τ) ⊆ Xt(τ), then

U ⊆ Xi(U)(τ)
⋂

V (U) ⊆ V (U)
⋂

Xt(τ) ∈ τt (the definition of τt see in 1.3). From
the finiteness of the set τt it follows that there exists an atom W in the lattice (τt,⊆)
such that W ⊆ V (U)

⋂
Xt(τ). Then W ∈ X̃t, and hence, ∅ 6= W ⊆ X ′

t(τ)
⋂

V (U) =
St(U, τ).
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We have proved Statement 4 for the case when t < i(U).

Let now i(U) < t ≤ k. Then (see the construction of the sets Xj(τ) in 1.3)

Xt(τ) = X \
t−1⋃

l=1

X ′
l(τ) ⊆ X \ X ′

i(U)(τ),

and hence,

St(U, τ) = V (U)
⋂

X ′
t(τ) ⊆ V0

⋂
X ′

t ⊆ V0

⋂(
Xi(U)(τ)

⋂
X ′

t

)
=

(
V0

⋂
Xi(U)(τ)

) ⋂
X ′

t = U
⋂

X ′
t(τ) ⊆ X ′

i(U)(τ)
⋂

X ′
t(τ) = ∅

(the definition of the set V0 see above), i.e. St(U, τ) = ∅.
Statement 4 is proved.

Statement 5. Let U,U ′ ∈ X̃(τ) and U ′
⋂

St(U, τ) 6= ∅ for some 1 < t ≤ k.
If x ∈ U ′

⋂
St(U, τ) then x ∈ U ′ = Si(U ′)(U

′, τ) ⊆ X ′
i(U ′)(τ) and x ∈ St(U, τ) ⊆

X ′
t(τ). As (see Statement 2) X ′

i(τ)
⋂

X ′
j(τ) = ∅ for i 6= j then t = i(U ′).

From the definition of the number i(U ′) (see Statement 4) it follows that U ′ is
an atom in the lattice (τi(U ′),⊆). As V (U)

⋂
Xi(U ′)(τ) ∈ τi(U ′) and

U ′
⋂(

V (U)
⋂

Xi(U ′)(τ)
)

= U ′
⋂

(Si(U ′)(U, τ) 6= ∅

then U ′
⋂

Si(U ′)(U, τ) = U ′, and hence, U ′ ⊆ Si(U ′)(U, τ) ⊆ V (U). Then V (U ′) =⋂
W∈τ,U ′⊆W

W ⊆ V (U), and hence,

Sq(U
′, τ) = X ′

q(τ)
⋂

V (U ′) ⊆ X ′
q(τ)

⋂
V (U) = Sq(U, τ)

for any q ≤ i(U ′).
Statement 5 is proved.

Statement 6. Let U ∈ X̃(τ).

From the definition of the sets St(U, τ) (see the formulation of this theorem) it
follows that

i(U)⋃

t=1

St(U, τ) =

i(U)⋃

t=1

(
V (U)

⋂
X ′

t(U, τ)
)
⊆ V (U).

Let now z ∈ V (U). As (see Statement 2) {X ′
1(τ), . . . ,X ′

k(τ)} is a splitting of the
set X then z ∈ X ′

q(τ) for some 1 ≤ q ≤ k, and hence, z ∈ V (U)
⋂

X ′
q(τ) = Sq(U, τ).

Then (see Statement 4) q ≤ i(U), and hence, z ∈
i(U)⋃
t=1

St(U, τ).

From the randomness of the element z ∈ V (U) it follows that V (U) ⊆
i(U)⋃
t=1

St(U, τ), and hence, V (U) =
i(U)⋃
t=1

St(U, τ).
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Statement 6 is proved.

Statement 7. If we apply successively Remark 2, Statement 6, Remark 2, and
Statement 4 then we obtain

U ⊆ V (U)
⋂

X ′
i(U)(τ) ⊆ V (U)

⋂
Xi(U)(τ) =

(i(U)⋃

i=1

Si(U, τ)
) ⋂

Xi(U)(τ) ⊆

((i(U)−1⋃

i=1

X ′
i(τ)

) ⋃
Si(U)(U, τ)

) ⋂
Xi(U)(τ) =

((i(U)−1⋃

i=1

X ′
i(τ)

) ⋂
Xi(U)(τ)

) ⋃(
Si(U)(U, τ)

⋂
Xi(U)(τ)

)
=

Si(U)(U, τ)
⋂

Xi(U)(τ) = Si(U)(U, τ) = U,

and hence, U = V (U)
⋂

X ′
i(U)(τ) = V (U)

⋂
Xi(U)(τ).

Statement 7 is proved.

Statement 8. In the beginning we shall show that the set {V (U) | U ∈ X̃(τ)}
is a base of the topological space (X, τ).

Let W ∈ τ and x ∈ W . Then (see Statement 1) x ∈ Ux for some Ux ∈ X̃(τ). As
(see Statement 4) Ux ∈ X̃i(Ux)(τ) then Ux is an atom in the lattice (τi(Ux),⊆) and
x ∈ W

⋂
Ux ∈ τi(Ux). Then W

⋂
Ux = Ux, and hence, Ux ⊆ W . From the definition

of the set V (U) for U ∈ X̃ it follows that V (Ux) ⊆ W . Then W =
⋃

x∈W

{x} ⊆
⋃

x∈W

V (Ux) ⊆ W , and hence, W =
⋃

x∈W

V (Ux).

From the randomness of the set W ∈ τ it follows that the set {V (U) | U ∈ X̃(τ)}
is a base of the topological space (X, τ).

Now let’s show that the set {V (U) | U ∈ X̃(τ)} is the minimal base of the
topological space (X, τ).

Let B be the minimal base of the topological space (X, τ).
If U0 ∈ X̃(τ) and x ∈ U0 then there exists W0 ∈ B such that x ∈ W0 ⊆ V (U0).

As U0 ∈ X̃i(U0)(τ) and x ∈ U0
⋂

W0 then

∅ 6= U0

⋂
W0 = U0

⋂(
W0

⋂
Xi(U0)(τ)

)
∈ τi(U0),

and as U0 is an atom in the lattice (τi(U0),⊆) then U0 ⊆ W0.
Then V (U0) =

⋂
W∈τ,U0⊆W

W ⊆ W0 ⊆ V (U0), and hence, V (U0) = W0 ∈ B.

From the randomness U0 ∈ X̃(τ) it follows that {V (U) | U ∈ X̃(τ)} ⊆ B, and as
B is the minimal base of the topological space (X, τ) then {V (U) | U ∈ X̃(τ)} = B,
and hence, {V (U) | U ∈ X̃(τ)} is the minimal base of the topological space (X, τ).

To complete the proof of this statement it remains to check up that V (U) 6=
V (U ′) for any U,U ′ ∈ X̃(τ) such that U 6= U ′.
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We suppose the contrary, i.e. that V (U) = V (U ′) for some U,U ′ ∈ X̃(τ) and
U 6= U ′.

We can assume that i(U) ≤ i(U ′).
If i(U) = i(U ′) then (see Statement 7) U = V (U)

⋂
Xi(U)(τ) =

V (U ′)
⋂

Xi(U ′)(τ) = U ′. We have received the contradiction, and hence, V (U) 6=
V (U ′) for the case when i(U) = i(U ′).

If i(U) < i(U ′) (see 1.3) then Xi(U)(τ) ⊃ Xi(U ′)(τ). Then (see Statement 7 and
Remark 2)

X ′
i(U)(τ) ⊇ U = V (U)

⋂
Xi(U)(τ) ⊇ V (U ′)

⋂
Xi(U ′)(τ) = U ′

and U ′ ⊆ X ′
i(U ′)(τ), and hence, X ′

i(U)(τ)
⋂

X ′
i(U ′)(τ) 6= ∅.

We have received the contradiction with the statement 2, and hence, V (U) 6=
V (U ′) and for the case when i(U) 6= i(U ′).

Statement 8 is proved, and hence, the theorem is completely proved.

Theorem 2. Let:
- τ and τ ′ be topologies on a finite set X;
- X̃(τ) and X̃(τ ′) be the sets of all quasiatoms in the lattices (τ,⊆) and (τ ′,⊆),

accordingly;
- X̃i(τ) and X̃i(τ

′) be the sets of all atoms of a level i in the lattices (τ,⊆) and
(τ ′,⊆), accordingly, for i ∈ N;

- k = max{i | X̃ ′
i(τ) 6= ∅} and k′ = max{i | X̃ ′

i(τ
′) 6= ∅};

- X ′
i(τ) =

⋃

U∈X̃i(τ)

U and X ′
i(τ

′) =
⋃

U ′∈X̃i(τ ′)

U for 1 ≤ i ≤ k;

- Si(U, τ) =
( ⋂

W∈τ,U⊆W

W
)⋂

X ′
i(τ) for any U ∈ X̃(τ) and any 1 ≤ i ≤ k and

Si(U
′, τ ′) =

( ⋂
W ′∈τ ′,U ′⊆W ′

W ′
) ⋂

X ′
i(τ

′) for any U ′ ∈ X̃(τ ′) and any 1 ≤ i ≤ k′;

- i(U) and i′(U ′) be such natural numbers that U ∈ X̃ ′
i(U)(τ) and U ′ ∈ X̃ ′

i(U ′)(τ
′)

for U ∈ X̃(τ) and U ′ ∈ X̃(τ ′).
Then τ = τ ′ if and only if the following equalities are true:
1. k = k′ and X̃i(τ) = X̃i(τ

′) for any 1 ≤ i ≤ k;
2. X ′

i(τ) = X ′
i(τ

′) for any 1 ≤ i ≤ k;
3. X̃(τ) = X̃(τ ′);
4. i(U) = i′(U) for any U ∈ X̃(τ) = X̃(τ ′);
5. Si(U, τ) = Si(U, τ ′) for any U ∈ X̃(τ) and any 1 ≤ i ≤ i(U).

Proof. Necessity. Let τ = τ ′.
From the construction of atoms of a level i (see 1.4) it follows that X̃i(τ) = X̃i(τ

′)
for any i ∈ N.

Then k = k′ and X ′
i(τ) = X ′

i(τ
′) for any 1 ≤ i ≤ k.

Moreover, X̃(τ) =
k⋃

i=1
X̃i(τ) =

k′⋃
i=1

X̃i(τ
′) = X̃(τ ′) and i(U) = i′(U) for any

U ∈ X̃.
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As
⋂

W∈τ,U⊆W

W =
⋂

W∈τ ′,U⊆W

W for any U ∈ X̃ then

Si(U, τ) =
( ⋂

W∈τ,U⊆W

W
)⋂

X ′
i(τ) =

( ⋂

W∈τ ′,U⊆W

W
)⋂

X ′
i(τ

′) = Si(U, τ ′),

for any U ∈ X̃ and any 1 ≤ i ≤ i(U).
Necessity is proved.

Sufficiency. Let topologies τ and τ ′ be defined on a finite set X and let equalities
1 – 5 be true.

If V (U) =
⋂

W∈τ,U⊆W

W and V ′(U) =
⋂

W∈τ ′,U⊆W

W , then (see Statement 8 of

Theorem 1) {V (U) | U ∈ X̃(τ)} and {V ′(U) | U ∈ X̃(τ ′)} are bases in topological
spaces (X, τ) and (X, τ ′), accordingly.

Then (see Statement 6 of Theorem 1)

V (U) =

i(U)⋃

t=1

St(U, τ) =

i(U)⋃

t=1

St(U, τ ′) = V ′(U),

and hence, {V (U) | U ∈ X̃(τ)} = {V ′(U) | U ∈ X̃(τ ′)}.
As any topology is defined unique by any its base then τ = τ ′.
The theorem is completely proved.

2. A method of the construction of topology on any finite set

Theorem 3. Let us have:
1. A finite set X which has the cardinality n;
2. A natural number k, 1 ≤ k ≤ n;
3. A splitting X̃ = {U1, . . . Uk} of the set X;
4. A splitting {X̃1, . . . , X̃t} of the set X̃ and let X ′

j =
⋃

U∈X̃j

U for any 1 ≤ j ≤ t;

5. For every U ∈ X̃ we shall designate by i(U) such a natural number that
U ∈ X̃i(U) (as {X̃i | 1 ≤ i ≤ t} is a splitting of the set X̃ then the number i(U)
exists and is unique);

6. For any U ∈ X̃ and any 1 ≤ j ≤ i(U) there exists such a nonempty subset
Sj(U) ⊆ X ′

j that:

- Si(U)(U) = U for any U ∈ X̃;

- If U,U ′ ∈ X̃ and Si(U)
⋂

U ′ 6= ∅ for some i ≤ i(U), then Sl(U
′) ⊆ Sl(U) for

any 1 ≤ l ≤ i(U ′).
Then the following statements are true:

Statement 3.1. {X ′
j | 1 ≤ j ≤ t} is a splitting of the set X.

Statement 3.2. There exists the unique topology τ on the set X such that the
following statements are true:
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3.2.1.
i(U)⋃
j=1

Sj(U) =
⋂

W∈τ,U⊆W

W ;

3.2.2. The weight of the topological space (X, τ) is equal to k;

3.2.3. X̃i = X̃i(τ) and X ′
i = X ′

i(τ) for any 1 ≤ i ≤ t, and hence,

X̃ =
t⋃

i=1

X̃i =
t⋃

i=1

X̃i(τ) = X̃(τ)

(the definition of the set X̃(τ), the set X̃i(τ)), and the set X ′
i(τ) see in 1.3);

3.2.4. Si(U, τ) = Si(U) for any U ∈ X̃ and any 1 ≤ i ≤ i(U) (the definition of
the set Si(U, τ) see in Theorem 1).

Proof. Statement 3.1. If x ∈ X then there exists U ∈ X̃ such that x ∈ U
(see the condition 3 of this theorem). Then (see the condition 6 of this theorem)
x ∈ U = Si(U)(U) ⊆ X ′

i(U).

From the randomness of the element x ∈ X it follows that X =
t⋃

i=1
X ′

i.

To complete the proof of this statement we need to check up that X ′
i

⋂
X ′

j = ∅
for i 6= j.

We assume the contrary, i.e. that X ′
i

⋂
X ′

j 6= ∅ for some i 6= j, and let z ∈

X ′
i

⋂
X ′

j. Then (see the condition 4 of this theorem) there are U ∈ X̃i ⊆ X̃ and

U ′ ∈ X̃j ⊆ X̃i(τ) such that z ∈ U and z ∈ U ′.

As X̃1, . . . , X̃t is a splitting of the set X̃ and i 6= j then U 6= U ′, and as z ∈ U
⋂

U ′

then we receive the contradiction whit the condition 3 of this theorem.

Statement 3.1 is proved.

Statement 3.2. For any U ∈ X̃ we consider the set W (U) =
i(U)⋃
i=1

Si(U), and let

B = {W (U) | U ∈ X̃}.
We designate by τ the set of all subsets of the set X each of which can be

presented as a union of some sets from B.

We show that τ is the required topology on the set X.

As ∅ =
⋃

U∈∅

U then ∅ ∈ τ .

Let now x ∈ X. Then (see the condition 3) x ∈ U for some U ∈ X̃ , and hence,

x ∈ U = Si(U)(U) ⊆
i(U)⋃
i=1

Si(U) = W (U).

From the randomness of the element x ∈ X it follows that
⋃

U∈X̃

W (U) = X, and

hence, X ∈ τ .

Let now A,C ∈ τ and x ∈ A
⋂

C.

As X̃ is a splitting of the set X then there exists Ux ∈ X̃ such that x ∈ Ux =
Si(Ux)(Ux).
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From the definition of the set τ it follows that there are U ∈ X̃ and U ′ ∈ X̃ such
that x ∈ W (U) ⊆ A and x ∈ W (U ′) ⊆ C.

As W (U) =
i(U)⋃
i=1

Si(U), then x ∈ Si1(U) for some 1 ≤ i1 ≤ i(U).

So, we have that U,Ux ∈ X̃ and x ∈ Si1(U)
⋂

Ux.

As x ∈ Ux = Si(Ux) ⊆ X ′
i(Ux) and x ∈ Si1(U) ⊆ X ′

i1
then (see Statement 3.1)

i(Ux) = i1 ≤ i(U). Then (see the condition 6) Sl(Ux) ⊆ Sl(U) for any 1 ≤ l ≤ i(Ux),
and hence,

W (Ux) =

i(Ux)⋃

l=1

Sl(Ux) ⊆

i(Ux)⋃

l=1

Sl(U) ⊆

i(U)⋃

l=1

Sl(U) = W (U) ⊆ A.

Similarly, it is proved that W (Ux) ⊆ W (U ′) ⊆ C.

Then W (Ux) ⊆ A
⋂

C for any element x ∈ A
⋂

C, and hence,

A
⋂

C =
⋃

x∈A
⋂

C

{x} ⊆
⋃

x∈A
⋂

C

W (Ux) ⊆ A
⋂

C,

i.e. A
⋂

B =
⋃

x∈A
⋂

C

W (Ux). From the definition of the set τ it follows that

A
⋂

C ∈ τ .

As any union of sets each of which is some union of sets from B is a union of
sets from B then τ is a topology on the set X.

Now let’s check up that for the topology τ Statements 3.2.1 – 3.2.4 are true.

3.2.1. Let U ∈ X̃ and let W ∈ τ be such that U ⊆ W .

Let’s choose some element x ∈ U . From the definition of the topology τ it follows

that there exists U ′ ∈ X̃ such that x ∈ W (U ′) ⊆ W . As W (U ′) =
i(U ′)⋃
j=1

Sj(U
′) then

x ∈ Sj0(U
′) for some j0 ≤ i(U ′).

Then x ∈ U
⋂

Sj0(U
′), and hence, (see the condition 6) Sl(U) ⊆ Sl(U

′) for any
1 ≤ l ≤ i(U).

As x ∈ U = Si(U)(U) ⊆ X ′
i(U) and x ∈ Sj0(U

′) ⊆ X ′
j0

then from Statement 3.1 it

follows that i(U) = j0 ≤ i(U ′).

Then W (U) =
i(U)⋃
l=1

Sl(U) ⊆
i(U ′)⋃
l=1

Sl(U
′) = W (U ′) ⊆ W.

From the randomness of the set W ∈ τ it follows that W (U) ⊆
⋂

W∈τ,U⊆W

W .

Moreover, as U = Si(U)(U) ⊆
i(U)⋃
i=1

Si(U) = W (U) ∈ τ then
⋂

W∈τ,U⊆W

W ⊆ W (U),

and hence,
⋂

W∈τ,U⊆W

W = W (U).

Statement 3.2.1 is proved.
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3.2.2. We notice that from the definition of the topology τ it follows that the
set B is a base of the topological space (X, τ).

Let’s show that B is the minimal base of the topological space (X, τ).

Let B′ be the minimal base of the topological space (X, τ) and let W ∈ B. Then

W = W (U) =
i(U)⋃
t=1

St(U) for some U ∈ X̃ .

We choose some element x ∈ U . Then x ∈ U = Si(U)(U) ⊆ W (U), and as
W (U) ∈ τ then there exists W ′ ∈ B′ such that x ∈ W ′ ⊆ W (U).

As W ′ ∈ τ then (see the definition of the topology τ) there exists U ′ ∈ X̃ such

that x ∈ W (U ′) =
i(U ′)⋃
i=1

Si(U
′) ⊆ W ′, and hence, x ∈ Sj0(U

′) for some 1 ≤ j0 ≤ i(U ′).

Then x ∈ U
⋂

Sj0(U
′), and according to the condition 6 Sl(U) ⊆ Sl(U

′) for any
l ≤ i(U).

Moreover, as in the proof of Statement 3.2.1 it can be proved that i(U) = j0 ≤
i(U ′). Then

W (U) =

i(U)⋃

j=1

Sj(U) ⊆

i(U)⋃

j=1

Sj(U
′) ⊆

i(U ′)⋃

j=1

Sj(U) = W (U ′) ⊆ W ′ ⊆ W (U),

i.e. W (U) = W ′ ∈ B′. From the randomness of U ∈ X̃ it follows that B ⊆ B′.

Then from the minimality of the base B′ it follows that B = B′.

To complete the proof of Statement 3.2.2 it remains to prove that W (U) 6= W (U ′)
for any U,U ′ ∈ X̃ and U 6= U ′

We can assume that i(U) ≤ i(U ′).

If i(U) < i(U ′) (see the definition of the set W (U), the property 6, and
Statement 3.2.1) then

W (U)
⋂

X ′
i(U ′) =

(i(U)⋃

i=1

Si(U)
) ⋂

X ′
i(U ′) ⊆

(i(U)⋃

i=1

X ′
i

)⋂
X ′

i(U ′) = ∅ 6=

Si(U ′)(U
′) =

((i(U ′)−1⋃

i=1

Si(U)
) ⋂

X ′
i(U ′)

)⋃(
Si(U ′)

⋂
X ′

i(u′)

)
=

(i(U ′)⋃

i=1

Si(U
′)
) ⋂

X ′
i(U ′) = W (U ′)

⋂
X ′

i(U ′),

and hence, W (U) 6= W (U ′) for the case i(U) < i(U ′).

If i(U) = i(U ′) then (see Statement 3.2.1)

W (U)
⋂

X ′
i(U) =

(i(U)⋃

i=1

Si(U)
) ⋂

X ′
i(U) = Si(U) = U 6=
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U ′ = Si(U ′) =
(i(U)⋃

i=1

Si(U
′)
) ⋂

X ′
i(U) = W (U ′)

⋂
X ′

i(U),

and hence, W (U) 6= W (U ′) for the case i(U) = i(U ′), too.
Statement 3.2.2 is proved.

3.2.3. We prove the equalities X̃i = X̃i(τ) and Xi = X ′
i(τ) by induction on i.

Let i = 1.

In the beginning let’s prove that X̃1 ⊆ X̃1(τ).

We assume the contrary, i.e. that X̃1 * X̃1(τ), and let U ∈ X̃1 \ X̃1(τ). Then

i(U) = 1, and hence, U = S1(U) =
1⋃

i=1
Si(U) ∈ τ . As U /∈ X̃1(τ), then W ⊂ U ,

for some W ∈ τ . From the definition of the topology τ it follows that there exists

U ′ ∈ X̃ such that
i(U ′)⋃
i=1

Si(U
′) ⊆ W ⊂ U , and hence, S1(U

′)
⋂

U = S1(U
′) 6= ∅. Then

by the condition 6 U = S1(U) ⊆ S1(U
′) ⊆ W ⊂ U , and hence, U = W .

We have received the contradiction (see the choice of U), and hence, X̃1 ⊆ X̃1(τ).

Let now U ∈ X̃1(τ). Then U is an atom in the lattice (τ,⊆), and hence, U ∈ τ .
From the definition of the topology τ it follows that there exists U ′ ∈ X̃ such that

W (U ′) =
i(U ′)⋃
i=1

Si(U
′) ⊆ U . By the condition 6 of this theorem X ′

1 ⊇ S1(U
′) 6= ∅.

As X ′
1 =

⋃

W∈X̃1

then U0
⋂

S1(U
′) 6= ∅ for some U0 ∈ X̃1. Then i(U0) = 1 and

by the condition 6, we receive that U0 = S1(U0) ⊆ S1(U
′) ⊆

i(U ′)⋃
i=1

Si(U
′) ⊆ U. As

U0 =
1⋃

i=1
Si(U0) ∈ τ and U is an atom in the lattice (τ,⊆) then U = U0 ∈ X̃1.

From the randomness of the set U ∈ X̃1(τ) it follows that X̃1(τ) ⊆ X̃1, and
hence, X̃1(τ) = X̃1.

Then X ′
1 =

⋃

U∈X̃1

U =
⋃

U∈X̃1(τ)

U = X ′
1(τ).

Hence, the equalities X̃i = X̃i(τ) and Xi = X ′
i(τ) for i = 1 are true.

We suppose that the equalities X̃i(τ) = X̃i and X ′
i(τ) = X ′

i are true for i ≤ s

and any finite set, any natural number k, any set X̃, the sets X̃1, . . . , X̃k, and the
subsets S′

j(U) = Ss+j(U) for U ∈ Ỹ and j ≤ k − s for which the conditions of this
theorem are satisfied.

Let’s consider:

- The set Y = X \
( s⋃

i=1
X ′

i

)
;

- The natural number k − s;

- The set Ỹ =
k⋃

i=s+1
X̃i;

- The sets Ỹ1 = X̃s+1, . . . , Ỹk−s1 = X̃k;

- The subsets S′
j(U) = Ss+j(U) for U ∈ Ỹ and j ≤ k − s.
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It is easy to notice that the conditions of this theorem are satisfied for them.
Then applying Statements 3.2.1, 3.2.2 and 3.2.3 for the case i = 1 we can construct

a topology τ ′ on the set Y such that the set {W ′(U) =
i(U)−s⋃

i=1
S′

i(U) | U ∈ Ỹ } is a

base of the topological space (Y, τ ′) and Ỹ1 = Ỹ1(τ
′).

As Si ⊆ X ′
i for 1 ≤ i ≤ s and X ′

i

⋂
X ′

j = ∅ for i 6= j then

W ′(U) =

i′(U)⋃

i=1

S′
i(U) =

i(U)⋃

i=s+1

Si(U) =
(i(U)⋃

i=1

Si(U)
) ⋂(

X \
( s⋃

i=1

X ′
i

))
=

(i(U)⋃

i=1

Si(U)
) ⋂(

X \
( s⋃

i=1

X ′
i(τ)

))
= W (U)

⋂
Xs+1(τ).

As the sets {W ′(U) | U ∈ Ỹ } and {W (U) | U ∈ X̃} are bases of the topological
spaces (Y, τ ′) and (X, τ), accordingly, and

Y = X \
( s⋃

i=1

X ′
i

)
= X \

( s⋃

i=1

X ′
i(τ)

)
= Xs+1(τ)

then τ ′ = τ |Xs+1 = τs+1, and hence, the set X̃s+1 = Ỹ1 is the set of all atoms in the

lattice (τs+1,⊆), i.e. X̃s+1 = X̃s+1(τ).
Then

X ′
s+1 =

⋃

U∈X̃s+1

U =
⋃

U∈X̃s+1(τ)

U = X ′
s+1(τ).

Statement 3.2.3 is proved for case i = s + 1.

3.2.4. As X ′
i(τ) = X ′

i for any 1 ≤ i ≤ t then (see Statements 3.2.1,

3.1, and the condition 6) Sj(U, τ) = V (U)
⋂

X ′
j(τ) =

(⋂
V ∈τ,U⊆V V

) ⋂
X ′

j(τ) =
(⋃i(U)

i=1 Si(U)
) ⋂

X ′
j = Sj(U).

So, we have proved that Sj(U, τ) = Sj(x) for any 1 ≤ j ≤ t and any U ∈ X̃ .
Statement 3.2.4 is proved.

To complete the proof of Statement 3.2 it is necessary to check up the uniqueness
of the topology for which Statements 3.2.1 - 3.2.4 are true. But it follows from
Theorem 2.

Statement 3.2 is proved, and hence, the theorem is completely proved.

Example 1. The method which has been specified in Theorem 3 will be applied
now for constructing a topology τ on a finite set X of cardinality n.

1. We fix a positive integer k ≤ n (number k be the weight of the topological
space (X, τ)).

2. Consider a partition X̃ of the set X into k subsets (the set X̃ be the set of
all quasiatoms in the topological space (X, τ)).
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3. Fix a natural number t ≤ k and consider a sequence k1, . . . , kt of positive

integers such that
t∑

i=1
ki = k.

4. Consider a sequence X̃1, . . . , X̃t such that the set {X̃1, . . . , X̃t} is a partition
of the set X̃ and |Xi| = ki for 1 ≤ i ≤ t. (For every 1 ≤ i ≤ t the set X̃i be the set
of all quasiatoms of level i in the topological space (X, τ).)

5. For any integer 1 ≤ i < t we consider the set X i of all nonempty subsets of
the set X̃i.

6. For any integer 2 ≤ i ≤ t we consider a map fi : X̃i → X i−1.

7. For any positive integers 1 < i ≤ j ≤ t and any U ∈ X̃j we consider the
positive integer i(U) = j and the subset Si(U) of the set Xi such that Si(U) = {U}
for i = j and Si(U) = fi+1(fi+2(. . . fj(U) . . .)) for 1 < i < j.

It is easy to see that the natural number k, the partition X̃ of the set X, the
sequence X̃1, . . . , X̃t, and subsets Si(U) of the set Xi satisfy the conditions of The-
orem 2, and hence, on the set X there exists the unique topology τ for which the

set {
i(U)⋃
j=1

|U ∈ X̂} is a base of the topological space (X, τ).
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