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Isohedral tilings on Riemann surfaces of genus 2
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Abstract. 3 Riemann surfaces which possess rich metrics are considered. In previous
paper [1] the classification of fundamental isohedral tilings for groups of conformal
automorphisms of these surfaces was obtained. Here the classification of fundamental
isohedral tilings is obtained for groups of conformal and anticonformal automorphisms
of the surfaces. The tilings are given by the adjacency symbols of the corresponding
tilings on the universal covering hyperbolic plane.
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1 Introduction

The present article is a direct continuation of [1], and the work [1] is essentially
used here.

Recall some papers where tilings on the hyperbolic plane or Riemann surfaces
were researched. Some tilings on Riemann surfaces of genus 2 were investigated in [2]
and [3]. A method of obtaining fundamental tilings for any discrete two-dimensional
group with compact fundamental domain was discussed in [4, 5]. Some methods of
obtaining tilings with given transitivity properties on the hyperbolic plane (as well
as on the Euclidean plane and the sphere) were discussed in [6, 7]. The work [8] is
devoted to symmetry groups and fundamental tilings of the compact non-orientable
surface of genus 3.

2 Riemann surfaces

Remind some basic notions.
Definition 1. A map (or a tiling of a compact Riemann surface) is a closed

compact Riemann surface divided into simply connected open regions by a finite
number of arcs and simple closed curves called edges. Such a region, together with
its boundary, is called a tile. Edges meet only at their endpoints called vertices, and
each vertex is incident to at least 3 edges, where loops are counted twice (cf. [3]).

Definition 2. Let W be a tiling of a Riemann surface and G be a discrete isometry
group. The tiling W is called isohedral with respect to the group G if G maps the
tiling W onto itself and acts transitively on the set of all tiles.
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Thus the goal of our investigations is an enumeration of isohedral tilings on
closed compact orientable Riemann surfaces of genus 2.

Definitions 3. [9] Let X be a compact Riemann surface of genus g. A symmetry
of X is an anticonformal involution T : X → X. The fixed point set F (T ) consists
of k disjoint Jordan curves, where 0 ≤ k ≤ g + 1. The species of T is defined to be
+k if X −F (T ) has two components and to be −k if X −F (T ) has one component.
Define the species of a fixed-point free symmetry to be 0. Finally the symmetry type
of X is defined to be the unordered list of the species of the symmetries of X, one
being listed for each conjugacy class of symmetries in the full automorphism group
of X.

Every Riemann surface of genus g ≥ 2 is the quotient space H2/K where H2 is
the hyperbolic plane, K is a fixed-point free discrete isometry group of H2. Lifting
elements of the automorphism group G of the Riemann surface onto the universal
covering plane we obtain an isometry group Γ of the plane such that K is a normal
subgroup of Γ and the quotient-group Γ/K ∼= G.

In [9] symmetric Riemann surfaces were investigated using some results on alge-
braic curves and group-theoretic methods. For each symmetric Riemann surface of
genus 2, a table lists its automorphism group, universal covering hyperbolic group
and symmetry type. The admissible automorphism groups are C2×C2, C2×C2×C2,
D4, D4×C2, D8, D10, D6×C2, D12, G∗

24
and G∗

48
. In general, the metrics of Riemann

surfaces are not given. However, for the automorphism groups D10, G∗

24
and G∗

48
,

the Riemann surfaces admit realizations via regular maps with quite determined
metrics (the corresponding groups on the universal cover have no parameters). Now
turn to these 3 Riemann surfaces.

The first Riemann surface is obtained from a regular 8-gon with angle of π/4 by
the indentification of opposite sides with translations (Fig. 1, a). For more detailed
description of this Riemann surface, its conformal automorphisms and subgroups of
the full group of conformal automorphisms refer to [1, 10].

48 conformal automorphisms are the following. There are 3 ‘rotations’ rk, k = 1,
2, 3, of order 8, each of them having 2 invariant points (an rk lifts to rotations
through angle of π/4 on the universal covering hyperbolic plane). Their powers r3

k
,

r5

k
, r7

k
are also ‘rotations’ of order 8, the powers r2

k
and r6

k
are of order 4. The

‘inversion’ i = r4
1

= r4
2

= r4
3

of order 2 has 6 invariant points and is a hyperelliptic
involution. There are 12 ‘rotations’ sk, k = 1, 2, . . . , 12, of order 2, each of them
having 2 invariant points. There are 4 ‘rotations’ vk, k = 1, 2, 3, 4, of order 3, each
of them having 4 invariant points. Their powers v2

k
are of order 3, too. 4 isometries

tk = ivk, k = 1, 2, 3, 4, of order 6 have no invariant points, as well as their powers
t5
k

= iv2

k
.

Remark that the 3 ‘rotations’ rk, k = 1, 2, 3, are conjugate in the full automor-
phism group. Moreover, the 6 ‘rotations’ rk, r7

k
, k = 1, 2, 3, of order 8 are conjugate

in the full automorphism group. However we are more interested in geometric na-
ture of those isometries, and further we will omit the conjugacy of isometries when
it is not essential. In [1] a repeated misprint occurs, so in the description of auto-
morphisms (pp. 42–43) one should read ‘conjugate’ instead of ‘non-conjugate’.
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Figure 1. The 3 Riemann surfaces of genus 2 with the known rich metrics

48 anticonformal automorphisms are the following. There are 6 conjugate ‘re-
flections’ ak, k = 1, 2, . . . , 6, in pairs of shortest geodesics (ak and a′

k
in Fig. 1,

a). The species of the symmetry ak is −2. There are 12 conjugate ‘reflections’ bk,
k = 1, 2, . . . , 12, in ‘long’ geodesics (bk in Fig. 1, a). The species of the symmetry
bk is −1. There are 3 isometries dk, k = 1, 2, 3, of order 8 without invariant points.
Their powers d3

k
, d5

k
, d7

k
are also of order 8 and without invariant points, d2

k
= r2

k
.

There are 4 isometries fk, k = 1, 2, 3, 4, of order 12 without invariant points. Their
powers f5

k
, f7

k
, f11

k
are also of order 12, the powers f3

k
, f9

k
, k = 1, 2, 3, 4, are two

isometries of order 4, all having no invariant points, f2

k
= tk.

Thus we made sure that the symmetry type of the first Riemann surface is
{−2,−1}.

The second Riemann surface can be obtained from a semiregular equilateral 12-
gon with angles of π/3 and 2π/3 (in Fig. 1, b one pair of sides glued with translations
is indicated by arrows, other pairs of sides are glued in a similar way). For more
detailed description of this Riemann surface, its automorphisms and subgroups of
the full automorphism group refer to [1, 11].

24 conformal automorphisms are the following. There are 2 ‘rotations’ uk, k = 1,
2, of order 6, each of them having 2 invariant points. Their powers u5

k
are also of

order 6, the powers u3

k
are of order 2. The powers u2

1
= u4

2
and u4

1
= u2

2
are ‘rotations’
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of order 3 and have 4 invariant points. There are 3 ‘rotations’ xk, k = 1, 2, 3, of
order 4, each of them having 2 invariant points. Their powers x3

k
are of order 4,

too. The ‘inversion’ j = x2
1

= x2
2

= x2
3

of order 2 has 6 invariant points and is a
hyperelliptic involution. There are 6 ‘rotations’ zk, k = 1, 2, . . . , 6, of order 2, each
of them having 2 invariant points. The isometry y = z1z2 of order 6 has no invariant
points, as well as its power y5.

24 anticonformal automorphisms are the following. There are 2 conjugate ‘re-
flections’ nk, k = 1, 2, in triples of geodesics (nk, n′

k
and n′′

k
in Fig. 1, b). The

species of the symmetry nk is +3. There are 3 conjugate ‘reflections’ ok, k = 1, 2,
3, in geodesics (ok in Fig. 1, b). The species of the symmetry ok is +1. There are
6 conjugate ‘reflections’ pk, k = 1, 2, . . . , 6, in geodesics (pk in Fig. 1, b). The
species of the symmetry pk is −1. There are 3 conjugate involutions qk, k = 1, 2, 3,
without invariant points. The species of the symmetry qk is 0. There is an isometry
g of order 12 without invariant points. Its powers g5, g7, and g11 are also of order
12 and without invariant points, the powers g3 and g9 are of order 4 and have no
invariant points, g2 = y. There are 2 isometries hk, k = 1, 2, of order 6 without
invariant points. Their powers h5

k
are also of order 6 and have no invariant points,

h2

k
and h4

k
are the above ‘rotations’ of order 3.

Thus we made sure that the symmetry type of the second Riemann surface is
{−1, 0,+1,+3}.

The third Riemann surface is obtained from a regular 10-gon with angle of 2π/5
by the indentification of opposite sides with translations (Fig. 1, c). For more de-
tailed description of this Riemann surface, its conformal automorphisms and sub-
groups of the full group of conformal automorphisms refer to [1].

10 conformal automorphisms are powers of a ‘rotation’ l of order 10 having one
invariant point. Its powers l3, l7, and l9 are also of order 10. The powers l2, l4, l6,
and l8 are ‘rotations’ of order 5 with 3 invariant points. The ‘inversion’ l5 of order
2 has 6 invariant points and is a hyperelliptic involution.

10 anticonformal automorphisms are the following. There are 5 conjugate ‘re-
flections’ mk, k = 1, 2, . . . , 5, in geodesics (mk in Fig. 1, c). The species of the
symmetry mk is −1. There are 5 conjugate ‘reflections’ wk, k = 1, 2, . . . , 5, in
geodesics (wk in Fig. 1, c). The species of the symmetry wk is −1.

Thus we made sure that the symmetry type of the third Riemann surface is
{−1,−1}.

3 Automorphism groups

For each of the 3 full automorphism groups of Riemann surfaces, a Cayley table
of compositions of isometries has been compiled. Examining the Caley table has
permitted to determine all geometrically different subgroups of these groups. Due
to the so-called principle of symmetry elements it is equivalent to that all subgroups
has been divided into classes of groups conjugate in the full automorphism group of
the respective Riemann surface. In order to avoid additional symbols, for a subgroup
G′ we use a designation of the form Γ′/K, where Γ′ is the isometry group on the
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universal covering plane which corresponds to G′ (here we use orbifold symbols [12]
for Γ′). A symbol may correspond to a group on the Riemann surface or to a class of
conjugate groups (in the full automorphism group). Some symbols have additional
marks. Below we list groups of conformal and anticonformal automorphisms for the
3 Riemann surfaces, limiting ourselves with groups of order not less than 5. The
groups of conformal automorphisms were listed in [1].

For the first Riemann surface the full automorphism group (of order 96) is de-
noted by ∗832/K1, where the group K1 is generated by translations that map oppo-
site sides of the regular 8-gon with angle of π/4. There are 2 groups of conformal and
anticonformal automorphisms of order 48. The group 3∗4/K1 contains even powers
of ‘rotations’ rk, k = 1, 2, 3, all powers of ‘rotations’ vk, k = 1, 2, 3, 4, isometries tk,
t5
k
, k = 1, 2, 3, 4, all ‘reflections’ ak, k = 1, 2, . . . , 6, isometries c = a1a2a5, c3 (of

order 4), fk, f5

k
, f7

k
, f11

k
, k = 1, 2, 3, 4. The group ∗433/K1 contains even powers of

‘rotations’ rk, k = 1, 2, 3, all powers of ‘rotations’ vk, k = 1, 2, 3, 4, isometries tk, t5
k
,

k = 1, 2, 3, 4, all ‘reflections’ bk, k = 1, 2, . . . , 12, isometries dk, d3

k
, d5

k
, d7

k
, k = 1,

2, 3. There are 3 conjugate groups of order 32, denoted by ∗842/K1, one of them
contains all powers of ‘rotation’ r1, even powers of ‘rotations’ r2, r3, ‘rotations’ s1,
s2, s3, s4, all ‘reflections’ ak, k = 1, 2, . . . , 6, ‘reflections’ b1, b2, b3, b4, isometries c,
c3, d1, d3

1
, d5

1
, d7

1
.

Enumerate groups of order 16. There are 3 conjugate groups ∗882/K1, one of
them contains all powers of ‘rotation’ r1 and ‘reflections’ a1, a2, a3, a4, b1, b2, b3, b4.
There are 3 conjugate groups 8 ∗ 2/K1, one of them contains all powers of ‘rotation’
r1, ‘reflections’ a5, a6, isometries c, c3, d1, d3

1
, d5

1
, d7

1
. The group ∗444/K1 contains

even powers of ‘rotations’ rk, k = 1, 2, 3, all ‘reflections’ ak, k = 1, 2, . . . , 6,
isometries c, c3. There are 3 conjugate groups 4 ∗ 4/K1, one of them contains even
powers of ‘rotations’ rk, k = 1, 2, 3, ‘reflections’ b1, b2, b3, b4, isometries d1, d3

1
, d5

1
,

d7
1
. There are 3 conjugate groups 2 ∗ 42/K1, one of them contains even powers of

‘rotation’ r1, ‘rotations’ s1, s2, s3, s4, ‘reflections’ a1, a2, a3, a4, isometries d1, d3
1
,

d5
1
, d7

1
. There are 3 conjugate groups ∗4222/K1, one of them contains even powers of

‘rotation’ r1, ‘rotations’ s1, s2, s3, s4, ‘reflections’ a5, a6 and b1, b2, b3, b4, isometries
c, c3.

There are 2 conjugate classes, each of them consisting of 4 groups of order 12.
One of groups ∗3232/K1 contains all powers of ‘rotation’ v1, ‘inversion’ i, isometries
t1, t5

1
, ‘reflections’ b1, b3, b5, b7, b11, b12. One of groups 32× /K1 contains all powers

of ‘rotation’ v1, ‘inversion’ i, isometries t1, t5
1
, c, c3 and f1, f5

1
, f7

1
, f11

1
.

Enumerate groups of order 8. There are 3 conjugate groups ∗4242/K1, one of
them contains even powers of ‘rotation’ r1 and ‘reflections’ a1, a2, a3, a4. There
are 3 conjugate groups 4 ∗ 22/K1, one of them contains even powers of ‘rotation’ r1,
‘reflections’ a5, a6, isometries c, c3. There are 3 conjugate groups 2 ∗ 44/K1, one
of them contains even powers of ‘rotation’ r1 and ‘reflections’ b1, b2, b3, b4. There
are 3 conjugate groups 42 × /K1, one of them contains even powers of ‘rotation’ r1

and isometries d1, d3
1
, d5

1
, d7

1
. There are 6 conjugate groups ∗22222/K1, one of them

contains ‘rotations’ s1, s3, ‘inversion’ i, ‘reflections’ a5, a6 and b1, b3. There are 6
conjugate groups 22 ∗ 2/K1, one of them contains ‘rotations’ s1, s3, ‘inversion’ i,
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‘reflections’ b2, b4, isometries c, c3.

There are 8 conjugate groups 3 ∗ 33/K1 of order 6, one of them contains all
powers of ‘rotation’ v1 and ‘reflections’ b1, b5, b7.

For the second Riemann surface the full automorphism group (of order 48) is
denoted by ∗642/K2, where the group K2 is generated by translations that map
pairs of sides of the semiregular equilateral 12-gon with angles of π/3 and 2π/3 as
described above. There are 6 groups of conformal and anticonformal automorphisms
of order 24. The group ∗662/K2 contains all powers of ‘rotation’ u1, odd powers
of ‘rotation’ u2, ‘inversion’ j, isometries y, y5, all ‘reflections’ ok, k = 1, 2, 3, all
‘reflections’ pk, k = 1, 2, . . . , 6, all involutions qk, k = 1, 2, 3. The group ∗443/K2

contains even powers of ‘rotation’ u1, odd powers of ‘rotations’ xk, k = 1, 2, . . . , 6,
‘inversion’ j, isometries y, y5, all ‘reflections’ nk, k = 1, 2, all ‘reflections’ pk, k = 1,
2, . . . , 6, all isometries hk, h5

k
, k = 1, 2. The group ∗3222/K2 contains even powers

of ‘rotation’ u1, all ‘rotations’ zk, k = 1, 2, . . . , 6, ‘inversion’ j, isometries y, y5, all
‘reflections’ nk, k = 1, 2, all ‘reflections’ ok, k = 1, 2, 3, all involutions qk, k = 1, 2,
3, all isometries hk, h5

k
, k = 1, 2. The group 6∗2/K2 contains all powers of ‘rotation’

u1, odd powers of ‘rotation’ u2, ‘inversion’ j, isometries y, y5, all ‘reflections’ nk,
k = 1, 2, odd powers of isometry g and all isometries hk, h5

k
, k = 1, 2. The group

4 ∗ 3/K2 contains even powers of ‘rotation’ u1, odd powers of ‘rotations’ xk, k = 1,
2, 3, ‘inversion’ j, isometries y, y5, all ‘reflections’ ok, k = 1, 2, 3, all involutions qk,
k = 1, 2, 3, odd powers of isometry g. The group 2 ∗ 32/K2 contains even powers
of ‘rotation’ u1, all ‘rotations’ zk, k = 1, 2, . . . , 6, ‘inversion’ j, isometries y, y5, all
‘reflections’ pk, k = 1, 2, . . . , 6, odd powers of isometry g.

Enumerate groups of order 12. There are 2 conjugate groups ∗663/K2, one
of them contains all powers of ‘rotation’ u1, all ‘reflections’ ok, k = 1, 2, 3, and
‘reflections’ p1, p2, p3. There are 2 conjugate groups 6 ∗ 3/K2, one of them contains
all powers of ‘rotation’ u1, ‘reflections’ p4, p5, p6 and all involutions qk, k = 1, 2, 3.
The group 3 ∗ 22/K2 contains even powers of ‘rotation’ u1, ‘inversion’ j, isometries
y, y5, all ‘reflections’ nk, k = 1, 2, and all isometries hk, h5

k
, k = 1, 2. The

group 2 ∗ 33/K2 contains even powers of ‘rotation’ u1, ‘inversion’ j, isometries y,
y5, all ‘reflections’ ok, k = 1, 2, 3, and all involutions qk, k = 1, 2, 3. The group
∗3232/K2 contains even powers of ‘rotation’ u1, ‘inversion’ j, isometries y, y5, and
all ‘reflections’ pk, k = 1, 2, . . . , 6. The group 32 × /K2 contains even powers of
‘rotation’ u1, ‘inversion’ j, isometries y, y5, and odd powers of isometry g. There
are 2 conjugate groups ∗3322/K2 , one of them contains even powers of ‘rotation’ U1,
‘rotations’ z1, z3, z5, ‘reflection’ n1, all ‘reflections’ ok, k = 1, 2, 3, and isometries
h2, h5

2
. There are 2 conjugate groups 32 ∗ /K2, one of them contains even powers of

‘rotation’ u1, ‘rotations’ z1, z3, z5, ‘reflection’ n2, all involutions qk, k = 1, 2, 3, and
isometries h1, h5

1
.

There are 3 conjugate classes, each of them consisting of 3 groups of order 8.
One of groups ∗4422/K2 contains all powers of ‘rotation’ x1, all ‘reflections’ nk,
k = 1, 2, and ‘reflections’ p1, p4. One of groups ∗22222/K2 contains ‘rotations’ z1,
z4, ‘inversion’ j, all ‘reflections’ nk, k = 1, 2, ‘reflection’ o1, and involution q1. One
of groups 2 ∗ 222/K2 contains ‘inversion’ j, isometries u3

1
, u3

2
, ‘reflections’ o1, p2, p5,
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and involution q1.

Enumerate groups of order 6. The group ∗3333/K2 contains even powers of
‘rotation’ and all ‘reflections’ ok, k = 1, 2, 3. There are 2 conjugate groups 3∗33/K2 ,
one of them contains even powers of ‘rotation’ u1 and ‘reflections’ p1, p2, p3. The
group 33 × /K2 contains even powers of ‘rotation’ u1 and all involutions qk, k = 1,
2, 3. There are 2 conjugate groups 33 ∗ /K2, one of them contains even powers of
‘rotation’ u1, ‘reflection’ n2, and isometries h1, h5

1
.

For the third Riemann surface the full automorphism group (of order 20) is de-
noted by ∗(10)52/K3 , where the group K3 is generated by translations that map
opposite sides of the regular 10-gon with angle of 2π/5. There are 2 groups of con-
formal and anticonformal automorphisms of order 10. The group 5 ∗ 5/K3 contains
even powers of ‘rotation’ l and all ‘reflections’ mk, k = 1, 2, . . . , 5. The group
∗555/K3 contains even powers of ‘rotation’ l and all ‘reflections’ wk, k = 1, 2, . . . , 5.

Now we have a complete list of subgroups of the full automorphism groups of
the 3 Riemann surfaces together with subgroups of conformal automorphisms listed
in [1].

Thus, for the 3 Riemann surfaces of genus 2 we have described all conformal and
anticonformal automorphisms and all automorphism groups of order not less than
5. Adding groups of conformal automorphisms from [1] we have listed altogether
19 + 7 = 26 non-conjugate groups for the first Riemann surface, 22 + 7 = 29 non-
conjugate groups for the second Riemann surface, 3 + 2 = 5 non-conjugate groups
for the third Riemann surface.

4 Methods of finding isohedral tilings

Definition 4. Consider all possible pairs (W,G) where the tiling W of the Rie-
mann surface is isohedral with respect to the group G. Two pairs (W,G) and
(W ′, G′) are said to belong to one Delone class if there exists a homeomorphism
φ of the surface that maps the tiling W onto the tiling W ′ so that the relation
G = φ−1G′φ holds.

The tilings of one Delone class are also called homeomeric [13] or equivariantly
equivalent [6]. We distinguish between fundamental and non-fundamental Delone
classes depending on whether the group G acts one time (or simply) transitively on
the set of tiles or not.

Our task is to classify fundamental isohedral tilings on the 3 Riemann surfaces
of genus 2. In the author’s work [1] fundamental isohedral tilings were obtained
for groups of conformal automorphisms of the Riemann surfaces. Now we are going
to obtain fundamental isohedral tilings for groups found in the previous section.
Following the paper [1] we need to find fundamental isohedral tilings on the covering
hyperbolic plane for appropriate isometry group.

Discuss methods for finding fundamental isohedral tilings of the hyperbolic plane.
In [1] we used the method of adjacency symbols, which is analogous to the method
by Delone [14,15] and was explained in detail in [10]. Because isometry groups of the
hyperbolic plane found in the previous section are not complicated, in order to avoid
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doing superfluous work we can apply the method of obtaining fundamental domains
(and tilings) developed in [4,5]. Given any discrete group with compact fundamental
domain, one should construct certain graphs on the orbifold corresponding to the
group and then cut the orbifold along these graphs. One more method of obtaining
tilings with transitivity properties [6, 7] is based on Delaney–Dress symbols. Some
algorithms were developed which produce Delaney–Dress symbols corresponding to
tilings on the hyperbolic plane (as well as the Euclidean plane and the sphere).

For the description of fundamental isohedral tilings on the hyperbolic plane we
use adjacency symbols as in [14,15].

After the tilings on the hyperbolic plane are found, we check if they are compat-
ible wifh groups on Riemann surfaces.

5 Enumeration of isohedral tilings

Summarize the obtained classification of fundamental tilings on the 3 Riemann
surfaces. For each fundamental Delone class of isohedral tilings on a Riemann surface
we give an adjacency symbol associated with a fundamental Delone class of isohedral
tilings on the universal covering hyperbolic plane. Because covering mappings for all
3 Riemann surfaces are known, such an adjacency symbol fully determines a Delone
class on the Riemann surface.

On the first Riemann surface the classification of fundamental isohedral tilings
is as follows. For the Coxeter group ∗832/K1 there is one Delone class given by
the adjacency symbol (aā4bb̄6cc̄16) (Fig. 1, a). For the group 3 ∗ 4/K1 there are
2 Delone classes given by the adjacency symbols (ab3ba16cc̄16) and (ab3ba4cc̄8dd̄4).
For the Coxeter group ∗433/K1 there is one Delone class given by the adjacency
symbol (aā6bb̄6cc̄8). For the Coxeter group ∗842/K1 there is one Delone class
given by the adjacency symbol (aā4bb̄8cc̄16). For the Coxeter group ∗882/K1

there is one Delone class with the adjacency symbol (aā4bb̄16cc̄16). For the group
8 ∗ 2/K1 there are 2 Delone classes with the adjacency symbols (ab8ba8cc̄8) and
(ad4bb̄4cc̄4da8). For the Coxeter group ∗444/K1 there is one Delone class with the
adjacency symbol (aā8bb̄8cc̄8). For the group 4∗4/K1 there are 2 Delone classes with
the adjacency symbols (ab4ba16cc̄16) and (aā4bc4cb4dd̄8). For the group 2 ∗ 42/K1

there are 3 Delone classes with the adjacency symbols (aā8bb̄8cc8), (aā4bb̄16cc16)
and (aā4bb4cc̄4dd̄8). For the Coxeter group ∗4222/K1 there is one Delone class
with the adjacency symbol (aā4bb̄4cc̄4dd̄8). For the Coxeter group ∗3232/K1 there
is one Delone class with the adjacency symbol (aā4bb̄6cc̄4dd̄6). For the group
32×/K1 there are 3 Delone classes given by the adjacency symbols (ab3ba4cc4dē4ed̄4),
(ad3bc̄3cb̄3da4ef3fe4), and (ab3ba3cc3dg3ef̄3f ē3gd3) (Fig. 2). For the Coxeter group
∗4242/K1 there is one Delone class with the adjacency symbol (aā4bb̄8cc̄4dd̄8).
For the group 4 ∗ 22/K1 there are 2 Delone classes with the adjacency symbols
(ab4ba8cc̄4dd̄8) and (ab4ba4cc̄4dd̄4eē4). For the group 2 ∗ 44/K1 there are 2 Delone
classes with the adjacency symbols (aā8bb̄16cc16) and (aā4bb̄4cc̄8dd8). For the group
42 × /K1 there are 6 Delone classes with the adjacency symbols (aa12bc̄12cb̄12),
(ac̄4bd̄8cā4db̄8), (aa4bē4cd4dc4eb̄4), (ad̄3bb3cē8dā3ec̄8), (af3bd̄4cē3db̄4ec̄3fa4), and
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Figure 2. Fundamental isohedral tilings for group 32 × /K1

(ag3bē3cc3df̄3eb̄3f d̄3ga4). For the Coxeter group ∗22222/K1 there is one Delone
class with the adjacency symbol (aā4bb̄4cc̄4dd̄4eē4). For the group 22 ∗ 2/K1 there
are 8 Delone classes with the adjacency symbols (aa12bb12cc̄12), (aā4bb̄6cc6dd6),
(ac4bb4ca8dd̄8), (aā4bb4cc̄8dd8), (aa4be4cc̄4d|bard4eb4), (aa4bb̄4cc̄4dd4eē4),
(aā4be4cc4dd4eb4), and (ad3bb3cc3da4eē4f f̄4). For the group 3 ∗ 33/K1 there is one
Delone classe with the adjacency symbol (ab3ba4cc̄6dd̄6eē4).

On the second Riemann surface the classification of fundamental isohedral tilings
is as follows. For the Coxeter group ∗642/K2 there is one Delone class given by the
adjacency symbol (aā4bb̄8cc̄12). For the Coxeter group ∗662/K2 there is one De-
lone class given by the adjacency symbol (aā4bb̄12cc̄12) (Fig. 1, b). For the Coxeter
group ∗443/K2 there is one Delone class with the adjacency symbol (aā6bb̄8cc̄8).
For the Coxeter group ∗3222/K2 there is one Delone class with the adjacency sym-
bol (aā4bb̄4cc̄4dd̄6). For the group 6 ∗ 2/K2 there are 2 Delone classes with the
adjacency symbols (ab6ba8cc̄8) and (ad4bb̄4cc̄4da6). For the group 4 ∗ 3/K2 there
are 2 Delone classes with the adjacency symbols (ab4ba12cc̄12) and (aā4bc4cb4dd̄6).
For the group 2 ∗ 32/K2 there are 3 Delone classes with the adjacency symbols
(aā4bb̄12cc12), (aā6bb̄6cc6), and (aā4bb̄4cc4dd̄6). For the Coxeter group ∗663/K2

there is one Delone class with the adjacency symbol (aā6bb̄12cc̄12). For the group
6 ∗ 3/K2 there are 2 Delone classes with the adjacency symbols (ab6ba12cc̄12) and
(ad4bb̄6cc̄4da6). For the group 3∗22/K2 there are 2 Delone classes with the adjacency
symbols (ab3ba3cc̄4dd̄8) and (ab3ba4cc̄4dd̄4eē4). For the group 2 ∗ 33/K2 there are
2 Delone classes with the adjacency symbols (aā6bb̄12cc12) and (aā4bb4cc̄6dd̄6). For
the Coxeter group ∗3232/K2 there is one Delone class with the adjacency symbol
(aā4bb̄6cc̄4dd̄6). For the group 32 × /K2 there are 7 Delone classes with the ad-
jacency symbols (ac̄9bb9cā9), (ac̄4bd̄6cā4db̄6), (ad3bc̄3cb̄3da6ee6), (ab3ba4cē4dd4ec̄4),
(ad̄3bb3cē6dā3ec̄6), (aē3bc3cb3df̄4eā3f d̄4), and (ab3ba3cf̄3dd3eḡ3f c̄3gē3) (Fig. 3). For
the Coxeter group ∗3322/K2 there is one Delone class with the adjacency symbol
(aā4bb̄4cc̄6dd̄6). For the group 32 ∗ /K2 there are 5 Delone classes with the adja-
cency symbols (ac4bb̄4ca6dd6), (ab3ba6cc6dd̄6), (ab3ba4ce4dd̄4ec4), (ab3ba4cc̄4), and
(ae3bc3cb3dd3ea4f f̄4). For the Coxeter group ∗4422/K2 there is one Delone class
with the adjacency symbol (aā4bb̄4cc̄8dd̄8). For the Coxeter group ∗22222/K2 there
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Figure 3. Fundamental isohedral tilings for group 32 × /K2

is one Delone class with the adjacency symbol (aā4bb̄4cc̄4dd̄4eē4). For the group
2∗222/K2 there are 2 Delone classes with the adjacency symbols (aā4bb̄4cc̄8dd̄8) and
(aā4bb̄4cc̄4dd̄4ee4). For the Coxeter group ∗3333/K2 there is one Delone class with
the adjacency symbol (aā6bb̄6cc̄6dd̄6). For the group 3 ∗ 33/K2 there are 2 Delone
classes with the adjacency symbols (ab3ba12cc̄6dd̄12) and (ab3ba4cc̄6dd̄6eē4). For the
group 33×/K2 there are 8 Delone classes with the adjacency symbols (ab3ba9cd̄9dc̄9),
(ac̄6bd̄6cā6db̄6), (ad3bc̄3cb̄3da6ef3fe6), (ab3ba4cf̄4de3ed4f c̄4), (ab3ba4cd3dc4ef̄4f ē4),
(aē3bc3cb3df̄6eā3f d̄6), (ab3ba3cd3dc3eh3f ḡ3gf̄3he3), (ab3ba3cḡ3de3ed3fh̄3gc̄3hf̄3).
For the group 33 ∗ /K2 there are 4 Delone classes with the adjacency
symbols (ab3ba6ce4dd̄4ec6), (ab3ba6cd3dc6eē6), (ab3ba4cc̄4de3ed4f f̄4), and
(af3bc3cb3de3ed3fa4gḡ4).

Remark that to the Coxeter isometry group of the hyperbolic plane with symbol
∗3232, which has two continuous parameters, there corresponds one Delone class of
fundamental tilings, and this Delone class can be realized both on the first Riemann
surface for the group ∗3232/K1 and on the second Riemann surface for the group
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∗3232/K2. To the isometry group 32× there correspond 10 Delone classes of funda-
mental tilings. 3 of them can be realized on the first Riemann surface for the group
32 × /K1, the other 7 ones can be realized on the second Riemann surface for the
group 32 × /K2. To the isometry group 42× there correspond 10 Delone classes of
fundamental tilings, and 6 of them can be realized on the first Riemann surface for
the group 42 × /K1. To the Coxeter isometry group of the hyperbolic plane with
symbol ∗22222, which has 4 continuous parameters, there corresponds one Delone
class of fundamental tilings, and this Delone class can be realized both on the first
Riemann surface for the group ∗22222/K1 and on the second Riemann surface for
the group ∗22222/K2 . To the isometry group of the hyperbolic plane with symbol
3 ∗ 33, which has no parameters, there correspond 2 Delone classes of fundamental
tilings with the adjacency symbols (ab3ba12cc̄6dd̄12) and (ab3ba4cc̄6dd̄6eē4). On the
first Riemann surface the Delone class with the adjacency symbol (ab3ba4cc̄6dd̄6eē4)
can be realized for the group 3∗33/K1. On the second Riemann surface both Delone
classes can be realized for the group 3 ∗ 33/K2.

On the third Riemann surface the classification of fundamental isohedral tilings
is as follows. For the Coxeter group ∗(10)52/K3 there is one Delone class given by
the adjacency symbol (aā4bb̄10cc̄20) (Fig. 1, c). For the group 5 ∗ 5/K3 there are 2
Delone classes with the adjacency symbols (ab5ba20cc̄20) and (aā4bc5cb4dd̄10). For
the Coxeter group ∗555/K3 there is one Delone class with the adjacency symbol
(aā10bb̄10cc̄10).

Thus uniting the above results with the results of [1] we have a complete clas-
sification of fundamental isohedral tilings on the 3 Riemann surfaces for groups of
order not less than 5.

Applying the method of obtaining non-fundamental Delone classes of isohedral
tilings on the hyperbolic plane from fundamental ones, which is analogous to the
method developed in [15] for the Euclidean plane, we can obtain a classification of
non-fundamental isohedral tilings on the 3 Riemann surfaces.
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