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Cubic systems with seven invariant straight lines of

configuration (3, 3, 1)

Alexandru Şubă∗, Vadim Repeşco, Vitalie Puţuntică

Abstract. We classify all cubic differential systems with exactly seven invariant
straight lines (taking into account their parallel multiplicity) which form a configura-
tion of type (3, 3, 1). We prove that there are six different topological classes of such
systems. For every class we carried out the qualitative investigation on the Poincaré
disc. Some properties of cubic systems with invariant straight lines are given.

Mathematics subject classification: 34C05.
Keywords and phrases: Cubic differential system, invariant straight line, phase
portrait.

1 Introduction and statement of main results

We consider the real polynomial system of differential equations

dx

dt
= P (x, y) ,

dy

dt
= Q (x, y) , gcd(P,Q) = 1 (1)

and the vector field

X = P (x, y)
∂

∂x
+Q (x, y)

∂

∂y
(2)

associated to system (1). Here the condition gcd (P,Q) = 1 means that the right-
hand sides of the system (1) have no non-constant common factor.

Denote n = max {deg (P ) ,deg (Q)}. If n = 2 (respectively n = 3), then system
(1) is called quadratic (respectively cubic).

A function f : D ⊂ R2 → C, f 6= const, is said to be an elementary invariant
(or a Darboux invariant) for (2) if there exists a polynomial Kf ∈ C[x, y] with
deg(Kf ) ≤ n− 1 such that the identity

X(f) ≡ f(x, y)Kf (x, y), (x, y) ∈ D (3)

holds. The polynomial Kf is called the cofactor of f. Denote by IX the set of all
elementary invariants of (2); Ia = {f ∈ C[x, y]| f ∈ IX}, Ie = {exp( g

h)| g, h ∈
C[x, y], gcd(g, h) = 1, exp( g

h) ∈ IX}. The elements from Ia (respectively Ie) are
called algebraic invariants (respectivelyexponential invariants) of (2). In [6] it is
shown that if f = exp( g

h) ∈ Ie, h 6= const, then h ∈ Ia and X(g) = gKh + hKf .
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We say that the exponential invariant f = exp( g
h) is irreducible, if there do not

exist exponential invariants f1 = exp( g1

h1
) and f2 = exp( g2

h2
) such that g

h = g1

h1
+ g2

h2
,

deg(h1) ≤ deg(h2) and h1 divides h2.

Let f ∈ C[x, y] and f = fn1
1 · · · fns

s be its factorization in irreducible factors over
C[x, y]. Then f ∈ Ia if and only if fj ∈ Ia, j = 1, s. Moreover, Kf = n1Kf1 + · · · +
nsKfs

. If fj ∈ Ia
⋃

Ie, λj ∈ C, j = 1, s, then fλ1
1 · · · fλs

s ∈ IX .

We say that an algebraic invariant f ∈ Ia has the parallel multiplicity equal to
m if m is the greatest positive integer such that fm divides X(f). If f ∈ Ia has the
parallel multiplicity equal to m ≥ 2, then exp(1/f), ..., exp(1/fm−1) ∈ Ie.

It is easy to see that in general case there is no correlation between the parallel
multiplicity of the algebraic invariant f ∈ Ia and the parallel multiplicity of its
factors fj, j = 1, s. For example, for a vector field X = x3 ∂

∂x + y(2x2 + y2) ∂
∂y , we

have that the invariant f = x2 + y2 has the parallel multiplicity equal to two, while
for each of its factors f1,2 = x ± iy, i2 = −1, the parallel multiplicity is equal to
one. For the vector field [12]: X = 2x3 ∂

∂x + y(3x2 + y2) ∂
∂y , each of the invariants

f1,2 = x± iy has the parallel multiplicity equal to two, but their product f = x2 +y2

has the parallel multiplicity equal to one.

We say that the system (1) is Darboux integrable if there exists a non-constant
function of the form

f = fλ1
1 · · · fλs

s , (4)

where fj ∈ Ia
⋃

Ie and λj ∈ C, j = 1, s, such that either f = const is a first integral

(i.e. Kf ≡ 0) or f is an integrating factor (i.e. Kf ≡ −∂P
∂x − ∂Q

∂y ) for (1). One can
show that (4) is a first integral (an integrating factor) for (1) if and only if

λ1Kf1(x, y) + · · · + λsKfs
(x, y) ≡ 0

(

λ1Kf1(x, y) + · · · + λsKfs
(x, y) ≡ −∂P

∂x
− ∂Q

∂y

)

, (x, y) ∈ R2.

If f ∈ Ia (respectively f ∈ Ie), then f(x, y) = 0 (f) is called invariant algebraic
curve (respectively invariant exponential function) for polynomial system (1).

Later on, we will be interested in invariant algebraic curves of degree one, that
is invariant straight lines αx+βy+γ = 0, (α, β) 6= (0, 0). If some of the coefficients
α, β, γ of an invariant straight line belongs to C \ R, then we say that the straight
line is complex; otherwise the straight line is real.

By present a great number of works have been dedicated to the investigation of
the polynomial differential systems with invariant straight lines. Here we indicate
some problems and the corresponding works concerning the polynomial differential
system with invariant straight lines. The problem of estimation for the number of
invariant straight lines which a polynomial differential system can have was consid-
ered in [1]; the problem of coexistence of the invariant straight lines and limit cycles
([17, n = 2], [11, n = 3], [10]); the problem of coexistence of the invariant straight
lines and the singular points of the center type for the cubic system ([8, 20]). An
interesting relation between the number of invariant straight lines and the possible
number of directions for them was established in [2].
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The qualitative study of quadratic systems with degenerate infinity was carried
out in [18]. For cubic differential systems with degenerate infinity in [4, 13] and [5]
the integrability problems, the center and the isochronocity problems were studied.

The classification of all cubic systems possessing the maximum number of in-
variant straight lines taking into account their multiplicities is given in [12].

The cubic system with exactly eight and exactly seven invariant straight lines
has been studied in [12, 14] and the one with six real invariant straight lines along
two (respectively three) directions has been study in [15] (respectively [16]).

In this paper a qualitative investigation of cubic systems with exactly seven
invariant straight lines (real or complex) of configuration (3, 3, 1), i.e. six of which
form two triplets of parallel straight lines, is given. Our main result is the following
one:

Theorem 1. Assume that a cubic system possesses invariant straight lines of total
parallel multiplicity seven and six of them form two triplets of parallel straight lines.
Then via an affine transformation and time rescaling this system can be brought to
one of the six systems 1.1) − 1.6). Moreover its phase portrait on the Poincaré disc
corresponds up to topological equivalence to one of the portraits given in Fig. 1.1 -
Fig. 1.6. In the table below for each one of the systems 1.1) − 1.6) the first arrow
shows the straight lines and either the first integral (F) or integrating factor (µ) that
corresponds to each system.

1.1)







ẋ = x(x + 1)(x− a),
ẏ = y(y + 1)(y − a),

a ∈ R∗

+, a 6= 1;
7r; F−−−−−−−→ (16) −→ Fig. 1.1;

1.2)

{

ẋ = x2(x + 1),
ẏ = y2(y + 1);

7r; F−−−−−−−→ (18) −→ Fig. 1.2;

1.3)

{

ẋ = x
(

(x− a)2 + 1
)

,
ẏ = y

(

(y − a)2 + 1
)

, a 6= 0;
3r + 4c0; µ−−−−−−−−→ (22) −→ Fig. 1.3;

1.4)







ẋ = x
(

−a+ 2(a+ 1)y + x2 − 3y2
)

,
ẏ = −ay − (a+ 1)x2 + (a+ 1)y2

+3x2y − y3, a ∈ (0; 1), a 6= 1/2;
1r + 6c1; µ−−−−−−−−→ (24) −→ Fig. 1.4;

1.5)

{

ẋ = x
(

1 + 2ay − x2 + 3y2
)

, a > 0,
ẏ = a+ y − ax2 + ay2 − 3x2y + y3;

1r + 6c1; µ−−−−−−−−→ (26) −→ Fig. 1.5;

1.6)

{

ẋ = x(x2 + 2y − 3y2),
ẏ = −x2 + y2 + 3x2y − y3;

1r + 6c1; µ−−−−−−−−→ (27) −→ Fig.1.6.

2 Some properties of the cubic systems with invariant straight lines

We consider the real cubic differential system














dx
dt =

3
∑

r=0
Pr (x, y) ≡ P (x, y) ,

dy
dt =

3
∑

r=0
Qr (x, y) ≡ Q (x, y) ,

gcd (P,Q) = 1, (5)
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Fig. 1.1 Fig. 1.2 Fig. 1.3

Fig. 1.4 Fig. 1.5 Fig. 1.6

where Pr(x, y) =
∑

j+l=r

ajlx
jyl, Qr(x, y) =

∑

j+l=r

bjlx
jyl, |P3(x, y)| + |Q3(x, y)| 6≡ 0.

In general case, by a straight lines configuration we understand the R2 plane
with a given number of straight lines. Therefore, to each cubic system with invariant
straight lines one can associate a configuration consisting of given straight lines. It is
easy to show that the converse statement is not valid, i.e. not for any configuration
of straight lines a cubic system can be build for which the straight lines should be
invariant or, in other words, this configuration cannot be realized in the class of
cubic systems.

The goal of this section is to determine such properties for invariant straight
lines which will allow to construct configurations of straight lines realizable for (5).

2.1 Points and straight lines

2.1) In the finite part of the phase plane the system (5) has at most nine singular
points.

2.2) In the finite part of the phase plane on any straight line there are at most
three singular points of the system (5).

2.3) In the finite part of the phase plane the system (5) has no more than eight
invariant straight lines [1, 14].
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2.4) At infinity the system (5) has at most four distinct singular points (in the
Poincaré compactification [18]) if yP3(x, y)−xQ3(x, y) 6≡ 0. In the case yP3(x, y)−
xQ3(x, y) ≡ 0 the infinity is degenerate, i.e. consists only of singular points.

2.5) If yP3(x, y) − xQ3(x, y) 6≡ 0, then the infinity represents for (5) a non
singular invariant straight line.

2.6) Through one point more than four distinct invariant straight lines of system
(5) cannot pass.

We say that straight lines lj ≡ αjx + βjy + γj ∈ C[x, y], j = 1, 2, are parallel if
α1β2−α2β1 = 0. Otherwise those straight lines are called concurrent. If an invariant
straight line l has the parallel multiplicity equal to m, then we will consider that we
have m parallel invariant straight lines identical with l.

2.7) The intersection point (x0, y0) of two concurrent invariant straight lines l1
and l2 of system (5) is a singular point for this system. If l1, l2 ∈ R[x, y] or l2 ≡ l̄1,
i.e. the straight lines l1 and l2 are complex conjugate, then x0, y0 ∈ R.

2.8) A complex straight line l ∈ C[x, y] \ R[x, y] can pass through at most one
point with real coordinates M0. If the complex straight line passes through such a
point, then it is described by an equation of the form: y = αx + β, Imα 6= 0, and
M0 is the intersection point of the straights l and l.

Definition 1. A complex straight line whose equation is verified by a single point
with real coordinates will be called relatively complex straight line.

Unlike the complex straight lines, a real straight line ax + by + c = 0, a, b, c ∈
R, a2 + b2 6= 0, passes through an infinite number of real points and through an
infinite number of points with at least one complex coordinate. Indeed, if x0, y0 ∈
R and ax0 + by0 + c = 0, then this straight line passes through complex points
(x0 + αb, y0 − αa), α ∈ C \ R.

2.9) A straight line that passes through two distinct real points or through two
complex conjugate points is real.

Proof. The case when the points through which the straight line passes are real
is trivial. If the straight line passes through complex points (x0, y0) and (x0, y0),
|Im(x0)|+ |Im(y0)| 6= 0, then it is described by the equation Im(y0)x− Im(x0)y +
Im(x0)y0 − Im(y0)x0 = 0.

The next two properties are a consequence of the relation X( l ) = X(l).

2.10) The complex conjugate straight lines l and l can be invariant lines for
system (1) only together.

2.11) The complex conjugate invariant straight lines l and l have the same par-
allel multiplicity.

If a straight line l is real, then (x0, y0) ∈ l implies (x0, y0) ∈ l. If (x0, y0) is a
singular point of system (5), then (x0, y0) is also a singular point for this system.
From this, and from 2.2), 2.7) and 2.10) we obtain the following two properties:

2.12) The number of complex singular points on a real invariant straight line of
system (5) is even and is at most two.
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2.13) A real invariant straight line either intersects none of the complex invariant
straight lines of the system (5) in complex points, or it intersects exactly two complex
conjugate invariant straight lines in complex points.

Let us consider the polynomial

ψ(x, y) = P · (P · ∂Q/∂x+Q · ∂Q/∂y) −Q · (P · ∂P/∂x+Q · ∂P/∂y) , (6)

i.e. P · X(Q) −Q · X(P ). The condition gcd(P,Q) = 1 does not allow ψ(x, y) to be
identically zero with respect to variables x and y. If αx+βy+ γ = 0 is an invariant
straight line for (5) with parallel multiplicity equal to m, then (αx + βy + γ)m

divides ψ(x, y) (see [7]). From here and from the fact that if the identity yP3(x, y)−
xQ3(x, y) ≡ 0 holds the degree of the polynomial ψ(x, y) is at most six follows

2.14) The cubic system with at least seven invariant straight lines has non-
degenerate infinity and, therefore, there exist at most four directions (slopes) for
these lines.

2.2 The parallel invariant straight lines

Definition 2. A straight line which does not pass through any real point will be
called absolutely complex straight line.

From this definition and from the fact that the point of intersection of two real
or two complex conjugate straight lines is real, the next two properties result:

2.15) A complex invariant straight line (l ∈ C[x, y] \ R[x, y]) of the system (5)
is absolutely complex if and only if it is parallel with its conjugate line.

2.16) Through one point (respectively complex point) of any absolutely complex
(respectively relatively complex) straight line at most one real straight line can pass.

If the straight line l is absolutely complex, then it is described by an equation
of the form αx+ βy − γ = 0 with α, β ∈ R, (α, β) 6= (0, 0), γ ∈ C \ R. If α 6= 0 (can
pass α = 0), then the non-degenerate linear transformation X = αx + βy, Y = y
(can pass X = βy, Y = x) makes the straight line l to be parallel with the ordinate
axis. Taking into account this, we obtain:

2.17) Via a non-degenerate linear transformation of the phase plane any abso-
lutely complex straight line can be made parallel to one of the axes of the coordinate
system, i.e. it is described by one of the equations x = γ or y = γ, γ ∈ C \ R.
Moreover, if we have such two straight lines l1 and l2, l1 ∦ l2, l1 ‖ l1, l2 ‖ l2, then
by a suitable transformation we can at the same time make the straight line l1 to
be parallel with the coordinate axis Ox, and the straight line l2 to be parallel to Oy
axis.

Taking into account the form of the equation of a relatively complex straight
line, brought in the property 2.8), and the form of the equations of the real straight
lines and also of absolutely complex ones, we obtain the following property:

2.18) A real straight line as well as an absolutely complex line cannot be parallel
with a relatively complex straight line.

Concerning two parallel invariant straight lines we have the property
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2.19) If l1 and l2 are two parallel invariant straight lines of the system (1), then
either

a) l1, l2 ∈ R[x, y], or

b) l1 is real, and l2 is absolutely complex, or

c) l1 and l2 are absolutely complex and l2 = l1, or

d) l1 and l2 are relatively complex straight lines and l2 6= l1.

Let l1, l2, l3 be a triplet of parallel straight lines. Then each of these straight
lines is described by an equation of the form

αx+ βy − γj = 0, (α, β) 6= (0, 0).

If these straight lines are invariant for cubic system (5), then the identity (3) is
written as:

αP (x, y) + βQ(x, y) ≡ c0 ·
3

∏

j=1

lj , c0 = const 6= 0. (7)

From (7) and from properties 2.3) and 2.18) the next four statements concerning
triplets of parallel invariant straight lines follows:

2.20) The system (5) can not have more than three invariant straight lines par-
allel among themselves.

2.21) If the cubic system (5) has a triplet of parallel invariant straight lines,
then all its singular points lie on these straight lines.

2.22) The cubic system (5) cannot have more than two triplets of parallel in-
variant straight lines.

2.23) If l1, l2, l3 form a triplet of parallel invariant straight lines of cubic system
(5), then either

a) l1, l2, l3 ∈ R[x, y], or

b) l1, l2, l3 ∈ C[x, y] and l̄j /∈ {l1, l2, l3}, j = 1, 2, 3, or

c) l1 ∈ R[x, y], l2,3 ∈ C[x, y] \ R[x, y] and l3 = l2.

We mention that in the case b) of the property 2.23) all straight lines l1, l2, l3
are relatively complex.

2.3 Multiple invariant straight lines

Remark 1. All the straight lines mentioned in properties 2.3), 2.20) − 2.23) are
considered with their parallel multiplicity. For example, in the case a) of the property
2.23) the cases l1 ≡ l2 6≡ l3 and l1 ≡ l2 ≡ l3 are admissible. In the first case l1 has
parallel multiplicity equal to two, but in the second case the multiplicity of invariant
straight lines is equal to three.

The next two statements are a consequence of the relation (7).

2.24) The parallel multiplicity of an invariant straight line of the cubic system
(5) is at most three.

2.25) The parallel multiplicity of any absolutely complex invariant straight line
of the cubic system (5) is equal to one.
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2.26) If the cubic system (5) has two concurrent invariant straight lines l1, l2
and l1 has the parallel multiplicity equal to m, 1 ≤ m ≤ 3, then this system cannot
have more than 3 −m singular points on l2 \ l1.

Proof. If m = 1 (m = 3), then the property 2.26) is a consequence of the properties
2.2) and 2.7). Assume m = 2 and lj = αjx+ βjy + γj, j = 1, 2, α1β2 − α2β1 6= 0.
From the equalities

α1P (x, y) + β1Q(x, y) = l21K1(x, y),
α2P (x, y) + β2Q(x, y) = l2K2(x, y), ∀(x, y) ∈ R2,

(8)

we have

P =
β2l

2
1K1 − β1l2K2

α1β2 − α2β1
, Q =

α1l2K2 − α2l
2
1K1

α1β2 − α2β1
. (9)

Assume that on l2 \ l1 at least two distinct singular points of the system (5)
lie. Then, from (8) it follows K1 = c0l2, c0 = const, and from (9) it follows that l2
is a common factor of the polynomials P and Q, in contradiction to the condition
gcd(P,Q) = 1.

We say that three straight lines are in generic position if no one pair of the lines
is parallel and no more that two lines pass through the same point.

2.27) For the cubic system (5) the total parallel multiplicity of three invariant
straight lines in generic position is at most four.

Proof. Let lj ≡ αjx + βjy + γj = 0, j = 1, 2, 3, be three invariant straight lines of
the system (5). The properties 2.7) and 2.26) do not allow one of the lines l1, l2, l3
to have degree of invariance equal to three.

Let us suppose that each of the invariant straight lines l1 and l2 has the degree
of invariance equal to two. It is enough to examine the cases when the straight lines
l1, l2, l3 form one of the configurations from Fig. 2.1.

2

2

2 2 2 2 2 22

a) b) c) d)
Fig. 2.1

In the case of configuration a) of Fig. 2.1 we can consider l1 = x and l2 = y.
Then the system (5) can be written in the form

ẋ = x2(a20 + a30x+ a21) ≡ P (x, y), ẏ = y2(b02 + b12x+ b03y) ≡ Q(x, y). (10)
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Requiring from (10) to have the invariant straight line l3 = αx− y + β, αβ 6= 0, i.e.
the following identity

αP (x, αx + β) −Q(x, αx + β) ≡ 0 (11)

to be satisfied with respect to x, we obtain that a20 = −βa21, a30 = −αa21, b20 =
−βb30, b12 = −αb30. In this case, we have P (x, y) = a21x

2l3, Q(x, y) = −b30l3.
Therefore, deg(gcd(P,Q)) > 0, is not allowed.

Now let us consider the configurations b) and c) from Fig. 2.1. By an affine
transformation, we can get l1 = y − ix and l2 = y + ix, i2 = −1. Then the system
(5) obtains the form















ẋ = a20x
2 − 2b20xy − a20y

2 + a30x
3 − (a03 + 2b30)x

2y
+(3a30 − 2b21)xy

2 + a03y
3 ≡ P (x, y),

ẏ = b20x
2 + 2a20xy − b20y

2 + b30x
3 + b21x

2y − (2a03 + b30)xy
2

+(2a30 − b21)y
3 ≡ Q(x, y).

(12)

The identity (11), written for (12), leads us to the degenerate system

{

ẋ = l3
[

a03x
2 + (2b21 − 4αa03)xy − a03y

2
]

,
ẏ = −l3

[

(b21 − 2αa03)x
2 − 2a03xy + (2αa03 − b21)y

2
]

,

where l3 = αx− y + β, β(α2 + 1) 6= 0.
In the case of configuration d) of Fig. 2.1 we can consider l1 = y− ix and l2 = x.

The family of cubic systems for which the straight line l1 is invariant with parallel
multiplicity equal to two is described by (12). In order the straight line l2 = x
to be invariant for (12) with parallel multiplicity equal to two, it is necessary that
a20 = a03 = b20 = 0, b21 = 3a30/2. In this conditions, (12) looks as

ẋ = x2(a30x− 2b30y), ẏ = (2b30x
3 + 3a30x

2y − 2b30xy
2 + a30y

3)/2. (13)

From (13) it is seen that on the straight line l2 only a singular point (0, 0)lies, which
means that the configuration d) from Fig. 2.1 is not realized in the class of cubic
systems.

3 The proof of Theorem 1

3.1 Configurations of straight lines and classification of cubic
systems

The goal of this section is to classify the cubic systems with exactly seven in-
variant straight lines, six of which form two triplets of parallel lines. It is obvious
that these straight lines can be only of three directions. Taking into account this
fact and the properties 2.19)–2.21), 2.23) and 2.25), the following configurations
are possible:
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3.1) (3r, 3r, 1r); 3.2) (3(2)r,3r,1r); 3.3) (3(3)r,3r,1r);
3.4) (3(2)r, 3(2)r, 1r); 3.5) (3(3)r,3(2)r,1r); 3.6) (3 (3 )r , 3 (3 )r , 1r );
3.7) (3r,1r + 2c0,1r); 3.8) (3(2)r,1r + 2c0,1r); 3.9) (3(3)r,1r + 2c0,1r);
3.10) (1r + 2c0, 1r + 2c0, 1r); 3.11) (3c1, 3c1, 1r); 3.12) (3(2)c1, 3(2)c1, 1r);
3.13) (3 (3 )c1 , 3 (3 )c1 , 1r) .

By (3r, 3r, 1r) we denoted the configuration which consists of seven distinct real
straight lines l1, ..., l7 ∈ R[x, y], of which l1, l2, l3 and l4, l5, l6, form two triplets of par-
allel straight lines, i.e. l1 ‖ l2 ‖ l3, l4 ‖ l5 ‖ l6 and lj 6‖ lk, (j, k) = (1, 4), (1, 7), (4, 7).
In the case of configuration (3r, 1r + 2c0, 1r) we have seven straight lines l1, ..., l7,
of which l1, l2, l3, l4 and l7 are real, l5, l6 are absolutely complex, l1, l2, l3 and
l4, l5, l6 form two triplets of distinct parallel straight lines and lj 6‖ lk, (j, k) =
(1, 4), (1, 7), (4, 7). The configuration (3(2)c1, 3(2)c1, 1r) consists of a real straight
line l7 and relatively complex lines l1, ..., l6, l1 ≡ l2 ‖ l3, l4 ≡ l5 ‖ l6, l4 = l1, l6 =
l3, lj 6‖ lk, (j, k) = (1, 4), (1, 7), (4, 7). The straight lines l1 and l2 (or l4 and l5) are
considered relatively complex straight lines which have the parallel multiplicity equal
to two and so on.

Next, we will examine the configurations 3.1)− 3.13) and their realization in the
class of cubic systems.

3.1.1 Unrealizable configurations

The configurations 3.2), 3.3), 3.5), 3.7), 3.8) and 3.9) (denoted bold) are not
realizable in the class of cubic systems of differential equations, that is there are
no cubic systems with real coefficients invariant straight lines of which would form
one of the configuration mentioned above. So, the properties 2.2), 2.7), 2.21) and
2.26) do not allow the realization of configurations 3.2), 3.3), 3.5) and 3.9); the
properties 2.2), 2.7), 2.16) and 2.21) do not allow the realization of configurations
3.7) and 3.8).

3.1.2 Subconfigurations of configurations with eight lines

We will show that there are no cubic systems with exactly seven invariant straight
lines in the finite phase plane for which al least one of the configurations 3.6) and
3.13) is realized.

In the case of configuration 3.6), i.e. (3(3)r, 3(3)r, 1r), we can consider l1 = l2 =
l3 = x and l4 = l5 = l6 = y. Then, the system (5) is written as:

ẋ = x3 ≡ P (x, y), ẏ = ωy3 ≡ Q(x, y), ω 6= 0. (14)

The property 2.27) imposes the straight line l7 to pass through the origin of co-
ordinates, that is to be described by an equation of the form y = αx, α 6= 0. The
identity (11) which ensures the invariance of the straight line l7, written for (14)
(when β = 0), gives us αx3(α2ω − 1) = 0 ∀x ∈ R, which implies α = ±

√

1/ω.

Thus, in the finite phase plane, the system (14) has either exactly six or eight
invariant straight lines (see Fig. 3.1).



CUBIC SYSTEMS WITH SEVEN STRAIGHT INVARIANT LINES . . . 91

3

3

3

3

3

3

a) b) c)
Fig. 3.1

In the case of configuration 3.13) (3(3)c1, 3(3)c1, 1r), we consider the straight
lines l1 = l2 = l3 = y − ix and l4 = l5 = l6 = y + ix, i2 = −1. In order the straight
lines be invariant for (5) it is necessary that the identity Q(x, y)−iP (x, y) ≡ (y−ix)3
be satisfied (see (7)). This identity leads us to the system

ẋ = x(x2 − 3y2), ẏ = y(3x2 − y2),

which, besides the invariant straight lines y − ix = 0 and y + ix = 0 with parallel
multiplicities equal to three, has also the real invariant straight lines x = 0 and
y = 0.

3.1.3 Realizable configurations

In this subsection we will show that the configurations 3.1), 3.4), 3.10) and 3.12)
are respectively realized by systems 1.1), 1.2), 1.3) and 1.6) and the configuration
3.11)− by the systems 1.4) and 1.5) from Theorem 1.

Configuration 3.1) (3r,3r,1r). We may consider l1 = x; l2 = x + 1; l3 =
x− a, a > 0; l4 = y; l5 = y + 1; l6 = y − b, b > 0. The cubic system (5), for which
the given straight lines are invariant, looks as:

ẋ = x(x+ 1)(x− a), ẏ = ωy(y + 1)(y − b), a > 0, b > 0, ω 6= 0. (15)

The properties 2.1) and 2.7) impose the straight line l7 to be described by:
α) the equation y = x and so, b = a, (see Fig. 3.2) or β) the equation y = −x/a
and then b = 1/a. The case β) is reduced to the case α) by the transformation
x→ −ax, y → y, a→ 1/a.

2

2

Fig. 3.2 Fig. 3.3 Fig. 3.4
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Substituting into the system (15) b = a and requiring the straight line y = x
to be invariant for (15), we obtain ω = 1. Thus, we come to the system 1.1) from
Theorem 1, which has the following invariant straight lines and a first integral:

l1 ≡ x = 0, l2 ≡ x+ 1 = 0, l3 ≡ x− a = 0, l4 ≡ y = 0,
l5 ≡ y + 1 = 0, l6 ≡ y − b = 0, l7 ≡ y − x = 0;

F ≡
(

x
y

)a+1 (

y+1
x+1

)a
y−a
x−a = C.

(16)

The inequality a 6= 1 was imposed to the system 1.1) to exclude the existence of
the invariant straight line l8 ≡ y + x = 0.

Configuration 3.4) (3(2)r,3(2)r,1r). Let the real straight lines l1 ≡ l2 ‖ l3,
l4 = l5 ‖ l6, l1 ∦ l4 be given. By an affine transformation of coordinates we can
make them to be l1 = x, l3 = x + 1, l4 = y, l6 = y + 1. The cubic system (5)
possessing the invariant straight lines l1, l3 and l6, where l1 as well as l4 have the
parallel multiplicity equal to two, looks as:

ẋ = x2(x+ 1), ẏ = ωy2(y + 1), ω 6= 0. (17)

The properties 2.7), 2.21), 2.26) and 2.27), allow the coexistence of straight
line l7 together with straight lines l1, ..., l6 only in the configuration given in Fig. 3.3.

Therefore, l7 = y − x and this straight line is invariant for system (17) if ω = 1,
that is if (17) coincides with the system 1.2) from Theorem 1. This system has the
following invariant straight lines l1, ..., l7 and a first integral F :

l1,2 ≡ x = 0, l3 ≡ x+ 1 = 0, l4,5 ≡ y = 0, l6 ≡ y + 1 = 0, l7 = y − x;

F ≡ x−1e−1/x(x+ 1)ye1/y(y + 1)−1 = C.
(18)

Configuration 3.10) (1r+2c0,1r+2c0,1r) (Fig. 3.4). Setting l1 = x, l2,3 =
x− (a ± bi), l4 = y, l5,6 = y − (c ± di), a, b, c, d ∈ R, bd 6= 0, i2 = −1, we arrive at
the system

ẋ = x((x− a)2 + b2), ẏ = ωy((y − c)2 + d2), (19)

where ω = ±1. We denote by Oj,k the points of intersection of straight lines lj and
lk.

The properties 2.1), 2.2) 2.7) and 2.13) impose the straight line l7 to pass
through points O1,4(0, 0), O2,5(a+ bi, c+ di), O3,6(a− bi, c− di) (or through points
O1,4(0, 0), O2,6(a+ bi, c− di), O3,5(a− bi, c+ di)). The substitution d→ −d reduces
the case O1,4, O2,6, O3,5 ∈ l7 to the case O1,4, O2,5, O3,6 ∈ l7. From O1,4(0, 0) ∈
l7 it results that l7 is described by an equation of the form y = αx, and from
O2,5, O3,6 ∈ l7 (O2,6, O3,5 ∈ l7) we obtain that c = αa, d = αb. Taking into account
these relations, the invariance condition (11), (the case β = 0) of the straight line
l7 = y − αx for the system (19) looks as:

αx(α2ω − 1)((x− a)2 + b2) ≡ 0,
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from which we obtain ω = 1, α = 1 (or α = −1). Thus, the system (19) for which
the straight line l7 = y − x is invariant is written as follows:

ẋ = x((x− a)2 + b2), ẏ = y((y − a)2 + b2), (20)

(

ẋ = x((x− a)2 + b2), ẏ = y((y + a)2 + b2)
)

. (21)

The substitutions x → x, y → −y reduce the system (21) to the system (20), and
the substitutions x → bx, y → by, a → ab, t → b2τ reduce the system (20) to the
system 1.3) from Theorem 1, which has the following invariant straight lines and
integrating factor:

l1 = x, l2,3 = x− a∓ i, l4 = y, l5,6 = y − a∓ i, l7 = y − x;
µ = 1/(l1l2l3l4l5l6).

(22)

If we set a = 0 in the cubic system 1.3), then besides the straight lines l1, ..., l7,
given in (22), the cubic system will have the invariant straight line l8 = y + x.

Remark 2. Let l1, l2, l3 be three relatively complex distinct lines and l1 ‖ l2 ‖ l3. If
their real points are collinear, then, by an affine transformation, their equations can
be brought to the form y − ix = 0, y − ix − 1 = 0, y − ix − a = 0, i2 = −1, where
a ∈ (0, 1).

Configuration 3.11) (3c1,3c1,1r). Via affine transformations we can make
the relatively complex straight lines l1, ..., l6, l1 ‖ l2 ‖ l3, l4 ‖ l5 ‖ l6, l1 6‖ l4 to be
described by equations: l1,4 ≡ y ∓ ix = 0, l2,5 ≡ y ∓ ix− 1 = 0, l3,6 ≡ y ∓ ix − a∓
bi, (a, b) 6= (0, 0), (1, 0), i2 = −1. From the identity Q(x, y) − iP (x, y) ≡ l1l3l5 we
find that the cubic systems for which the straight lines l1, ..., l6 are invariant look as:

{

ẋ = ax− by − bx2 − 2(a+ 1)xy + by2 − x3 + 3xy2 ≡ P (x, y),
ẏ = bx+ ay + (a+ 1)x2 − 2bxy − (a+ 1)y2 − 3x2y + y3 ≡ Q(x, y).

(23)

Next, we will require from (23) to have one more invariant straight line l7. First,
we will consider that l7 = x − c, c ∈ R. This straight line is invariant for (23) if
and only if the identity P (c, y) ≡ 0 holds with respect to y. This identity gives the
equalities c = b = 0, which, in turn, reduce (23) to the system 1.4) from Theorem 1.
This system has the following invariant straight lines and integrating factor:

l1 = y − ix, l2 = y − ix− 1, l3 = y − ix− a, l4 = y + ix,
l5 = y + ix− 1 = 0, l6 = y + ix− a, l7 = x; µ = 1/(l1l2l3l4l5l6).

(24)

We mention that if a = 1/2, then the system 1.4), besides the straight lines
l1, ..., l7, has one more invariant straight line.

Now let us require for system (23) to have an invariant straight line l7 of the
form y = αx−β, α, β ∈ R. From the identity αP (x, αx−β)−Q(x, αx−β) ≡ 0, i.e.
2α(1+α2)x3−(1+α2)(1+a−αb−3β)x2+b(1+α2)(2β−1)x+β(β−1)(a+αb−β) ≡ 0,
we find that α = 0, a = β = 1/2, and (23) takes the form

ẋ = x−2bx2−2x3−2by−6xy+2by2 +6xy2, ẏ = (2y−1)(2bx+3x2 +y−y2). (25)
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The substitutions x → y/2, y → (x + 1)/2, t → −4t, b → a/2, reduce (25) to the
system 1.5) from Theorem 1. This system has the following invariant straight lines
and integrating factor:

l1 = y − ix+ i, l2 = y + ix− i, l3 = y − ix− i, l4 = y + ix+ i = 0,
l5 = y − ix+ a, l6 = y + ix+ a, l7 = x; µ = 1/(l1l2l3l4l5l6).

(26)

If a = 0, then the system 1.5) has the straight line l8 = y.
In the case of the system 1.4) we have Fig. 3.5α), and in the case 1.5) we have

Fig. 3.5β).

2

α) β)
Fig. 3.5 Fig. 3.6

Configuration 3.12) (3(2)c1,3(2)c1,1r). Assume l1 = l2 ‖ l3, l4 = l5 ‖ l6,
l1 6‖ l4. We can make l1 = y− ix, l3 = y− ix− 1 and so, l4 = y+ ix, l6 = y+ ix− 1,
i2 = −1. The cubic system for which the straight lines l1, ..., l6 are invariant coincides
with the system 1.6) from Theorem 1. It is obvious that for system 1.6) the straight
line x = 0 is invariant (see configuration from Fig 3.6). At the same time for this
system, the polynomial (6) looks as: ψ(x, y) = 2x(3y−1)(x2 +y2)2(1+x2−2y+y2),
from which we deduce that l7 = x has the parallel multiplicity equal to one, and the
system 1.6) has not other invariant straight lines besides the straight lines

l1 = l2 = y − ix, l3 = y − ix− 1, l4 = l5 = y + ix,
l6 = y + ix− 1, l7 = x; µ = 1/(l21l3l

2
4l6).

(27)

By µ in (27) is denoted an integrating factor for system 1.6).

4 Qualitative study of systems 1.1) – 1.6)

In this section, the qualitative study of the systems 1.1) − 1.6) from Theorem 1
will be done. For this purpose, the finite as well as infinite singular points will be
examined in order to determine the topological structures of their neighborhoods.
Using this information, as well as the information provided by the existence of
invariant straight lines, we will construct the phase portraits of systems 1.1) − 1.6)
on Poincarè disk.

We denote by SP singular points; λ1 and λ2 the eigenvalues of SP ; TSP − type
of singular points; S − saddle (λ1λ2 < 0); TS − topological saddle; N s − stable node
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(λ1, λ2 < 0); N i − unstable node (λ1, λ2 > 0); DN s(i) − ”decritic” stable (unstable)
node (λ1 = λ2 6= 0); NT s(i) − topological stable (unstable) node; S−N s(i) − saddle-
node with stable (unstable) parabolic sector; F s(i) − stable (unstable) focus; P s(i)

− stable (unstable) parabolic sector; H − hyperbolic sector; E − elliptic sector.

4.1 The systems 1.1), 1.3), 1.4), 1.5)

In the first and the fourth columns of Tab. 4.1 we indicated the singular points
of the systems 1.1), 1.3) − 1.5); in the second and the fifth columns the eigenvalues
corresponding to the respective singular point are given and in the third and sixth
columns the types of the singularities are established. All these points are simple and
together with the invariant straight lines, complectly determine the phase portrait
of each of systems 1.1), 1.3) − 1.5).

Tab. 4.1

System 1.1)

SP λ1; λ2 TSP SP λ1; λ2 TSP

O1(−1,−1) 1 + a; DN i O7(a,−1) 1 + a; N i

1 + a a(1 + a)

O2(−1, 0) −a; 1 + a S O8(a, 0) −a; a(1 + a) S

O3(−1, a) 1 + a; N i O9(a, a) a(1 + a); DN i

a(1 + a) a(1 + a)

O4(0,−1) −a; 1 + a S X1∞(1, 0, 0) −1; −1 DN s

O5(0, 0) −a; −a DN s X2,3∞(1,±1, 0) −1; 2 S

O6(0, a) −a; a(1 + a) S Y∞(0, 1, 0) −1; −1 DN s

System 1.3)
SP λ1; λ2 TSP SP λ1; λ2 TSP

O1(0, 0) a2 + 1; a2 + 1 DN i X1∞(1, 0, 0) −1; −1 DN s

Y∞(0, 1, 0) −1; −1 DN s X2,3∞(1,±1, 0) −1; 2 S

System 1.4)
SP λ1; λ2 TSP SP λ1; λ2 TSP

O1(0, 0) −a; −a DN s O2(0, 1) a− 1; a− 1 DN s

O3(0, a) a(1 − a); DN i X1∞(1, 0, 0) −1; 2 S
a(1 − a)

Y∞(0, 1, 0) −2; 1 S

System 1.5)

SP λ1; λ2 TSP SP λ1; λ2 TSP

O1(0,−a) a2 + 1; a2 + 1 DN i O2(−1, 0) −2 ± 2ai F s

O3(1, 0) −2 ± 2ai F s X1∞(1, 0, 0) −2; 1 S

Y∞(0, 1, 0) 2; −1 S
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4.2 System 1.2)

For 1.2) we have Tab 4.2.
Tab. 4.2

PS λ1; λ2 TPS PS λ1; λ2 TPS

O1(0, 0) 0; 0 P iHP sH X1∞(1, 0, 0) −1; −1 NDs

O2(−1, 0) 1; 0 S−N i X2∞(1,−1, 0) −1; 2 S

O3(−1,−1) 1; 1 NDi X3∞(1, 1, 0) −1; 2 S

O4(0,−1) 0; 1 S−N i Y∞(0, 1, 0) −1; −1 NDs

In Tab. 4.2 all the singular points are simple except the point O1(0, 0), which is
nilpotent, and the points O2(−1, 0) and O4(0,−1), which are semi-hyperbolic.

1) The singular point O1(0, 0) has both eigenvalues equal to zero. To determine
the behavior of trajectories in the neighborhood of this point we will use the blow-up
method (see, for instance, [9]). According to it, we write the system 1.5) in the polar
coordinates (ρ, θ) : x = ρcosθ, y = ρsinθ:

{

dρ
dτ = ρ(cos3θ + sin3θ + ρ(cos4θ + sin4θ)),
dθ
dτ = sinθcosθ(sinθ− cosθ)(1 + ρ(cosθ + sinθ)),

(28)

where τ = ρt. The singular points of the system (28) with ρ = 0 and θ ∈ [0, 2π),
and their eigenvalues: {M1(0, 0), M2(0, π), M3(0, π/2), M4(0, 3π/2) : λ1,2 = ±1};
{M5(0, π/4) : λ1,2 = 1/

√
2}; {M6(0, 5π/4) : λ1,2 = −1/

√
2} lead us to Fig. 4.1, a),

where we can see that the neighborhood of the point O1(0, 0) is composed from
sectors P iHP sH (Fig. 4.1, b)).

S

N

S

S

S

s

N
i

H

H

P

P

i

s

a) b)
Fig. 4.1

2) The substitution x → y, y → x, sends the singular point O4(0,−1) to the
singular point O2(−1, 0) and vice versa. Therefore, we will study the semi-hyperbolic
singular point O2(−1, 0). To determine the type of this point, we make in system
1.2) the transformation x = Y − 1, y = X :

Ẋ = X2(X + 1) = P (X,Y ), Ẏ = Y − 2Y 2 + Y 3 = Y +Q(X,Y ).

From Y + Q(X,Y ) = 0, we have that Y = ϕ(X) = 0. Substituting Y = ϕ(X) in
P (X,Y ) we obtain the function ψ(X) = X2 + X3. By [3, Theorem 2, p. 87], the
point O2(−1, 0) is an unstable saddle-node, i.e. its neighborhood consists of two
hyperbolic sectors and one unstable parabolic sector.
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4.3 System 1.6)

This system has two singular points in the plane xOy and two singular points at
infinity. The singular point (0, 0) is nilpotent, other singular points are simple (see
Tab. 4.3).

Tab. 4.3

SP λ1; λ2 TSP SP λ1; λ2 TSP

O1(0, 0) 0; 0 P iEP sE O2(0, 1) −1; −1 DN s

X1∞(1, 0, 0) −1; 2 S Y∞(0, 1, 0) −2; 1 S

We will show that the nilpotent singular point (0, 0) has the sectors: P i, E, P s, E.
In polar coordinates (ρ, θ) the system 1.6) is written as:

{

ρ̇ = ρ
(

ρ cos2 θ + sin θ − ρ sin2 θ
)

,

θ̇ = cos θ (−1 + 2ρ sin θ) .

The obtained system, has two singular points M1 and M2 with first coordinate zero:
{

M1(0,
π
2 ); λ1,2 = 1

}

,
{

M2(0,
3π
2 ); λ1,2 = −1

}

.
We mark these points on the unit circle (Fig. 4.2, a)) which, being ”compressed”

in the point (0, 0), give us the behavior of trajectories of differential system 1.6) in
the neighborhood of this point (Fig. 4.2, b)).

 N    
i

 N    
s

P
i

P
s

EE

a) b)
Fig. 4.2

As all the cases are considered, Theorem 1 is proved.
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