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Moment analysis of the telegraph random process

Alexander D.Kolesnik

Abstract. We consider the Goldstein-Kac telegraph process X(t), t > 0, on the
real line R

1 performed by the random motion at finite speed c and controlled by a
homogeneous Poisson process of rate λ > 0. Using a formula for the moment function
µ2k(t) of X(t) we study its asymptotic behaviour, as c, λ and t vary in different
ways. Explicit asymptotic formulas for µ2k(t), as k → ∞, are derived and numerical
comparison of their effectiveness is given. We also prove that the moments µ2k(t) for
arbitrary fixed t > 0 satisfy the Carleman condition and, therefore, the distribution
of the telegraph process is completely determined by its moments. Thus, the moment
problem is completely solved for the telegraph process X(t). We obtain an explicit
formula for the Laplace transform of µ2k(t) and give a derivation of the the moment
generating function based on direct calculations. A formula for the semi-invariants of
X(t) is also presented.

Mathematics subject classification: 60K35, 60J60, 60J65, 82C41, 82C70.
Keywords and phrases: Random evolution, random flight, persistent random
walk, telegraph process, moments, Carleman condition, moment problem, asymptotic
behaviour, semi-invariants.

1 Preliminaries

Consider the one-dimensional stochastic process performed by a particle that
starts at the time instant t = 0 from the origin x = 0 of the real line R

1 and moves
with some finite constant speed c. The initial direction of the motion (positive
or negative) is taken on with equal probabilities 1/2. The motion is driven by a
homogeneous Poisson process of rate λ > 0 as follows. As a Poisson event occurs,
the particle instantaneously takes on the opposite direction and keeps moving with
the same speed c until the next Poisson event occurrence, then it takes on the
opposite direction again independently of its previous motion, and so on. This
random motion has first been studied by Goldstein [12] and Kac [16] and was called
the telegraph process afterwards (the latter article [16] is a reprinting of an earlier
1956 work).

Let X(t) denote the particle’s position on R
1 at an arbitrary time instant t >

0. Since the speed c is finite, then, at the time instant t > 0, the distribution
Pr{X(t) ∈ dx} is concentrated in the finite interval [−ct, ct] which is the support
of the distribution of X(t). The density f(x, t), x ∈ R

1, t ≥ 0, of the distribution
Pr{X(t) ∈ dx} has the structure

f(x, t) = fs(x, t) + fac(x, t),
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where fs(x, t) and fac(x, t) are the densities of the singular (with respect to the
Lebesgue measure on the line) and of the absolutely continuous components of the
distribution of X(t), respectively.

The singular component of the distribution is, obviously, concentrated at two
terminal points ±ct of the interval [−ct, ct] and corresponds to the case when no one
Poisson event occurs until the moment t and, therefore, the particle does not change
its initial direction (the probability of this event is e−λt).

The density fac(x, t) of the absolutely continuous components of the distribution
corresponds to the case when at least one Poisson event occurs by moment t and,
therefore, the particle changes its initial direction (the probability of this event is
1− e−λt). The support of this part of the distribution is the open interval (−ct, ct).

The principal result by Goldstein [12] and Kac [16] states that the density f =
f(x, t), x ∈ [−ct, ct], t ≥ 0, satisfies the following hyperbolic partial differential
equation

∂2f

∂t2
+ 2λ

∂f

∂t
− c2

∂2f

∂x2
= 0, (1)

which is referred to as the telegraph or damped wave equation and can be found by
solving (1) with the initial conditions

f(x, t)|t=0 = δ(x),
∂f(x, t)

∂t

∣

∣

∣

∣

t=0

= 0,

where δ(x) is the Dirac delta-function. This means that the transition density f(x, t)
of the process X(t) is the fundamental solution (i.e. the Green’s function) of the
telegraph equation (1).

The explicit form of the density f(x, t) is given by the formula (see, for instance,
[29, Section 0.4] or [27, Theorem 1]):

f(x, t) =
e−λt

2
[δ(ct− x) + δ(ct+ x)] +

+
e−λt

2c

[

λI0

(

λ

c

√

c2t2 − x2

)

+
∂

∂t
I0

(

λ

c

√

c2t2 − x2

)]

Θ(ct− |x|),
(2)

where Θ(x) is the Heaviside step function

Θ(x) =

{

1, if x > 0,

0, if x ≤ 0,

and I0(z) is the modified Bessel function of order zero (that is, the Bessel function
with imaginary argument) given by

I0(z) =
∞
∑

k=0

1

(k!)2

(z

2

)2k
.

The first term of (2)

fs(x, t) =
e−λt

2
[δ(ct− x) + δ(ct+ x)] (3)
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represents the density of the singular part of the distribution of X(t) concentrated
at two terminal points ±ct of the interval [−ct, ct], while the second term of (2)

fac(x, t) =
e−λt

2c

[

λI0

(

λ

c

√

c2t2 − x2

)

+
∂

∂t
I0

(

λ

c

√

c2t2 − x2

)]

Θ(ct− |x|), (4)

is the density of the absolutely continuous part of the distribution of X(t) concen-
trated in the open interval (−ct, ct).

During last decades the Goldstein-Kac telegraph process X(t) and its numer-
ous generalizations have become the subject of intense researches provided both by
great theoretical importance and fruitful applications in statistical physics, finan-
cial modeling, transport phenomena in physical and biological systems, hydrology
and some other fields. Some properties of the solution space of the Goldstein-Kac
telegraph equation (1) were studied by Bartlett [2]. The process of one-dimensional
random motion at finite speed governed by a Poisson process with a time-depending
parameter was considered by Kaplan [17]. The relationships between the Goldstein-
Kac model and physical processes, including some emerging effects of the relativity
theory, were thoroughly examined by Bartlett [1], Cane [5,6]. Formulas for the distri-
butions of the first-exit time from a given interval and of the maximum displacement
of the telegraph process were obtained by Pinsky [29, Section 0.5], Foong [10], Ma-
soliver and Weiss [25, 26]. The behaviour of the telegraph process with absorbing
and reflecting barriers was studied by Foong and Kanno [11], Orsingher [28]. A one-
dimensional stochastic motion with an arbitrary number of velocities and governing
Poisson processes was examined by Kolesnik [21]. The telegraph-type processes
with random velocities were studied by Stadje and Zacks [32]. Probabilistic meth-
ods of solving the Cauchy problems for the telegraph equation (1) were developed by
Kac [16], Kisynski [18], Kabanov [15], Turbin and Samoilenko [33]. A generalization
of the Goldstein-Kac model for the case of a damped telegraph process with logistic
stationary distributions was given by Di Crescenzo and Martinucci [8]. A random
motion with velocities alternating at Erlang-distributed random times was studied
by Di Crescenzo [7]. Formulas for the occupation time distributions of the telegraph
process were recently obtained by Bogachev and Ratanov [4]. A generalization of
the Goldstein-Kac telegraph process to the R

d, d ≥ 1, space with an arbitrary finite
number of cyclically changing directions was thoroughly examined by Lachal [24].
A similar motion in the plane R

2 with an arbitrary finite number of directions and
uniform mechanism of their change was studied by Kolesnik and Turbin [23].

Moments of any stochastic process are one of the most interesting and useful
objects both from theoretical and practical points of view. This especially concerns
the telegraph process X(t) which is the basis for many important models in finan-
cial mathematics, biology, physics and other fields. For example, the knowledge of
moments enables to construct various moment-type estimators in statistics (see, for
instance,[14]). However, despite the great variety of existing works on the subject
and of the results obtained, the moment problem for the Goldstein-Kac telegraph
process was not properly solved so far. In particular, it was not clear whether the
distribution of X(t) was completely determined by its moments.
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The most enigmatic fact is that the transition density (2) of the one-dimensional
telegraph process X(t) has much more complicated form than the transition den-
sities of its two- and four-dimensional counterparts with a continuum number of
directions (for the transition density of the 2D and 4D-motions see [22, Theorem 2]
and [20, Theorem 2], respectively). While the transition density (2) contains special
functions, the densities of the 2D- and 4D-motions have very simple exponential
form that enables to explicitly compute the moments (see [19, Theorems 1 and
3, respectively]). Note also that the moments of a special multidimensional ran-
dom motion with a cyclic mechanism of choosing new directions were computed by
Samoilenko [31].

In this article we give a detailed moment analysis of the Goldstein-Kac telegraph
process X(t). In Section 2 we study the asymptotic behaviour of the moment func-
tion as c, λ and t vary in different ways. In Section 3 we obtain an explicit formula
for the Laplace transform of the moment function of X(t). In Section 4 we give
the complete solution of the moment problem for the telegraph process X(t). We
show that, for arbitrary t > 0, the moments of X(t) satisfy the Carleman condition
and, therefore, the distribution of X(t) is completely determined by its moments.
In Section 5 we derive the moment generating function by direct computations and
give a formula for the semi-invariants of the telegraph process X(t).

2 Asymptotic Behaviour of Moments

Consider the moment function of the Goldstein-Kac telegraph process X(t) de-
fined by the formula

µn(t) = E[X(t)]n, n ≥ 1,

where E means the expectation.
It is known (see, for instance,[14, Theorem 2.1]) that, for arbitrary t > 0, the

moments of X(t) are given by the formula

µ2k(t) = e−λt c2k 2k−1/2 λ−k+1/2 tk+1/2 Γ

(

k +
1

2

)

[

Ik+1/2(λt) + Ik−1/2(λt)
]

,

µ2k+1(t) = 0, k = 0, 1, 2, . . . .

(5)

where Iν(z) is the modified Bessel function of order ν

Iν(z) =

∞
∑

k=0

1

k! Γ(k + ν + 1)

(z

2

)2k+ν
,

and Γ(x) is the Euler gamma-function. Note that formula (5) slightly differs from
that of [14, Theorem 2.1]), however one can easily check that both these represen-
tations of the moment function µ2k(t) are equivalent. For our purposes it is more
convenient to use just the representation (5).

From (5) we can easily obtain the first and the second moments of the telegraph
process X(t):

µ1(t) = 0, µ2(t) =
c2t

λ
− c2

2λ2
(1 − e−2λt), (6)
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and this coincides with [27, Formula (28)].

In this section we thoroughly study the asymptotic behaviour of the moment
function given by (5). Clearly, we need to examine the behaviour of the even-order
moments µ2k(t), k = 1, 2, . . . , only.

2.1. Asymptotic behaviour with respect to c → ∞, λ → ∞, (t and k are fixed).
In this subsection we consider the case when, under fixed t and k, the speed of the
motion c and the intensity of switching Poisson process λ both go to infinity in such
a way that the following Kac condition holds:

c→ ∞, λ→ ∞,
c2

λ
→ ρ, ρ > 0. (7)

Taking into account the well-known asymptotic formula for the modified Bessel
function (see, for instance,[13, Formula 8.451(5)]):

Iν(z) ∼ ez√
2πz

, z → +∞, (8)

as well as the formula (see [13, Formula 8.339(2)])

Γ

(

k +
1

2

)

=

√
π

2k
(2k − 1)!!, k ≥ 0, (−1)!! = 1, (9)

we obtain

lim
c, λ→∞

(c2/λ)→ρ

µ2k(t) = 2k−1/2tk+1/2Γ

(

k +
1

2

)

×

× lim
c, λ→∞

(c2/λ)→ρ

[

e−λtc2kλ−k+1/2
(

Ik+1/2(λt) + Ik−1/2(λt)
)

]

∼

∼ 2k−1/2tk+1/2Γ

(

k +
1

2

)

lim
c, λ→∞

(c2/λ)→ρ

[

e−λtc2kλ−k+1/2 2eλt

√
2πλt

]

=

= 2k tk
1√
π

Γ

(

k +
1

2

)

lim
c, λ→∞

(c2/λ)→ρ

(

c2k

λk

)

=

= 2k tk
1√
π

√
π

2k
(2k − 1)!! ρk =

= ρk tk (2k − 1)!!

and this coincides with the moment function of the one-dimensional homogeneous
Brownian motion with zero drift and diffusion coefficient σ2 = ρ.

2.2. Asymptotic behaviour with respect to t → ∞, λ → ∞, (c and k are fixed).
Similarly to the asymptotic analysis of Subsection 2.1 and by using (8) and (9) we
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can easy show that for t → ∞ or λ → ∞ (or both t and λ tend to infinity), under
fixed c and k, the following asymptotic formula holds:

µ2k(t) ∼
(

c2t

λ

)k

(2k − 1)!! (10)

From (10) we see that the moments µ2k(t) increase like tk as t → ∞ (for fixed c, λ
and k). Conversely, the moments µ2k(t) decrease like λ−k as λ → ∞ (for fixed c, t
and k).

2.3. Asymptotic behaviour with respect to k → ∞, (c, t and λ are fixed). Asymp-
totic analysis with respect to k → ∞ is much more complicated due to the absence
of general asymptotic formulas with respect to the index ν of the modified Bessel
function Iν(z) (except the very particular case when the argument z has a special
form depending on index ν). Nevertheless, we are able to obtain asymptotic formu-
las for the moment function µ2k(t), as k → ∞, due to the special form of the indices
of the modified Bessel functions in (5). This result is presented by the following
theorem.

Theorem 1. For any fixed c, λ and t the following asymptotic formula holds:

µ2k(t) ∼ e−λt (ct)2k

(

1 +
λt

2k + 1

)

, k → ∞. (11)

The refined asymptotic formula has the form:

µ2k(t) ∼ e−λt (ct)2k

(

1 +
λt

2k + 1
+

(λt)2

4k + 2
+

(λt)3

(4k + 2)(2k + 3)

)

, k → ∞.

(12)

Proof. First we need to establish the following asymptotic formulas for the modified
Bessel functions:

Ik+1/2(z) ∼
√

2

π

zk+1/2

(2k + 1)!!
, k → ∞, (13)

Ik−1/2(z) ∼
√

2

π

zk−1/2

(2k − 1)!!
, k → ∞. (14)

Let us prove (13). Using the series representation of the modified Bessel function
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(see, for instance,[13, Formula 8.445]) we have

Ik+1/2(z) = zk+1/2
∞
∑

l=0

1

l! Γ ((l + k + 1/2) + 1)

(z

2

)2l
=

= zk+1/2
∞
∑

l=0

1

l! (l + k + 1/2) Γ (l + k + 1/2)

(z

2

)2l
=

(see formula(9))

=
zk+1/2

√
π

∞
∑

l=0

z2l 2l+k

l! (l + k + 1/2) (2l + 2k − 1)!! 22l+k+1/2
=

=

√

2

π
zk+1/2

∞
∑

l=0

z2l

l! (2l + 2k + 1) (2l + 2k − 1)!! 2l
=

=

√

2

π
zk+1/2

∞
∑

l=0

z2l

(2l)!! (2l + 2k + 1)!!
∼

∼
√

2

π

zk+1/2

(2k + 1)!!
, k → ∞,

proving (13). Similarly, we have

Ik−1/2(z) = zk−1/2
∞
∑

l=0

1

l! Γ(l + k + 1/2)

(z

2

)2l
=

=
zk−1/2

√
π

∞
∑

l=0

z2l

l! (2l + 2k − 1)!! 2l−1/2
=

=

√

2

π
zk−1/2

∞
∑

l=0

z2l

(2l)!! (2l + 2k − 1)!!
∼

∼
√

2

π

zk−1/2

(2k − 1)!!
, k → ∞,

and (14) is also proved.

Therefore, by applying formulas (13) and (14) just now proved, we obtain:

µ2k(t) = e−λt c2k 2k−1/2 λ−k+1/2 tk+1/2 Γ

(

k +
1

2

)

[

Ik+1/2(λt) + Ik−1/2(λt)
]

∼

∼ e−λtc2k2k−1/2λ−k+1/2tk+1/2

√
π

2k
(2k − 1)!!

√

2

π

[

(λt)k+1/2

(2k + 1)!!
+

(λt)k−1/2

(2k − 1)!!

]

=

= e−λt c2k λ−k+1/2 tk+1/2 (2k − 1)!!
(λt)k−1/2

(2k − 1)!!

[

1 +
λt

2k + 1

]

=

= e−λt (ct)2k

(

1 +
λt

2k + 1

)

, k → ∞,
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yielding (11).
Formula (12) can be proved in the same manner by applying, instead of (13)

and (14), the refined asymptotic formulas for the modified Bessel function (see also
Remark 1 below):

Ik+1/2(z) ∼ zk+5/2 + (4k + 6)zk+1/2

√
2π (2k + 3)!!

, k → ∞, (15)

Ik−1/2(z) ∼ zk+3/2 + (4k + 2)zk−1/2

√
2π (2k + 1)!!

, k → ∞. (16)

The theorem is thus completely proved. �

Remark 1. One can write down more accurate asymptotic formulas by taking arbi-
trary finite number of terms in the series expansions of the functions Ik+1/2(z) and
Ik−1/2(z):

Ik+1/2(z) =

√

2

π
zk+1/2

∞
∑

l=0

z2l

(2l)!! (2l + 2k + 1)!!
,

Ik−1/2(z) =

√

2

π
zk−1/2

∞
∑

l=0

z2l

(2l)!! (2l + 2k − 1)!!
.

(17)

Since the index k is presented in the denominators of (17) and, therefore, each term
of these series tends to zero as k → ∞, then for arbitrary integer n ≥ 0 the following
formulas hold:

Ik+1/2(z) =

√

2

π
zk+1/2

n
∑

l=0

z2l

(2l)!! (2l + 2k + 1)!!
+R+

k,n(z),

Ik−1/2(z) =

√

2

π
zk−1/2

n
∑

l=0

z2l

(2l)!! (2l + 2k − 1)!!
+R−

k,n(z),

(18)

where the remainders R±

k,n(z) → 0, as k → ∞, for any fixed z and n ≥ 0. Note
that formulas (13) and (14) follow, as k → ∞, from (18) for n = 0, while (15) and
(16) follow, as k → ∞, from (18) for n = 1, respectively. One can also obtain the
upper bounds for the remainders R±

k,n(z) and, therefore, to evaluate the rate of their
convergence to zero, as k → ∞, however this is not our concern here.

Remark 2. Asymptotic formulas (11) and (12) show that the behaviour of the
moment function µ2k(t) with respect to k → ∞ depends on the factor ct as follows:

If ct < 1, then µ2k(t) → 0, as k → ∞;
If ct = 1, then µ2k(t) → e−λt, as k → ∞;
If ct > 1, then µ2k(t) → ∞, as k → ∞.

This enables us to make some interesting and somewhat unexpected conclusions
concerning the asymptotic behaviour of the moment function µ2k(t), as k → ∞.
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Since ct is the total length of an arbitrary sample path of the Goldstein-Kac tele-
graph process X(t) at the time instant t > 0 whose distribution is concentrated in
the interval [−ct, ct], then [−1, 1] is the critical interval in the following sense. If
[−ct, ct] ⊂ [−1, 1], then the moments µ2k(t) are finite and tend to zero, as k → ∞.
If [−ct, ct] = [−1, 1], then the moments µ2k(t) are finite and tend to e−λt, as k → ∞.
Finally, if [−ct, ct] ⊃ [−1, 1], then the moments µ2k(t) tend to ∞, as k → ∞. In
terms of the time t this means that for t < 1

c , the moments are finite and tend to

zero, as k → ∞; at the time instant t = 1
c , the moments are finite and tend to e−λ/c,

as k → ∞; for t > 1
c , the moments tend to ∞, as k → ∞.

Numerical computations of moments according to formula (5) and their approx-
imations (for increasing k) by means of the asymptotic functions

g0(t) = e−λt (ct)2k

(

1 +
λt

2k + 1

)

,

g1(t) = e−λt (ct)2k

(

1 +
λt

2k + 1
+

(λt)2

4k + 2
+

(λt)3

(4k + 2)(2k + 3)

)

,

obtained in Theorem 1 are given in the following table below (for the particular
values of the parameters c = 0.6, t = 1.5, λ = 2.5):

k µ2k(1.5) g0(1.5) g1(1.5)

100 0.175030 · 10−10 0.169015 · 10−10 0.174926 · 10−10

500 0.415508 · 10−47 0.412600 · 10−47 0.415498 · 10−47

1000 0.722360 · 10−93 0.719826 · 10−93 0.722356 · 10−93

5000 0.626552 · 10−459 0.626113 · 10−459 0.626553 · 10−459

10000 0.166654 · 10−916 0.166597 · 10−916 0.166655 · 10−916

We see that the second asymptotic function g1(t) yields a better approximation
(for increasing k) of the moment function µ2k(t) than the first asymptotic function
g0(t). In particular, we see that the function g1(t) provides stabilization in the
second digit already for k = 100, while the function g0(t) does so only for k = 500.
Note also that in this example ct = 0.6 · 1.5 = 0.9 < 1 and the moments µ2k(1.5)
tend to zero, as k → ∞, very rapidly.

3 Laplace Transform of Moment Function

In this section we derive an explicit formula for the Laplace transform of the
moment function µ2k(t), k ≥ 1, given by (5). We show that, despite the fairly
complicated form of the moment function (5), its Laplace transform has a very
simple form. This result is presented by the following theorem.

Theorem 2. The Laplace transform of moment function (5) is given by the formula:

Lt [µ2k(t)] (s) =
c2k (2k)!

sk+1 (s+ 2λ)k
, Re s > 0. (19)
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Proof. Applying the Laplace transformation to (5) we have:

Lt [µ2k(t)] (s) = c2k 2k−1/2 λ−k+1/2 Γ

(

k +
1

2

)

×

× Lt

[

e−λt tk+1/2
(

Ik+1/2(λt) + Ik−1/2(λt)
)

]

(s) =

= c2k 2k−1/2 λ−k+1/2 Γ

(

k +
1

2

)

×

× Lt

[

tk+1/2
(

Ik+1/2(λt) + Ik−1/2(λt)
)

]

(s+ λ).

(20)

According to [3, Table 4.16, Formulas 6 and 7]

Lt

[

tk+1/2 Ik+1/2(λt)
]

(s) =
1√
π

2k+1/2 λk+1/2 k!
1

(s2 − λ2)k+1
,

Lt

[

tk+1/2 Ik−1/2(λt)
]

(s) =
1√
π

2k+1/2 λk−1/2 k!
s

(s2 − λ2)k+1
.

Substituting these expressions into (20) we obtain

Lt [µ2k(t)] (s) = c2k 22k Γ

(

k +
1

2

)

k!√
π

s+ 2λ

((s+ λ)2 − λ2)k+1
=

(see Formula (9))

= c2k 22k

√
π

2k
(2k − 1)!!

k!√
π

s+ 2λ

((s + λ)2 − λ2)k+1
=

= c2k k! 2k (2k − 1)!!
s+ 2λ

(s(s+ 2λ))k+1
=

= c2k (2k)!! (2k − 1)!!
s+ 2λ

(s(s+ 2λ))k+1
=

=
c2k (2k)!

sk+1 (s+ 2λ)k
.

The theorem is proved. �

In particular, for k = 1, we obtain from (19) the formula for the Laplace trans-
form of the second moment

Lt [µ2(t)] (s) =
2c2

s2 (s+ 2λ)
. (21)

On the other hand, applying Laplace transformation to (6) we have:
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Lt [µ2(t)] (s) = Lt

[

c2t

λ
− c2

2λ2
(1 − e−2λt)

]

(s) =

=
c2

λ
Lt[t](s) −

c2

2λ2

(

Lt[1](s) − Lt[e
−2λt](s)

)

=

=
c2

λ

1

s2
− c2

2λ2

(

1

s
− 1

s+ 2λ

)

=

=
c2

λ

1

s2
− c2

2λ2

2λ

s(s+ 2λ)
=

=
c2

λ

(

1

s2
− 1

s(s+ 2λ)

)

=

=
2c2

s2 (s + 2λ)

and this coincides with (21).

Remark 3. One can check that, under the Kac condition (7), function (19) turns
into the Laplace transform of the moment function of Brownian motion. Really, for
function (19) we have

lim
c, λ→∞

(c2/λ)→ρ

{Lt [µ2k(t)] (s)} =
(2k)!

sk+1
lim

c, λ→∞

(c2/λ)→ρ

{

c2k

(s+ 2λ)k

}

=

=
(2k)!! (2k − 1)!!

sk+1
lim

c, λ→∞

(c2/λ)→ρ

{

c2k

(2λ)k
1

(

s
2λ + 1

)k

}

=

=
2k k! (2k − 1)!!

sk+1

1

2k
lim

c, λ→∞

(c2/λ)→ρ

{

c2k

λk

}

=

=
ρk k! (2k − 1)!!

sk+1
.

On the other hand, for the Laplace transform of the moment function of the one-
dimensional homogeneous Brownian motion with zero drift and diffusion coefficient
σ2 = ρ derived in Subsection 2.1 above, we obtain the formula

Lt

[

ρk tk (2k − 1)!!
]

(s) = ρk (2k − 1)!! Lt[t
k](s) =

= ρk (2k − 1)!!
Γ(k + 1)

sk+1
=

=
ρk k! (2k − 1)!!

sk+1

exactly coinciding with the previous one.
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4 Moment Problem

In this section we give the complete solution of the moment problem for the
Goldstein-Kac telegraph process X(t). We show that, for any fixed t > 0, the
moments of X(t) satisfy the Carleman condition and, therefore, the distribution of
X(t) is completely determined by its moments. This result is given by the following
theorem.

Theorem 3. For any fixed t > 0 the moments µ2k(t) of the telegraph process X(t),
given by (5), satisfy the Carleman condition:

∞
∑

k=1

[µ2k(t)]
−1/(2k) = ∞. (22)

Proof. To prove the theorem it suffices to show that the general term of the series
on the left-hand side of (22) does not tend to zero, as k → ∞. First, we prove that,
for arbitrary k ≥ 1, the following inequality holds:

µ2k(t) < (ct)2k (1 + λt) eλ
2t2/2, k ≥ 1. (23)

By using formulas (9) and (17) we have:

µ2k(t) = e−λt c2k 2k−1/2 λ−k+1/2 tk+1/2 Γ

(

k +
1

2

)

[

Ik+1/2(λt) + Ik−1/2(λt)
]

=

= e−λt c2k 2k−1/2 λ−k+1/2 tk+1/2

√
π

2k
(2k − 1)!!

[

Ik+1/2(λt) + Ik−1/2(λt)
]

=

= e−λt c2k λ−k+1/2 tk+1/2

√

π

2
(2k − 1)!!

[

Ik+1/2(λt) + Ik−1/2(λt)
]

<

< c2k λ−k+1/2 tk+1/2 (2k − 1)!!

[

(λt)k+1/2
∞
∑

l=0

(λt)2l

(2l)!! (2l + 2k + 1)!!
+

+(λt)k−1/2
∞
∑

l=0

(λt)2l

(2l)!! (2l + 2k − 1)!!

]

=

= c2k λ−k+1/2 tk+1/2

[

(λt)k+1/2
∞
∑

l=0

(2k − 1)!!

(2l + 2k + 1)!!

(λt)2l

(2l)!!
+

+(λt)k−1/2
∞
∑

l=0

(2k − 1)!!

(2l + 2k − 1)!!

(λt)2l

(2l)!!

]

<

< c2k λ−k+1/2 tk+1/2

[

(λt)k+1/2
∞
∑

l=0

(λt)2l

(2l)!!
+ (λt)k−1/2

∞
∑

l=0

(λt)2l

(2l)!!

]

,

where in the last step we have used the fact that, for any k ≥ 1, the following
inequalities hold

(2k − 1)!!

(2l + 2k + 1)!!
< 1,

(2k − 1)!!

(2l + 2k − 1)!!
≤ 1, for any l ≥ 0.
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Now taking into account that

∞
∑

l=0

(λt)2l

(2l)!!
=

∞
∑

l=0

(λt)2l

2l l!
=

∞
∑

l=0

1

l!

(

λ2t2

2

)l

= eλ
2t2/2

we obtain

µ2k(t) < c2k λ−k+1/2 tk+1/2 (λt)k−1/2 (1 + λt) eλ
2t2/2 =

= (ct)2k (1 + λt) eλ
2t2/2,

proving (23). From (23) we have the inequality:

[µ2k(t)]
−1/(2k) > (ct)−1 (1 + λt)−1/(2k) e−λ2t2/(4k), k ≥ 1.

Then, by passing to the limit, as k → ∞, in this last inequality, we obtain:

lim
k→∞

[µ2k(t)]
−1/(2k) ≥ (ct)−1 > 0

for any c and t > 0. Hence, the sequence [µ2k(t)]
−1/(2k) does not tend to zero as

k → ∞ and, therefore, the series (4.1) is divergent. The theorem is thus completely
proved. �

5 Moment generating function

In this section we obtain a formula for the generating function of the moments
µ2k(t), k ≥ 1, in an explicit form. Taking into account the well-know connection
between the moments and the characteristic function of a stochastic process, this
can be done by applying the known formula for the characteristic function of the
Goldstein-Kac telegraph process (see, for instance,[9, Proposition 2.1] or [28, The-
orem 2.3]). Instead, we give an alternative way of deriving the moment generating
function based on direct computations and use of some properties of the modified
Bessel functions.

For arbitrary complex number z such that

|z| < λ2

c2
,

introduce the function

ψ(z, t) =
∞
∑

k=0

zk µ2k(t)

(2k)!
. (24)

The explicit form of function (24) is given by the following theorem.

Theorem 4. For any t > 0 the moment generating function (24) has the form:

ψ(z, t) = e−λt

{

cosh
(

t
√

λ2 + c2z
)

+
λ√

λ2 + c2z
sinh

(

t
√

λ2 + c2z
)

}

. (25)
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Proof. First, we note that, in view of formula (9),

µ2k(t)

(2k)!
= e−λt c2k 2k−1/2 λ−k+1/2 tk+1/2 Γ

(

k + 1
2

)

(2k)!

[

Ik+1/2(λt) + Ik−1/2(λt)
]

=

= e−λtc2k2k−1/2λ−k+1/2tk+1/2

√
π

2k

(2k − 1)!!

(2k)!!(2k − 1)!!

[

Ik+1/2(λt) + Ik−1/2(λt)
]

=

=

√

πλt

2
e−λt

(

c2t

λ

)k
1

2k k!

[

Ik+1/2(λt) + Ik−1/2(λt)
]

=

=

√

πλt

2
e−λt

(

c2t

2λ

)k
1

k!

[

Ik+1/2(λt) + Ik−1/2(λt)
]

.

(26)
Substituting this into (24) we have:

ψ(z, t) = e−λt

√

πλt

2

∞
∑

k=0

1

k!

(

c2tz

2λ

)k
[

Ik+1/2(λt) + Ik−1/2(λt)
]

=

= e−λt

√

πλt

2

{

∞
∑

k=0

1

k!

(

c2tz

2λ

)k

Ik+1/2(λt) +

∞
∑

k=0

1

k!

(

c2tz

2λ

)k

Ik−1/2(λt)

}

.

(27)
Consider separately the series on the right-hand side of (27). Applying the formula
(see [30, page 694, Formula 6])

∞
∑

k=0

ξk

k!
Ik−1/2(x) =

√

2

πx
cosh

(

√

x2 + 2ξx
)

, |2ξ| < |x|,

we obtain for the second series in curl brackets of (27):

∞
∑

k=0

1

k!

(

c2tz

2λ

)k

Ik−1/2(λt) =

√

2

πλt
cosh

(
√

λ2t2 + 2
c2tz

2λ
λt

)

=

=

√

2

πλt
cosh

(

t
√

λ2 + c2z
)

.

(28)

Similarly, by applying the formula (see [30, page 694, Formula 4 for ν = 1/2])

∞
∑

k=0

ξk

k!
Ik+1/2(x) =

(

2ξ

x
+ 1

)−1/4

I1/2

(

√

x2 + 2ξx
)

, |2ξ| < |x|,

and taking into account that (see [30, page 730])

I1/2(x) =

√

2

πx
sinhx,

we obtain for the first series in curl brackets of (27):
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∞
∑

k=0

1

k!

(

c2tz

2λ

)k

Ik+1/2(λt) =

(

1 +
c2

λ2
z

)−1/4

I1/2

(

√

λ2t2 + c2t2z
)

=

=

√
λ

(λ2 + c2z)1/4

√

2

πt
√
λ2 + c2z

sinh
(

t
√

λ2 + c2z
)

=

=

√

2λ

πt

sinh
(

t
√
λ2 + c2z

)

√
λ2 + c2z

.

(29)
Substituting (28) and (29) into (27) we finally obtain:

ψ(z, t) = e−λt

√

πλt

2







√

2

πλt
cosh

(

t
√

λ2 + c2z
)

+

√

2λ

πt

sinh
(

t
√
λ2 + c2z

)

√
λ2 + c2z







=

= e−λt

{

cosh
(

t
√

λ2 + c2z
)

+
λ√

λ2 + c2z
sinh

(

t
√

λ2 + c2z
)

}

,

proving (25). The theorem is proved. �

Remark 4. From (24) it follows that the (2k)-th moment µ2k(t), k ≥ 1, can be
obtained by the k-time differentiation of the moment generating function ψ(z, t)
with respect to z and by setting then z = 0 in the expression obtained, that is,

µ2k(t) = (2k)!
∂kψ(z, t)

∂zk

∣

∣

∣

∣

z=0

, k ≥ 1.

Therefore, according to (25), we have for k ≥ 1:

µ2k(t) = e−λt (2k)!
∂k

∂zk







cosh
(

t
√

λ2 + c2z
)

+ λ
sinh

(

t
√
λ2 + c2z

)

√
λ2 + c2z







∣

∣

∣

∣

∣

∣

z=0

. (30)

In particular, for k = 1, formula (30) yields:

µ2(t) = 2e−λt ∂

∂z







cosh
(

t
√

λ2 + c2z
)

+ λ
sinh

(

t
√
λ2 + c2z

)

√
λ2 + c2z







∣

∣

∣

∣

∣

∣

z=0

=

= 2e−λt







c2t

2

sinh
(

t
√
λ2 + c2z

)

√
λ2 + c2z

+
λ

λ2 + c2z
×

×





c2t

2
cosh

(

t
√

λ2 + c2z
)

− c2

2

sinh
(

t
√
λ2 + c2z

)

√
λ2 + c2z











∣

∣

∣

∣

∣

∣

z=0

=
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= 2e−λt

{

c2t

2λ
sinh (λt) +

1

λ

[

c2t

2
cosh (λt) − c2

2λ
sinh (λt)

]}

=

= 2e−λt

{

c2t

2λ
[sinh (λt) + cosh (λt)] − c2

2λ2
sinh (λt)

}

=

= 2e−λt

{

c2t

2λ
eλt − c2

2λ2
sinh (λt)

}

=

=
c2t

λ
− c2

λ2
e−λt e

λt − e−λt

2
=

=
c2t

λ
− c2

2λ2

(

1 − e−2λt
)

and this exactly coincides with (6).

Note that the moment generating function is structurally similar to the characte-
ristic function of the telegraph process X(t) (see, for comparison, [9, Proposition 2.1]
or [28, Theorem 2.3]).

Remark 5. We can use some formulas obtained above for deriving an expression
for the semi-invariants of the Goldstein-Kac telegraph process X(t). According to
the general formula of probability theory, for any fixed t > 0, the semi-invariants
ηn(t), n ≥ 1, of X(t) are expressed in terms of the moments µn(t), n ≥ 1, as follows:

ηn(t) = n!
n
∑

r=0

∑

j, l

(−1)j−1 (j − 1)!

j1! . . . jr!

(

µl1(t)

l1!

)j1

. . .

(

µlr(t)

lr!

)jr

, n ≥ 1, (31)

where the interior summation is doing with respect to all the non-negative integer
numbers j and l such that

l1j1 + · · · + lrjr = n, j1 + · · · + jr = j.

Since, according to (5), all the odd moments are equal to zero, then all the odd semi-
invariants are equal to zero too, that is, η2k+1(t) = 0, k = 0, 1, 2, . . . . Therefore,
formula (31) takes the form:

η2k(t) = (2k)!

2k
∑

r=0

∑

j, l

(−1)j−1 (j − 1)!

j1! . . . jr!

(

µ2l1(t)

(2l1)!

)j1

. . .

(

µ2lr(t)

(2lr)!

)jr

, k ≥ 1,

(32)
where

l1j1 + · · · + lrjr = k, j1 + · · · + jr = j. (33)

Each factor of the form µ2s(t)/(2s)! in (32), according to (26), has the form:

µ2s(t)

(2s)!
=

√

πλt

2
e−λt

(

c2t

2λ

)s
1

s!

[

Is+1/2(λt) + Is−1/2(λt)
]

.
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Therefore, the product of such factors in (32), in view of (33), are given by

(

µ2l1(t)

(2l1)!

)j1

. . .

(

µ2lr(t)

(2lr)!

)jr

=

=
r
∏

i=1

(

√

πλt

2
e−λt

(

c2t

2λ

)li 1

li!

[

Ili+1/2(λt) + Ili−1/2(λt)
]

)ji

=

=

(

πλt

2

)j/2

e−λtj

(

c2t

2λ

)k r
∏

i=1

(

1

li!

[

Ili+1/2(λt) + Ili−1/2(λt)
]

)ji

.

By substituting this into (32) we obtain the following formula for the semi-invariants:

η2k(t) = (2k)!

(

c2t

2λ

)k 2k
∑

r=0

∑

j, l

(−1)j−1 (j − 1)!

j1! . . . jr!

(

πλt

2

)j/2

e−λtj×

×
r
∏

i=1

(

1

li!

[

Ili+1/2(λt) + Ili−1/2(λt)
]

)ji

.

(34)

Formula (34) has a fairly complicated form and, apparently, cannot be simplified.
Nevertheless, it can be used for computing the semi-invariants for small k.
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