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On asymptotic representation of singular solutions

of the model elliptic equation near boundary

and formulation of singular boundary conditions
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Abstract. In the work the asymptotic representation of singular solution of the
elliptic model Sobolev problem near components of arbitrary dimensions of boundary
is specified. Using this asymptotical representation of solutions, the singular bound-
ary conditions are formulated. The solvability of boundary problem with singular
boundary conditions is proved.
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1 Introduction

This work is the continuation of [1], devoted to integral and asymptotic represen-
tation of singular solutions of elliptic equations near components of small dimensions
of boundary. The problem of representation of solutions near boundary is interest-
ing not only in itself, but also in connection with reduction of the boundary value
problem to integral, integro-differential or differential equations on the boundary.
In [2, 3] S. L. Sobolev for the first time formulated and studied the boundary value
problem for polyharmonic equation in a domain with boundary, consisting of a sub-
manifold of diverse dimensions (and afterwards this problem was named the Sobolev
boundary problem).

Later the work [4] was published, where the Sobolev boundary value problem is
studied for a general elliptic equation of order 2m. In this work it is proved that
the number of boundary conditions on the submanifold of boundary depends on the
order of regularity of solutions u(x) from Sobolev space Hs (Ω) near submanifold.

Moreover, it was proved that the solution of the elliptic equation admits asymp-
totic representation with respect to the power p−ν and ln r (where r = dist(x, Rq)),
any explicit formulae to compute the coefficients have been done.

Using the integral representation of solution of the boundary value problem with
Green function, in [1] the asymptotic representation of the components of the sin-
gular solutions generated by distributions with support on the submanifold R

q was
obtained.
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2 On elliptic model problem. Asymptotic representation

of component of singular solution near boundary

Let R
n be a Euclidean n-dimensional space, R

q ⊂ R
n a subspace of R

n, x =
= (x′, x′′) = (x1, ..., xq , xq+1, ..., xn) a point of R

n, Dx = (Dx′ ,Dx′′) , Ω = R
n\Rq.

By Cα(Ω), Cα
0 (Ω), Cα(Rq), Cα

0 (Rq) we denote the usual Hölder spaces, spaces of
functions with finite support in Ω and R

q, respectively, Hs (Ω) , Hs (Rq), s ∈ R
1,

are Hilbertian Sobolev spaces in Ω and R
q, respectively [5,6].

Let L (Dx) be a homogeneous elliptic operator of order 2m with constant coeffi-
cients. In domain Ω we consider the elliptic equation

L (Dx) u(x) = f(x), (1)

where

u(x) ∈ Hs (Ω) , f(x) ∈ Hs−2m (Ω) , s ∈ R
1. (2)

First of all we consider the problem of asymptotic behavior of singular solutions
u(x) ∈ Hs (Ω) near submanifold R

q, and obtain the formulae of asymptotic repre-
sentation of solutions, generated by distributions with support on the R

q. For this
we observe that it is known [5,6] that the non-zero element f(x) ∈ Hs−2m (Rn) is
concentrated in R

q if and only if s < 2m − θ/2 (θ = codim R
q = n − q) and there

exist elements fσ (x′) ∈ Hs−2m+|σ|+θ/2 (Rq) , |σ| ≤ τ = [2m − s − θ/2] such that

f(x) =
∑

|σ|≤τ

Dσ
ν

(

fσ

(

x′
)

× δ
(

x′′
))

, ν = x′′, (3)

where [α] is the integer part of number α, Dσ
ν = Dσ

x′′ =
∂σq+1

∂x
σq+1

q+1

. . .
∂σn

∂xσn
n

, and

fσ (x′) × δ (x′′) is the direct product of distributions, |σ| =
∑n

i=q+1 σi.

In [1], using the Green function of boundary value problem, the integral repre-
sentation of solution of equation (1) near R

q is obtained, from which the asymptotic
representation of singular part of solution u(x) in Ω is obtained.

Really, let G (x, y) = E (x − y) + g(x, y) be the Green function of homogeneous
Dirichlet problem in the ball BR of radius R (sufficiently large), where E (x) is a
fundamental solution of equation (1) in R

n, and g(x, y) is the solution of equation
(1) in Ω, satisfying the condition g(x, y)|BR

= E (x − y)|∂BR
.

Write the formulae of integral representation of solution of Dirichlet problem

u(x) =

∫

Rn

G(x, y)f(y)dy

for f(x) ∈ C∞
0 . After that approximate f(x) with functions fε(x) ∈ C∞

0 (Rn),
fε(x) →

ε→0
f(x) in Hs−2m (Rn), then integrating by parts with respect to variable x′′,
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and passing to the limit as ε → 0, we obtain the integral representation of solution
u(x):

u(x) =
∑

|σ|≤τ

∫

Rq

D̄σ
x′′E

(

x′ − y′, x′′
)

fσ

(

y′
)

dy′ + ũ (x) =

=
∑

|σ|≤τ

∫

Rq

D̄σ
x′′E

(

z′, x′′
)

fσ

(

x′ − z′
)

dz′ + ũ (x) ≡
∑

|σ|≤τ

vσ (x) + ũ (x) ,

(4)

where ũ(x) is a regular, bounded function, D̄x′′ = −Dx′′ .

It is known [7, 8] that
∣

∣Dσ
x′′E

(

x′ − y′, x′′
)∣

∣ ≤ c |x − y|2m−n−|σ| |ln |x − y|| ,

where ln |x − y| is dropped for 2m−n−|σ| < 0. Moreover, if 2m−n−|σ| < 0, then
E(σ) (z′, x′′) are homogeneous functions of degrees 2m−n−|σ| and if n−2m+|σ| ≥ q,

i.e. n − q − 2m + |σ| = θ − 2m + |σ|
def
≡ ασ ≥ 0, then the integrals vσ(x) are

singular or hypersingular integrals with homogeneous kernels [7,8]. Now consider
the singular and hypersingular integrals vσ(x). In [1], using the known procedure of
regularization of divergent integrals (separation of the finite part in the Hadamard
sense), by separating the singular and regular parts, the asymptotic representations
of the divergent integrals vσ (x) near R

q are obtained. For convenience, here we
shortly expose this known procedure [1].

Let n ≥ 3, r = |x′′| , ρ = |x′|. Denote by

Pα

(

x′, z′
)

f
(

x′
)

=

α
∑

λ=0

∑

|k′|=λ

f (k′) (x′)

k′!

(

−z′
)k′

≡

α
∑

λ=0

Pλ

(

x′, z′
)

f
(

x′
)

the segment of the Taylor expansion of the function f (x′ − z′) near the point z′ = 0,
where k′ = (k1, . . . , kq),

vσ0 (x) =

∫

Rq

Ē(σ)
(

z′, x′′
)(

fσ

(

x′ − z′
)

−Pασ−1

(

x′, z′
)

fσ − θ
(

z′
)

Pασ

(

x′, z′
)

fσ

)

dz′ (5)

is the regularization (finite part) of the divergent integral vσ(x) at the point z′ =
0, θ (z′) = 1 for |z′| ≤ 1 and θ (z′) = 0 for |z′| > 1. In [1] it is proved that the
integrals vσ(x) could be presented in the form

vσ (x) = vσ0 (x) −
∫

Rq

Ē(σ) (z′, x′′) Pασ−1 (z′,D′
x) fσ (x′) dz′−

−
∫

|z′|<1

Pασ(z
′,D′

x) fσdz′ ≡ vσ0 (x) +
ασ−1
∑

λ=0

∫

Rq

Ē(σ) (z′, x′′)Pλ(z′,D′
x) fσ (z′) dz′+

+
∫

|z′|<1

Ē(σ) (z′, x′′)Pασ (z′,D′
x) fσdz′ ≡ vσ0 (x) +

ασ−1
∑

λ=0

Iλ [fσ] + Iασ [fσ] ,

(6)
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where

Iλ [fσ]=(−1)λ
∑

|k′|=λ

Aσk′

(

ω′′
) f

(k′)
σ (x′)

k′!
r−ασ+λ ≡ Qσλ

(

ω′′,D′
x

)

fσ

(

x′
)

r−ασ+λ, (7)

Aσk′

(

ω′′
)

=

∫

Rq

E(σ)
(

ξ′, ω′′
)

ξ′k
′

dξ′, ω′′ = x′′
/ ∣

∣x′′
∣

∣, (8)

and

Iασ [fσ] = −Aσ

(

D′
x

)

fσ

(

x′
)

ln r + Bσ

(

D′
x

)

fσ

(

x′
)

+ o (r) ,

with o (r) → 0 as r → 0,

Aσ

(

D′
x

)

fσ

(

x′
)

=(−1)ασ
∑

|k′|=ασ

aσk′

f
(k′)
σ (x′)

k′!
, aσk′ =

∫

|ω′|=1

E(σ)
(

ω′, 0
) (

ω′
)k′

dω′, (9)

Bσ

(

D′
x

)

fσ

(

x′
)

= (−1)ασ
∑

|k′|=ασ

bσk′

(

ω′′
) f

(k′)
σ (x′)

k′!
, (10)

and bσk′ (ω′′) is the integral

bσk′(ω′′)=
∫

|ω′|=1

ω′k′

dω′

(

1
∫

0

E(σ)(ρω′, ω′′)ρ|k
′|+q−1dρ+

∞
∫

1

(

E(σ)(ρω′, ω′′)−E(σ)(ω′, 0)
)

1
ρ
dρ

)

.

Hence, for divergent integrals vσ (x′) (singular and hypersingular) we obtain the
representations

vσ (x) = vσ0 (x) +

ασ−1
∑

λ=0

Qσλ

(

D′
x

)

fσ(x′)r−ασ+λ−

−Aσ

(

D′
x

)

fσ(x′) ln r + Bσ

(

D′
x

)

fσ(x′) + o (r) ,

(11)

where the functions vσ0 (x) and operators Qσλ (D′
x) , Aσ (D′

x) , Bσ (D′
x) are defined

by (5), (7), (9) and (10), o(r) tends to zero as r tends to zero.

3 Asymptotic representation of singular part of integer solution

near R
q

Here, using the asymptotical representation of components vσ (x) of singular
solution u(x) near R

q, generated by distribution f(x), concentrated on the manifold
R

q, the asymptotic representation of integer solution v(x) near R
q is obtained.
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Really, summing the equality (11) ovwr σ for all σ such that ασ ≥ 0, the asymp-
totic representation for the singular part v(x) of the solution u(x) near R

q is ob-
tained:

v(x)=
∑

σ: ασ≥0

vσ0 (x) +
∑

σ: ασ>0

ασ−1
∑

λ=0

Qσλ

(

D′
x

)

fσ

(

x′
)

r−ασ+λ +
∑

σ: ασ≥0

Aσ

(

D′
x

)

ln r+

+
∑

σ: ασ≥0

Bσ

(

D′
x

)

fσ

(

x′
)

+o (r)≡v0(x)+w(x)+w0 (x) + B
(

D′
x

)

f
(

x′
)

+o (r) .

(12)

Here by v0 (x) , w (x) and w0 (x) we denoted the first three sums of right hand
side of equality (12), o (r) → 0 when r → 0. The equality (12) is the asymptotic
representation of singular part of solution u(x) near submanifold R

q with respect to
the power r−ν and ln r. But in order to obtain an asymptotic ordered representation
with respect to the ascending order of power r−ν and ln r it is necessary to transform
the equality (12). For this, at first, we consider the function w(x) and transform
it into an ordered sum with respect to the ascending order of power r−ν . Since
−αµ +λ = − (µ − λ + θ − 2m), the expression µ−λ+θ−2m is constant on the any
straight line µ−λ+θ−2m = ν. Therefore, it is natural to denote µ−λ+θ−2m = ν,

and to obtain an ordered sum with respect to the ascending order of power r−ν it
remains to change the order of summing over λ, µ and ν. From the inequality
ν = µ− λ + θ − 2m ≥ 1 it follows that µ ≥ 2m + λ − θ + 1 ≥ 2m − θ + 1 and, since
µ = |σ| ≥ 0, we have µ ≥ µ1 = max (0, 2m − θ + 1). Therefore, µ1 ≤ |σ| = µ ≤ τ

and ν1 ≤ ν ≤ ν2, where ν1 = µ1 + θ − 2m, ν2 = τ + θ − 2m.
For w(x) we obtain the representation

w(x) =

τ
∑

µ=µ1

αµ−1
∑

λ=0





∑

|σ|=µ

∑

|k′|=λ

Aσk′

(

ω′′
) f

(k′)
σ (x′)

k′!



 r−αµ+λ ≡

≡

τ
∑

µ=µ1

αµ−1
∑

λ=0

Pµλ

(

ω′′,D′
x

)

f
(

x′
)

rλ−αµ =

=
τ+θ−2m

∑

ν=ν1

∑

µ,λ:
µ−λ=ν+2m−θ

Pµλ

(

ω′′,D′
x

)

f
(

x′
)

r−ν =
τ+θ−2m

∑

ν=ν1

Mν

(

ω′′,D′
x

)

f
(

x′
)

r−ν ,

(13)

where by Pµλ (ω′′,D′
x) f (x′) we denoted the double sum over σ and k′ from right

hand side of equality (13),

Pµλ

(

ω′′,D′
x

)

f
(

x′
)

=
∑

|σ|=µ

∑

|k′|=λ

Aσk′

(

ω′′
) f

(k′)
σ (x′)

k′!
, (14)

where Aσk′ (ω′′) =
∫

Rq Ē(σ) (ξ′, ω′′) ξ′k
′

dξ′. It remains to transform the expression



86 NICOLAE JITARAŞU

w0(x). Detailing the structure of sum, which defines the function w0(x), after or-
dered summation over σ, we obtain

w0(x) = M0

(

D′
x

)

f
(

x′
)

ln r =
∑

µ,λ: µ−λ=ν+2m−θ

Pµλ

(

D′
x

)

f
(

x′
)

ln r, (15)

where Pµλ (D′
x) f (x′) =

∑

|σ|=µ

∑

|k′|=λ

aσk′

f
(k′)
σ (x′)

k′! , aσk′ =
∫

|ω′|=1

E(σ) (ω′, 0) ω′k′

dω′.

Thus, substituting in (13) these functions w(x) and w0(x) with their transformed
expressions, we obtain the following

Theorem 1. Let functions fσ (x′) ∈ Cασ+1
0 (Rq). Then the singular part v(x) of

solution u(x) near R
q is represented by

v(x) = v0(x) +

τ+θ−2m
∑

ν=1

Mν

(

ω′′,D′
x, f

)

r−ν+

+M0

(

D′
x

)

f
(

x′
)

ln r +
∑

σ: ασ≥0

Bσ

(

ω′′,D′
x

)

f
(

x′
)

+ o (r) ,

(16)

where Mν (ω′′,D′
x, f) , M0 (D′

x) f (x′) is defined by formulae (13), (15), respectively,
o (r) → 0 when r → 0.

4 Formulation of the boundary value problem with singular

boundary conditions

In the general theory of elliptic boundary value problems in domain Ω with
smooth boundary ∂Ω, the boundary problem is reduced to a system of pseudodif-
ferential equations on the boundary ∂Ω. This system is a system of regular integral
(Fredholm) equations in the case of smooth solutions up to ∂Ω or a system of dif-
ferential equations in the case of singular solutions.

Here, using the obtained formulae (16) of asymptotic representation of singular
parts of solutions u(x) near boundary R

q, we formulate, firstly, the formal model
boundary value problem with singular boundary conditions on the R

q:

In the domain Ω = R
n\Rq find the solutions of elliptic equation L (Dx)u(x) = 0

that have near R
q the given singular asymptotic representation:

z(x) =
τ+θ−2m

∑

ν=1

Φν

(

ω′′, x′
)

r−ν + Φ0

(

ω′′, x′
)

ln r + z̃ (x) , (17)

where z̃ (x) is a regular bounded function.
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Formally, equating the coefficients by the same power r−ν and ln r from equalities
(16) and (17), we obtain

Mν

(

ω′′,D′
x

)

f
(

x′
)

=
∑

µ,λ:µ−λ+θ−2m=ν

Pµλ

(

ω′′,D′
x

)

f
(

x′
)

= Φν

(

ω′′, x′
)

,

ν = τ + θ − 2m, . . . , 1,

(18)

M0

(

ω′′,D′
x

)

f
(

x′
)

= Φ0

(

ω′′, x′
)

. (19)

The system of equations (18), (19) is a system of linear partial differential equa-
tions with unknown density fσ (x′) , σ : µ0 ≤ |σ| ≤ τ and the solvability of bound-
ary problem with singular boundary conditions is reduced to the solvability of system
of differential equations (18), (19). This system is rather complicated, since the num-
ber of unknown densities fσ (x′), as well as the number of equations, depends on s

and on the difference θ − 2m, too.

Now we pass to the study of the structure of equations of system (18)-(19)
depending on s, τ and θ. Denote by Πm the linear space of all homogeneous
polynomials of degree m. It is known [9] that the dimension of space Πm

(dim Πm) is equal to Cθ−1
m+θ−1, where Ck

n are the binomial coefficients. Hence,
the number of unknown functions fσ (x′) in the system (18)-(19) is equal to
Π =

∑τ
m=µ0

dimΠm =
∑τ

m=µ0
Cθ−1

m+θ−1 which is greater (for θ > 1) than the number
of equations from system (18)-(19). Return to the system of equations (18)-(19).

Since fσ (x′) ∈ Hs−2m+|σ|+θ/2 (Rq) and f
(k′)
σ (x′) ∈ Hs−2m+|σ|+θ/2−|k′| (Rq), then for

any multiindex σ and k′ with |σ| − |k′| = µ − λ = ν − θ + 2m the left hand sides
of equations (18), (19) belong to spaces Hs+ν−θ/2 (Rq) , ν = τ + θ − 2m, . . . , 1, 0.
Therefore, the equalities (18), (19) define a bounded operator U from the space
E1 =

∏

|σ|

Hs−2m+|σ|+θ/2 (Rq) , |σ| ≤ τ , to the space E2 =
∏

ν
Hs+ν−θ/2 (Rq) , ν =

0, 1, . . . , τ + θ − 2m.

Now we begin to investigate the system of equations (18), (19). At first, we will
see that the number of equations of system (18)-(19), as well as the condition of
solvability of this system, depends on the numbers θ − 2m and τ . Therefore, we
consider two cases: a) θ − 2m ≤ 0 and b) θ − 2m > 0.

a) Assume that θ − 2m ≤ 0. In this case the number of equations in the system
(18)-(19) is τ + θ− 2m, which is no more than τ . The system of equations (18)-(19)
takes the form

Pτ0

(

ω′′,D′
x

)

f
(

x′
)

=
∑

|σ|=τ

Aσ0

(

ω′′
)

fσ

(

x′
)

= Φτ+θ−2m

(

ω′′, x′
)

,

Pτ−10

(

ω′′,D′
x

)

f
(

x′
)

+ Pτ1

(

ω′′,D′
x

)

f
(

x′
)

= Φτ+θ−2m+1

(

ω′′, x′
)

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P2m+1−θ0

(

ω′′,D′
x

)

f
(

x′
)

+ . . . +Pττ−2m−1+θ

(

ω′′,D′
x

)

f
(

x′
)

=Φ2m−θ

(

ω′′, x′
)

,

M0

(

ω′′,D′
x

)

f
(

x′
)

= Φ0

(

ω′′, x′
)

.

(20)
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Now we see that in each of these equations the expressions Pµ0 (ω′′, f) are linear
combinations of unknown functions fσ (x′) with the coefficients Aσ0 (the moments
of fundamental solution E (x)). The system of equations (18)–(19) is of triangular
form. Since

∑

|σ|=τ |Aσ0 (ω′′)| 6= 0 (otherwise the first condition in (18) is absent),

the first equation from (18) is solvable. Assume that functions fσ (x′) with |σ| = τ

are solutions to the first equation of (18). Substituting this functions fσ (x′) with
|σ| = τ in the other equations, for functions fσ (x′) with |σ| ≤ τ − 1 we obtain also
a triangular system. Continuing this procedure, we express all the functions fσ (x′)
with µ0 ≤ |σ| ≤ τ only through the functions Φτ , Φτ−1, . . . ,Φτ+θ−2m. It means
that the system of equations (18)–(19) is solvable.

b) Assume that θ > 2m. In this case the system of equations (18)–(19) con-
tains τ + θ − 2m equations, their number is greater than τ . Repeating the above
mentioned procedure, we express all the functions fσ (x′) with 0 ≤ |σ| ≤ τ by
Φτ (x′) , Φτ−1 (x′) , . . . ,Φτ+θ−2m (x′). Substituting all functions fσ (x′) in other
equations, we obtain that the first θ − 2m equations of (18)-(19) become identi-
ties, and the functions Φ0 (x′) , . . . ,Φτ+θ−2m (x′) are connected by (18), (19).

From what was mentioned above it follows that the formal model boundary value
problem with singular boundary conditions is not solvable for any admissible right
hand sides Φν (ω′, x′). To obtain a solvable singular boundary value problem it is
necessary to reformulate this problem in the following way:

In the domain Ω = R
n\Rq find the solutions u (x) of the model elliptic equation

L (Dx) u(x) = 0 (21)

that have near R
q the asymptotic representation (16) with coefficients Mν (ω′′, x′),

satisfying the conditions

Mν

(

ω′′,D′
x

)

f
(

x′
)

= Φν

(

ω′′, x′
)

, ν = ν1, . . . , ν2 = τ + θ − 2m. (22)

Repeating the similar reasons we obtain

Theorem 2. For any admissible functions Φν (ω′′, x′) the model boundary value
problem with singular boundary conditions (18), (19) is solvable.
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