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Conjugate sets of loops and quasigroups.

DC-quasigroups

G.B.Belyavskaya, T.V.Popovich

Abstract. It is known that the set of conjugates (the conjugate set) of a binary
quasigroup can contain 1, 2, 3 or 6 elements. We investigate loops, IP -quasigroups
and T -quasigroups with distinct conjugate sets described earlier. We study in more
detail the quasigroups all conjugates of which are pairwise distinct (shortly, DC-
quasigroups). The criterion of a DC-quasigroup (a DC-IP -quasigroup, a DC-T -
quasigroup) is given, the existence of DC-T -quasigroups for any order n ≥ 5, n 6= 6,
is proved and some examples of DC-quasigroups are given.
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1 Introduction

A quasigroup is an ordered pair (Q,A) where Q is a nonempty set and A is
a binary operation defined on Q such that each of the equations A(a, y) = b and
A(x, a) = b is uniquely solvable for any pair of elements a, b in Q was established. It
is known that the multiplication table of a finite quasigroup defines a Latin square
and six (not necessarily distinct) conjugates (or parastrophes) are associated with
each quasigroup (Latin square) [1, 6].

In [9] a connection between five identities of two variables and the equality of a
quasigroup to some of the rest five its conjugates was established. It was also proved
that the number of distinct conjugates of a finite quasigroup can be 1, 2, 3 or 6 and
for any m = 1, 2, 3, 6 and any n ≥ 4 there exists a quasigroup of order n with m
distinct conjugates (see Theorem 6 of [9]).

In [12] a connection between different pairs of conjugates of a quasigroup was
established, four identities that correspond to the equality of a quasigroup to its
conjugates were given. It was also proved that any two of these four identities
imply the rest two identities. All six possible sets of conjugates taking into account
all possible cases of the equality (”assembling”) of conjugates were described. The
connection between four identities and possible conjugate sets was shown.

In this article we continue the investigation of conjugates of quasigroups started
in [12], in particular, we study loops, IP -quasigroups and T -quasigroups with dis-
tinct conjugate sets described in [12].

We study in more detail quasigroups and loops all conjugates of which are pair-
wise distinct (these quasigrops we call distinct conjugate quasigroups or, shortly,
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DC-quasigroups). Such quasigroups form an important class and arise by the re-
search of various questions of the quasigroup theory and the Latin square theory,
in particular, in the research of totally conjugate-orthogonal [5] and near totally
conjugate-orthogonal quasigroups [11]. They can be also used by coding and encryp-
tion of information. The criterion of a DC-quasigroup ( of a DC-IP -quasigroup, a
DC-T -quasigroup) is established, some examples of DC-quasigroups are given and
the existence of DC-T -quasigroups of any order n ≥ 5, n 6= 6, is proved.

2 Preliminaries

Remind some necessary notions and results. To any quasigroup (Q,A) the system
Σ(A) of six (not necessarily distinct) conjugates (parastrophes) corresponds:

Σ(A) = (A,A−1,−1A,−1
(

A−1
)

, (−1A)−1, A∗),

where A(x, y) = z ⇔ A−1(x, z) = y ⇔−1A(z, y) = x⇔ A∗(y, x) = z.

Using the Belousov’s designation of conjugates of a quasigroup (Q,A) from [2]
we have the following conjugate system Σ(A):

Σ(A) = (A, rA, lA, lrA, rlA, sA),

where 1A = A, rA = A−1, lA =−1A, lrA =−1(A−1), rlA = (−1A)−1, sA = A∗.

Note that
(

−1(A−1)
)

−1
=rlrA =−1

(

(−1A)−1
)

=lrlA =sA and rrA =llA = A,
στA =σ(τA).

Let Σ(A) be the set of conjugates (the conjugate set) of a quasigroup (Q,A). It
is known [9] that | Σ(A) |= 1, 2, 3 or 6.

A quasigroup is a totally-symmetric quasigroup (a TS-quasigroup) if it satisfies
the identities x · xy = y and xy = yx. For TS-quasigroups | Σ(A) |= 1.

The following Theorem 1 of [12] describes all possible conjugate sets for quasi-
groups and points out the only possible variants of equality (”assembling”) of con-
jugates in every case.

Theorem 1 [12]. The following conjugate sets of a quasigroup (Q,A) are only
possible: Σ1(A) = {A}; Σ2(A) = {A,sA} = {A = lrA = rlA, lA = rA =s A};
Σ6(A) = {A, rA, lA, lrA, rlA, sA}; Σ3(A) = {A,lrA,rlA} and three cases are only
possible:

Σ
1

3(A) = {A = rA, lA = lrA, rlA = sA};

Σ
2

3(A) = {A = lA, rA = rlA, lrA = sA};

Σ
3

3(A) = {A = sA, rA = lrA, lA = rlA}.

For convenience we denote the classes of quasigroups (Q,A) with Σ(A) =

Σ1(A),Σ2(A),Σ
1

3(A),Σ
2

3(A),Σ
3

3(A),Σ6(A) by V1, V2, V
1

3
, V 2

3
, V 3

3
, V6, respectively.

We say that a quasigroup (Q,A) satisfies exactly one identity of the set of identi-
ties T = {A(x,A(x, y)) = y,A(A(y, x), x) = y,A(x, y) = A(y, x), A(A(x, y), x) = y}
if it satisfies one identity and does not satisfy the rest identities of this set.
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Remark 1. According to Corollary 4 [12], establishing a connection between con-
jugate sets described in Theorem 1 and the identities of the set T we have that V1

is the class of quasigroups satisfying all identities of T ; V2 (V 1
3
, V 2

3
, V 3

3
) is the class

of quasigroups satisfying exactly the identity A(A(x, y), x) = y (A(x,A(x, y)) =
y,A(A(y, x), x) = y,A(x, y) = A(y, x) respectively) of T and V6 is the class of quasi-
groups which satisfies none of four identities of T . For a quasigroup (Q,A) of the
class V1 (of the variety of TS-quasigroups) | Σ(A) |= 1; for a quasigroup of the class
V2 (every of the classes V 1

3
, V 2

3
, V 3

3
) we have | Σ(A) |= 2 (| Σ(A) |= 3 respectively)

and | Σ(A) |= 6 for the class V6.

Below we study loops, IP -quasigroups and T -quasigroups from the point of view
of their conjugate sets.

3 Conjugate sets of loops

Let (Q,A) be a loop with the identity e, A(Ilx, x) = A(x, Irx) = e, that is
Ilx = −1x, Irx = x−1. It is easy to see that if the loop (Q,A) satisfies at least one
of the three identities A(x,A(x, y)) = y, A(A(y, x), x) = y, A(A(x, y), x) = y of the
set T , then it is a loop of exponent two: A(x, x) = e for any x ∈ Q. In this case
Il = Ir = ε.

Proposition 1. In any of the classes V1, V2, V
1

3
, V 2

3
, V 3

3
, V6 of quasigroups there

exists a loop of exponent two.

Proof. Note that if a loop (Q,A) has exponent two , then all its congugates also are
loops of exponent two since Lr

xy = L−1
x y and Rl

yx = R−1
y x, where Lr

xy = rA(x, y),

Rl
yx = lA(x, y), Lxy = A(x, y), Ryx = A(x, y). Any TS-loop is in V1. The loops of

exponent two given by Tables 1–5 are, respectively, in V2, V
1
3
, V 2

3
, V 3

3
and V6:

1 2 3 4 5
2 1 4 5 3
3 5 1 2 4
4 3 5 1 2
5 4 2 3 1

1 2 3 4 5 6
2 1 5 6 3 4
3 6 1 5 4 2
4 3 2 1 6 5
5 4 6 2 1 3
6 5 4 3 2 1

Tab. 1 Tab. 2

1 2 3 4 5 6
2 1 5 6 4 3
3 4 1 5 6 2
4 3 6 1 2 5
5 6 2 3 1 4
6 5 4 2 3 1

1 2 3 4 5 6
2 1 6 5 3 4
3 6 1 2 4 5
4 5 2 1 6 3
5 3 4 6 1 2
6 4 5 3 2 1

1 2 3 4 5 6
2 1 4 3 6 5
3 5 1 6 4 2
4 6 5 1 2 3
5 3 6 2 1 4
6 4 2 5 3 1

Tab. 3 Tab. 4 Tab. 5

Now consider the loops which are not loops of exponent two.
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Proposition 2. Let a loop (Q,A) be not of exponent two, then (Q,A) ∈ V 3
3

if
(Q,A) is a commutative loop and (Q,A) ∈ V6 if (Q,A) is a noncommutative loop.

Proof. Indeed, in this case (Q,A) /∈ V1, V2, V
1

3
, V 2

3
since this loop satisfies none of

identities of the set T corresponding to these classes. If the loop is commutative,
then by Theorem 1 and Remark 1 it is in the class V 3

3
. Otherwise it is in V6. �

4 Conjugate sets of IP -quasigroups

At first we recall that a quasigroup (Q,A) is called a quasigroup with the property
of invertibility (an IP -quasigroup) if there exist two mappings Il and Ir of the set
Q into Q such that A(Ilx,A(x, y)) = y and A(A(y, x), Irx)) = y for all x, y ∈ Q.

It is known that the mappings Il and Ir are permutations, I2

l = I2
r = ε (the

identity permutation) and IlA(x, y) = A(Iry, Irx), IrA(x, y) = A(Ily, Ilx) [1].

The conjugates of an IP -quasigroup have the following form:
lA(x, y) = A(x, Iry),

rA(x, y) = A(Ilx, y),
lrA(x, y) = IlA(x, Iry),

rlA(x, y) = IrA(Ilx, y),
sA(x, y) = IrA(Ilx, Ily) = IlA(Irx, Iry).

By Theorem 1 of [3] all conjugates of an IP -quasigroup are isotopic. Note that in
a commutative IP -quasigroup and in an IP -loop Ir = Il = I.

Proposition 3. Let a quasigroup (Q,A) be a noncommutative IP -quasigroup. Then
rA(x, y) = lA(x, y) if and only if Il = Ir = I and IA(x, y) = A(y, x).

Proof. Let rA =l A, then Il 6= ε (Ir 6= ε): by Il = ε we have A(Ilx, y) =
A(x, y) = A(x, Iry), then Ir = ε and (Q,A) is commutative. But in this case
from rA(x, y) =l A(x, y) it follows A(Ilx, y) = A(x, Iry), A(x, y) = A(Ilx, Iry),
IlA(x, y) = IlA(Ilx, Iry) = A(y, IrIlx), IlA(Ilx, y) = A(y, Irx), IlIrA(Ily, x) =
A(y, Irx), IlIrA(Ily, Irx) = A(y, x) = A(Ily, Irx), since A(x, y) = A(Ilx, Iry),
whence it follows that IlIr = ε or Il = Ir = I. Taking into account that
A(y, x) = A(Ily, Irx) we obtain IA(x, y) = A(y, x).

Conversely, let Il = Ir = I in a noncommutative IP -quasigroup (Q,A) and
IA(x, y) = A(y, x), then A(x, y) = A(Ix, Iy), A(Ix, y) = A(x, Iy), that is rA(x, y) =
lA(x, y). �

Now we consider IP -quasigroups from the point of view of their affiliation to the
classes of quasigroups V1, V2, V

1
3
, V 2

3
, V 3

3
and V6.

Theorem 2. Let a quasigroup (Q,A) be an IP -quasigroup with Il = Ir = I. Then
(Q,A) ∈ V1 if and only if I = ε; (Q,A) ∈ V 3

3
if and only if (Q,A) is commutative and

I 6= ε; (Q,A) ∈ V2 if and only if (Q,A) is noncommutative and IA(x, y) = A(y, x);
(Q,A) ∈ V6 if and only if (Q,A) is noncommutative and IA(x, y) 6= A(y, x).

Proof. If Il = Ir = I = ε, then all conjugates coincide and (Q,A) ∈ V1. The converse
is also true. If I 6= ε and (Q,A) is commutative, then A =sA, A 6=lA, A 6=rA, so by
Theorem 1 (Q,A) ∈ V 3

3
. The converse follows from Theorem 1.

Let (Q,A) be a noncommutative IP -quasigroup. If IA(x, y) = A(y, x) (in this
case I 6= ε), then A 6=sA, A 6=lA, A 6=rA and by Proposition 3 rA =lA, so by
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Theorem 1 (Q,A) ∈ V2. If (Q,A) ∈ V2, then by Theorem 1 the quasigroup (Q,A)
is noncommutative and rA =lA, so by Proposition 3 IA(x, y) = A(y, x).

If IA(x, y) 6= A(y, x) and (Q,A) is a noncommutative quasigroup, then A 6=sA,
A 6=lA, A 6=rA and by Proposition 3, rA 6=lA. It means that by Theorem 1 the
quasigroup (Q,A) is contained in V6.

If a quasigroup (Q,A) is contained in V6, then it is noncommutative and rA 6=lA,
so by Proposition 3 IA(x, y) 6= A(y, x) (since in this case Il = Ir = I). �

Note that by Theorem 2 of [3] all conjugates of an IP -quasigroup (Q,A) are also
IP -quasigroups if and only if there exists a permutation α such that αA(x, y) =
A(y, x), so in the cases (Q,A) ∈ V1, (Q,A) ∈ V2 and (Q,A) ∈ V 3

3
conjugates of

(Q,A) are IP -quasigroups.
Recall that a Moufang loop is defined by the identity x(y ·xz) = (xy ·x)z and is a

special case of IP -loops. From Theorem 2 and Proposition 2 the following corollaries
easy follow.

Corollary 1. Let (Q,A) be an IP -loop (a Moufang loop), then
(Q,A) ∈ V1 if I = ε;
(Q,A) ∈ V 3

3
if (Q,A) is commutative and I 6= ε;

(Q,A) ∈ V6, if (Q,A) is noncommutative.

Note that the case (Q,A) ∈ V2 of Theorem 2 for an IP -loop is impossible.

Corollary 2. All abelian groups of exponent 2 are contained in the class V1, the
rest abelian group are contained in the class V 3

3
. Non-abelian groups are in V6.

Theorem 3. Let a quasigroup (Q,A) be an IP -quasigroup with Il 6= Ir. Then
(Q,A) ∈ V 1

3
if and only if Il = ε.

(Q,A) ∈ V 2
3

if and only if Ir = ε.
(Q,A) ∈ V6 if and only if Il, Ir 6= ε.

Proof. In this case a quasigroup (Q,A) is noncommutative. If Il = ε (Ir = ε) and
Il 6= Ir, then A 6= sA, A 6= lrA , A 6= lA, and A = rA (A 6= sA, A 6= rlA, A 6= rA and
A = lA ), so (Q,A) ∈ V 1

3
((Q,A) ∈ V 2

3
, respectively). The converse follows from

Theorem 1 since then A = rA (A = lA), that is Il = ε (Ir = ε). If Il, Ir 6= ε and
Il 6= Ir we have A 6=sA, A 6=lA, A 6=rA and by Proposition 3 rA 6=lA, so (Q,A) ∈ V6

according to Theorem 1. If (Q,A) ∈ V6, then A 6=lA and A 6=rA, so Il, Ir 6= ε. �

Example 1. In [1], p. 74, the following example of IP -quasigroup with Il 6= Ir is
given. Let (Q, ·) be a group with the identity e, θ be its automorphism of order two,
(Q,A) be the quasigroup where A(x, y) = θx · y. Then (M, ◦) = (Q, ·)× (Q,A) is an
IP -quasigroup with Il(a, b) = (a−1, b−1), Ir(a, b) = (a−1, θb−1), where a ·a−1 = e. In
this quasigroup Il 6= Ir and Il, Ir 6= ε if (Q, ·) has not exponent two, so by Theorem 3
(M, ◦) is in V6. If (Q, ·) is a group of exponent two, then Il = ε and by Theorem 3
M(◦) ∈ V 1

3
.

Let in this example A(x, y) = x·θy, (M, ◦) = (Q,A)×(Q, ·), Ir(a, b) = (a−1, b−1),
Il(a, b) = (θa−1, b−1), then
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((a, b) ◦ (c, d)) ◦ Ir(c, d) = (a · θc, bd) ◦ (c−1, d−1) = (a · θc · θc−1, bd · d−1) = (a, b),
Il(a, b)◦((a, b)◦(c, d)) = (θa−1, b−1)◦(a·θc, bd) = (θa−1 ·θa·θ2c, b−1 ·bd)) = (c, d).
Thus, (M, ◦) is also an IP -quasigroup with Il 6= Ir.
If the group (Q, ·) has not exponent two, then the IP -quasigroup (M, ◦) is in

V6, since Il, Ir 6= ε. If the group (Q, ·) is a group of exponent two, then Ir = ε, so
by Theorem 3 (M, ◦) ∈ V 2

3
.

5 Conjugate sets of T -quasigroups

A quasigroup (Q,A) is a T -quasigroup if there exist an abelian group (Q,+), its
automorphisms ϕ,ψ and an element c ∈ Q such that A(x, y) = ϕx+ ψy + c for any
x, y ∈ Q [8].

The conjugates of a T -quasigroup A(x, y) = ϕx + ψy + c (which are also
T -quasigroups) have the following form:

sA(x, y) = ψx+ ϕy + c, rA(x, y) = ψ−1(y − ϕx− c),
lA(x, y) = ϕ−1(x− ψy − c), rlA(x, y) = ψ−1(x− ϕy − c),
lrA(x, y) = ϕ−1(y − ψx− c) (see, for example, [10]).
Let Ix = −x , then I2 = ε where ε is the identity transformation, and Iϕ = ϕI

for any automorphism ϕ of a group (Q,+).
By Proposition 1 of [12] all pairs of conjugates of the conjugate system Σ(A) of

a quasigroup (Q,A) can be divided into four disjoint classes:
I. (A,rA), (lA,lrA), (rlA,sA);
II. (A,lA), (rA,rlA), (sA,lrA);
III. (A,sA), (rA,lrA), (lA,rlA);
IV. (lA,rA), (A,lrA), (rA,sA), (lrA,rlA), (A,rlA), (lA,sA)

such that the equality (inequality) of components of one pair in a class implies the
equality (inequality) of components of any pair in this class.

For T -quasigroups the following (Theorem 2 of [12]) was proved:

Theorem 4 [12]. The components of any pair of a class I, II, III or IV for a
T -quasigroup (Q,A): A(x, y) = ϕx+ ψy coincide if and only if ψ = I for the pairs
of class I; ϕ = I for the pairs of class II; ϕ = ψ for the pairs of class III; ϕ2 = Iψ
and ψ2 = Iϕ (or ϕ = ψ−1 and ϕ3 = I ) for the pairs of class IV.

Note that in [12] the equivalence of the pair of equalities ϕ2 = Iψ and ψ2 = Iϕ
to the pair of equalities ϕ = ψ−1 and ϕ3 = I was proved.

Now we shall describe T -quasigroups with distinct conjugate sets.

Theorem 5. Let (Q,A) be a T -quasigroup: A(x, y) = ϕx+ ψy. Then
(Q,A) ∈ V1 if and only if ϕ = ψ = I;
(Q,A) ∈ V2 if and only if ϕ3 = I, ϕ = ψ−1, ϕ 6= I, ψ;
(Q,A) ∈ V 1

3
if and only if ψ = I, ϕ 6= I;

(Q,A) ∈ V 2
3

if and only if ϕ = I, ψ 6= I;
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(Q,A) ∈ V 3
3

if and only if ϕ = ψ,ϕ 6= I, and at least one of two inequalities
ϕ 6= ψ−1, ϕ3 6= I is fulfilled;

(Q,A) ∈ V6 if and only if ϕ,ψ 6= I, ϕ 6= ψ and at least one of two inequalities
ϕ 6= ψ−1, ϕ3 6= I and at least one of two inequalities ϕ2 6= Iψ or ψ2 6= Iϕ is fulfilled.

Proof. The first statement is easy checked if to take into account the definition of a
TS-quasigroup.

Let ϕ3 = I, ϕ = ψ−1 and ϕ 6= I, ψ. In this case we have ψ 6= I and ϕ 6= ψ, so by
Proposition 1 of [12] and Theorem 4 A = lrA = rlA, lA = rA =sA (these equalities
correspond to the pairs of class IV), A 6= rA, A 6= lA and A 6= sA. Thus, in the
set Σ(A) there are exactly two conjugates and (Q,A) ∈ V2. The converse follows
from the form of Σ2(A) for V2 in Theorem 1 and from Theorem 4 since in this case
A = lrA = rlA, lA = rA =sA, moreover, A 6= rA, A 6= lA, A 6= sA, since Σ2(A)
contains two elements.

Let ψ = I, ϕ 6= I, then ϕ 6= ψ,ψ−1, so by Theorem 4 and Theorem 1 we have

the set Σ
1

3(A), as A = rA, A 6= lA, A 6= sA and lA 6= rA. The converse follows from

the form of Σ
1

3(A) in Theorem 1 as in this case A = rA, A 6= lA, A 6= sA and so by
Theorem 4 ψ = I, ϕ 6= I and ϕ 6= ψ whence ϕ 6= ψ−1.

The case of Σ
2

3(A) is proved analogously. Let ϕ = ψ,ϕ 6= I and at least one of
two inequalities ϕ 6= ψ−1, ϕ3 6= I be fulfilled, then ψ 6= I, so by Theorem 4 and

Theorem 1 we have the set Σ
3

3(A), as A = sA, A 6= lA, A 6= rA and lA 6= rA. The

converse follows from the form of Σ
3

3(A) in Theorem 1 and from Theorem 4.
Let ϕ,ψ 6= I, ϕ 6= ψ and at least one of two equalities ϕ = ψ−1, ϕ3 = I be

not fulfilled. Then the quasigroup (Q,A) satisfies none of conditions of Theorem 4,
so all conjugates of this quasigroup are distinct and Σ(A) = Σ6(A). Conversely,
if all conjugates of a quasigroup (Q,A) are different, then by Theorem 4 in (Q,A)
ϕ,ψ 6= I, ϕ 6= ψ and at least one of two equalities of ϕ = ψ−1, ϕ3 = I is not
fulfilled. �

6 DC-quasigroups

Consider in more detail the class of quasigroups all six conjugates of which are
distinct.

Definition 1. A quasigroup is called a distinct conjugate quasigroup or, shortly, a
DC-quasigroup if all its conjugates are distinct, that is | Σ |= 6.

All DC-quasigroups form the class V6.

Theorem 6. A quasigroup (Q,A) is a DC-quasigroup if and only if A 6=
rA, lA, sA, lrA. A quasigroup (Q,A) is a DC-quasigroup if and only if it satisfies
none of four identities of the set T .
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Proof. Indeed, by Proposition 1 of [12]
if A 6=rA, then lA 6=lrA and rlA 6=sA;
if A 6=lA, then rA 6=rlA and sA 6=lrA;
if A 6=sA, then rA 6=lrA and lA 6=rlA;
if A 6=lrA, then lA 6=rA, rA 6=sA, lrA 6=rlA, A 6=rlA and lA 6=sA

since the corresponding pairs of conjugates coincide simultaneously. �

Let (Q,A) be a DC-quasigroup, A = εA where ε is the identity transformation,
C = {ε, r, l, rl, lr, s} be the set of six conjugations, as transformations of a quasigroup
(Q,A). On the set C we shall define the operation (·), corresponding to the passage
from one conjugate of a quasigroup to another one, taking into account that the
multiplication is realized from the right to the left.

We obtain the group C(·) which is isomorphic to the symmetric group S3 (see [1]).
The multiplication table of the group C(·) is the following:

· ε r l rl lr s

ε ε r l rl lr s
r r ε rl l s lr
l l lr ε s r rl
rl rl s r lr ε l
lr lr l s ε rl r
s s rl lr r l ε

Tab. 6

In this table rs means that at first s then r are applied, so rs = rrlr = lr, and
sr = rlrr = rl.

The following statement gives some properties of DC-quasigroups.

Proposition 4. For a DC-quasigroup the group C(·) is isomorphic to the symmetric
group S3.

Any DC-quasigroup is noncommutative and nontrivial.
Any conjugate of a DC-quasigroup is a DC-quasigroup.
Any quasigroup containing a DC-subquasigroup is a DC-quasigroup.
The direct product of DC-quasigroups is a DC-quasigroup.
The direct product of a TS-quasigroup and a DC-quasigroup is a DC-quasigroup.
The direct product of two quasigroups from distinct classes of V2, V

1
3
, V 2

3
,

V 3
3
, V6 is a DC-quasigroup.
A nontrivial quasigroup which is a homomorphic image of a DC-quasigroup is

not necessarily a DC-quasigroup.

Proof. The results follow from the definitions, Theorem 6, the characterization of
the classes V1, V2, V

1
3
, V 2

3
, V 3

3
, V6 using the identities of the set T (see Remark 1)

and taking into account that if a quasigroup satisfies an identity, then this identity
holds in any its subquasigroup. The last statement is true since, for example, the
non-abelian group S3 which by Corollary 2 is a DC-group has a homomorphic group
of order two, which is contained in the class V1. �
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By Theorem 6 of [9] for any m = 1, 2, 3, 6 and any n ≥ 4 there exists a quasigroup
of order n with m distinct conjugates. The proof of this theorem for a quasigroup
(Q,A) with | Σ(A) |= 6 is based on the existence of a quasigroup of order 3 satisfying
none of the identities in the set T . But it is easy to check that such quasigroups do
not exist, since six of 12 quasigroups of order 3 are commutative and every of the
remaining six quasigroups coincide with the left or the right inverse quasigroup. So
below we shall bring in small correction in the proof for the case of quasigroups with
| Σ(A) |= 6 using the idea of embedding used in the proof of Theorem 6 [9].

Theorem 7. For every n ≥ 4 there exists a DC-quasigroup of order n.

Proof. It is easy to check that, for example, the quasigroup (Q,A) of order 4 with
the following multiplication table:

A 1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 4 3 2 1
4 3 1 4 2

Tab. 7

is a DC-quasigroup. In [7] Trevor Evans has shown that a quasigroup of order n
can be embedded in a quasigroup of order t for every t ≥ 2n. Using the quasigroup
of order 4, given above, for embedding we obtain a DC-quasigroup of any order
n ≥ 8 by Proposition 4. The existence of DC-quasigroups of order n = 5, 7 follows,
for example, from Theorem 8 below (for n = 5 see also Example 2 in the end). By
Corollary 2 the noncommutative group S3 of order n = 6 is a DC-group. �

Summarizing the above results we have the following DC-loops and
DC-quasigroups.

Proposition 5. A noncommutative loop (Q,A) which is not of exponent two is a
DC-loop.

A noncommutative IP -quasigroup (Q,A) with Il = Ir = I and IA(x, y) 6=
A(y, x) is a DC-quasigroup.

A noncommutative IP -loop (a noncommutative Moufang loop, a non-abelian
group) is a DC-loop.

A noncommutative IP -quasigroup with Il 6= Ir and Il, Ir 6= ε is a DC-quasigroup.
A T -quasigroup (Q,A): A(x, y) = ϕx + ψy such that ϕ 6= I, ψ; ψ 6= I and

ϕ2 6= Iψ or ψ2 6= Iϕ ( and ϕ 6= ψ−1 or ϕ3 6= I) is a DC-quasigroup.

Denote by sn the number of DC-groups of order n, then using Fig. 4.3.4 of [6]
with the number of all non-abelian groups of order n < 32 we get that s6 = s10 =
s14 = s21 = s22 = s26 = s27 = 1; s8 = s20 = s24 = s28 = 2; s12 = s18 = s30 = 3;
s16 = 9.

The criterion of Theorem 5 for a DC-T -quasigroup can be reformulated in the
following way.
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Corollary 3. A T -quasigroup (Q,A): A(x, y) = ϕx+ψy is a DC-quasigroup if and
only if ϕ+ ε 6= 0, ψ + ε 6= 0, ϕ− ψ 6= 0 and ϕ2 + ψ 6= 0 or ψ2 + ϕ 6= 0, where 0 is
the endomorphism zero of the abelian group (Q,+).

Indeed, for example, the inequality ϕ 6= I means that ϕx0 6= Ix0 for some x0 ∈ Q,
x0 6= 0, that is (ϕx0 + x0) 6= 0, (ϕ+ ε)x0 6= 0 and ϕ+ ε 6= 0.

An operation A of the form A(x, y) = ax + by (mod n), n ≥ 3, a, b 6= 0, is a
T -quasigroup if and only if the numbers a, b modulo n are relatively prime to n. In
this case ϕ = La, ψ = Lb, where Lax = ax (mod n), x ∈ Q = {0, 1, 2, ..., n − 1}, are
permutations (automorphisms of the additive group modulo n). Note that since the
elements a, b modulo n are relatively prime to n, then they are invertible and belong
to the multiplicative group of the residue-class ring (mod n). This multiplicative
group consists of all numbers from 1 to n − 1 relatively prime to n. In this case
L−1

a x = La−1x (mod n). Taking into account that I = Ln−1 for such quasigroups
we have

Corollary 4. A T -quasigroup (Q,A): A(x, y) = ax + by (mod n) is a DC-qua-
sigroup if and only if a, b 6= n − 1, a 6= b and a 6= b−1 or a3 6= n − 1 (mod n).

The following theorem gives some information about the spectrum of
DC-T -quasigroups.

Theorem 8. For any n ≥ 5, n 6= 6, there exists a DC-T -quasigroup of order n.

Proof. Consider a T -quasigroup (Q,A) with A(x, y) = x + ky (mod n) of order n,
n ≥ 5, n 6= 6, such that the greatest common divisor (n, k) is equal to 1 (that is
(n, k) = 1), k 6= 1, n−1, where 1 ·x = x (mod n). It is easy to see that for any finite
n ≥ 5, n 6= 6 the required number k exists. For this quasigroup a = 1, b = k(mod
n). Check the conditions of Corollary 4: 1, k 6= n− 1 (mod n), k 6= 1 and 1 6= k−1

(mod n). Thus, by Corollary 4 all conjugates of the quasigroup (Q,A) are different
and it is a DC-T -quasigroup. �

Note that among T -quasigroups (Q,A): A(x, y) = ax+ by (mod 4) or A(x, y) =
ax+by (mod 6) there are not DC-quasigroups. That follows if we take into account
Corollary 4 and that the numbers a, b modulo n are relatively prime to n.

Example 2. Find the conjugates of the DC-T -quasigroup (Q,A) with A(x, y) =
x + 2y (mod 5) of order 5, taking into account the form of conjugates of a
T -quasigroup:

sA(x, y) = ψx+ ϕy = 2x+ y (mod 5),
rA(x, y) = ψ−1(y − ϕx) = L2−1(y − x)= 3y − 3x (mod 5)=2x+3y (mod 5),
lA(x, y) = ϕ−1(x− ψy) = x− 2y(mod 5)=x+3y (mod 5),
rlA(x, y) = ψ−1(x− ϕy) = L2−1x−L2−1y = 3x− 3y (mod 5)= 3x+ 2y (mod 5),
lrA(x, y) = ϕ−1(y − ψx) = −2x+ y (mod 5) = 3x+y (mod 5).

Recall that a quasigroup (Q,A) is called totally conjugate orthogonal (near to-
tally conjugate orthogonal), shortly, a totCO-quasigroup [5] (near totCO-quasigroup,
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respectively [11]) if all six its conjugates (five of its conjugates) are pairwise orthogo-
nal. It is evident that these quasigroups are DC-quasigroups if to take into account
that in an orthogonal system all quasigroups are different. In [5] it was proved
that for any number n which is relatively prime to 2, 3, 5 and 7 there exists a
totCO-quasigroup (moreover, a T -quasigroup) of order n.

Note that loops (moreover, quasigroups with right or left identity) and
IP -quasigroups can not be totCO-quasigroups. That follows, for example, from
Proposition 3 of [4] where impossibility of orthogonality of some conjugates for
these quasigroups is proved.
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