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which the ring E(X) of continuous endomorphisms of X, endowed with the compact-
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1 Introduction

Motivated by the work of F. Perticani [6], the author discussed in [10] general
topological rings with identity having at most two non-trivial closed ideals. The
main results of [10] characterize the mentioned rings in terms of ideal extensions of
topological rings. In the present paper, we are interested in a more concrete class
of topological rings of the mentioned type, namely, those which occur as rings of
continuous endomorphisms of LCA groups. Precisely speaking, we are dealing with
the problem of determining the LCA groups X with the property that the ring E(X)
of all continuous endomorphisms of X, taken with the compact-open topology, has
no more than two non-trivial closed ideals.

In the following, we establish some bounds for the class of groups in question
and solve completely the considered problem in the case of torsion LCA groups.

2 Notation

We use without explanations some terminology and notations introduced in [10].
In addition, we denote by P the set of primes and by L the class of LCA groups. For
p ∈ P, we denote by Z(p∞) the quasi-cyclic group corresponding to p and by Z(pn),
where n is a positive integer, the cyclic group of order pn (both with the discrete
topology). For X ∈ L, we let 1X , t(X), X∗, and E(X), denote, respectively, the
identity map on X, the torsion subgroup of X, the character group of X, and the
ring of continuous endomorphisms of X, endowed with the compact-open topology.
Recall that the compact-open topology on E(X) is generated by the sets

Ω(K, U) = {u ∈ E(X) | u(K) ⊂ U},
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where K, U ⊂ X, K is compact and U is open. For a positive integer n, we let
X[n] = {x ∈ X | nx = 0} and nX = {nx | x ∈ X}. Also, o(a) denotes the order of a
in X, 〈S〉 the subgroup of X generated by S, and (M) the ideal of E(X) generated
by M. Further, given a family (Xi)i∈I of groups in L, we write

∏
i∈I Xi for its

topological direct product. In case each Xi coincides with a fixed X ∈ L, we use
XI for

∏
i∈I Xi. For a discrete X ∈ L, we let X(I) denote the discrete direct sum

of I copies of X. Finally, ⊕ stands for topological direct sum and ∼= for topological
isomorphism.

3 Some necessary conditions

In this section we shall reduce the study of groups X ∈ L with the property that
the ring E(X) has no more than two non-trivial closed ideals to the case of some
more special groups.

We begin with the following preparatory lemma.

Lemma 1. Let X be a group in L such that mnE(X) = nE(X) for some positive
integers m and n. Then nX = mnX and X[mn] = X[n].

Proof. In view of our hypothesis, n1X ∈ mnE(X), and hence there exists a net
(uλ)λ∈L of elements of E(X) such that n1X = limλ∈L mnuλ [4, Proposition 1.6.3].
Pick any x ∈ X, and define δx : E(X) → X by setting δx(u) = u(x) for all u ∈ E(X).
Then δx is a continuous group homomorphism, so

nx = δx(n1X) = δx(lim
λ∈L

mnuλ)

= lim
λ∈L

δx(mnuλ) = lim
λ∈L

(
(mnuλ)(x)

) ∈ mnX.

Since x ∈ X was arbitrary, it follows that nX ⊂ mnX, which gives nX = mnX.
Further, since E(X) and E(X∗) are topologically anti-isomorphic [8, (1.1)], we also
have mnE(X∗) = nE(X∗), so as above nX∗ = mnX∗, and hence X[n] = X[mn]
by [5, (24.22)].

Next we recall two definitions.

Definition 1. Let n be a positive integer. A group X ∈ L is said to be of finite
exponent n if n is the least positive integer satisfying nX = {0}.
Definition 2. A subgroup F of a group X ∈ L is said to be topologically fully
invariant in X if u(F ) ⊂ F for all u ∈ E(X).

Let X ∈ L. Then X can be viewed as a left topological module over E(X). It
is clear that the topologically fully invariant subgroups of X are just the E(X)-
submodules of X. Now, if F is a topologically fully invariant subgroup of X, then
annE(X)(F ), the annihilator of F in E(X), is a closed ideal of E(X) because X
is Hausdorff. Further, if F is in addition closed in X, then X/F is a Hausdorff
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topological E(X)-module, so that annE(X)(X/F ) is a closed ideal of E(X) as well.
In fact

annE(X)(X/F ) = {u ∈ E(X) | im(u) ⊂ F}.
We now state the main result of this section.

Theorem 1. Let X be a non-zero group in L such that E(X) has no more than two
non-trivial closed ideals. Then exactly one of the following conditions holds:

(i) X ∼= Z(p)(α)×Z(p)β for some p ∈ P and some cardinal numbers α, β satisfying
α + β ≥ 1.

(ii) X ∼= Z(p)(αp)×Z(p)βp ×Z(q)(αq)×Z(q)βq for some distinct p, q ∈ P and some
cardinal numbers αp, βp, αq, βq satisfying αp + βp ≥ 1 and αq + βq ≥ 1.

(iii) X is a group of finite exponent p2 for some p ∈ P.

(iv) X is a group of finite exponent p3 for some p ∈ P.

(v) X is densely divisible and torsion-free.

(vi) There exists p ∈ P such that t(X) = X[p], pX is non-zero and densely divisible,
and pE(X) ( E(X).

(vii) There exist p, q ∈ P such that t(X) = X[pq], pqX is non-zero and densely
divisible, and pqE(X) ( pE(X) ( E(X).

Proof. If there exists p ∈ P such that pE(X) = {0}, then pX = (p1X)(X) = 0, and
so, by [2, Ch. 2, §4, Theorem 2], X ∼= Z(p)(α) × Z(p)β for some cardinal numbers α
and β satisfying α + β ≥ 1. Consequently, in this case we are led to (i).

Suppose mE(X) 6= {0} for all m ∈ P. If there exist p, q ∈ P such that pqE(X) =
{0}, then pqX = (pq1X)(X) = {0}, and hence X = X[pq]. Now, if q 6= p, we conclude
from [1, Theorem 3.13] that X = X[p] ⊕ X[q], where the primary components
X[p] and X[q] are non-zero. Thus, again appealing to [2, Ch. 2, §4, Theorem
2], in this case we get (ii). Further, in the remaining case when q = p, we have
X = X[p2] 6= X[p], which gives us (iii).

Next suppose lmE(X) 6= {0} for all l, m ∈ P. If there exist p, q, r ∈ P such
that pqrE(X) = {0}, then pqrX = (pqr1X)(X) = {0}, and hence X = X[pqr]. We
claim that p = q = r. Indeed, if the numbers p, q, and r were distinct, we could
write X = X[p] ⊕X[q] ⊕X[r]. Since, in view of our assumption, the topologically
fully invariant subgroups X[p], X[q], and X[r] of X are non-zero, it would follow,
as can be seen by considering the endomorphisms p1X , q1X , r1X , and 1X , that the
annihilators annE(X)(X[p]), annE(X)(X[q]), and annE(X)(X[r]) are distinct, non-
trivial, closed ideals of E(X). This contradicts the hypothesis. Similarly, if only two
of the numbers p, q, and r coincided, say p 6= q = r, we would have X = X[p2]⊕X[q],
where X[p2] 6= X[p] and X[q] 6= {0}. By invoking the endomorphisms p21X , p1X ,
q1X , and 1X , we would then conclude that annE(X)(X[p2]), annE(X)(X[p]), and
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annE(X)(X[q]) are distinct, non-trivial, closed ideals of E(X), again in contradiction
with the hypothesis. Thus we must have p = q = r, so X = X[p3], getting (iv).

Further suppose klmE(X) 6= {0} for all k, l, m ∈ P. If pE(X) = E(X) for all
p ∈ P, it follows from Lemma 1 that pX = 1X = X and X[p] = X[1] = {0} for all
p ∈ P, so X is densely divisible and torsion-free, and in this case we are led to (v).

Next assume there exists p ∈ P such that pE(X) 6= E(X). There are two
possibilities: either (1) qpE(X) = pE(X) for all q ∈ P, or (2) there is q ∈ P
such that qpE(X) 6= pE(X). In the former case, it follows from Lemma 1 that
qpX = qpX = pX and X[pq] = X[p] for all q ∈ P, so that pX is non-zero, densely
divisible and t(X) = X[p], which gives us (vi). In the second case, qpE(X) and
pE(X) are distinct non-trivial closed ideals of E(X). Since, by our assumption,
pqrE(X) 6= {0} for all p, q, r ∈ P, it follows that pqrE(X) = pqE(X) for all r ∈ P,

so rpqX = pqrX = pqX and X[pqr] = X[pq] for all r ∈ P, and hence pqX is
non-zero, densely divisible and t(X) = X[pq], whence (vii).

Remark 1. We know from [8, (2.3)] that any group X appearing in item (i) of the
preceding theorem has a topologically simple ring E(X). It is also clear from [9,
(2.2)] and [8, (2.3)] that for any group X appearing in item (ii), the ring E(X) is
a topological direct product of two topologically simple rings, and so it has exactly
two non-trivial closed ideals. In particular, we see from [10, Theorem 3] that in this
case every non-trivial closed ideal of E(X) is strongly topologically maximal.

In the remaining part of this paper we handle the problem stated in Introduction
for groups appearing in items (iii) and (iv). Since the groups appearing in items
(v), (vi), and (vii) contain non-torsion elements, this furnishes a solution to the
considered problem in the case of torsion LCA groups.

4 Groups of finite exponent p2

Our aim in this section is to describe the groups X ∈ L of finite exponent p2,
where p ∈ P, such that the ring E(X) has no more than two non-trivial closed ideals.
First, we note a lemma from [7, (3.8)], which will be frequently used in the sequel.

Lemma 2. Let X ∈ L be a group of finite exponent pn, where p is a prime and n is a
positive integer. If a ∈ X is an element of order pn, then 〈a〉 splits topologically from
X. Moreover, the complement of 〈a〉 can be chosen so as to contain a preassigned
open subgroup V of X satisfying 〈a〉 ∩ V = {0}.

We continue with five lemmas, that are needed for establishing the desired de-
scription.

Lemma 3. Let p ∈ P, and let X ∈ L be a group of finite exponent p2. If pX 6= X[p],
then E(X) has more than two non-trivial closed ideals, which are comparable with
respect to set-theoretic inclusion.
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Proof. Assume that pX 6= X[p]. Clearly, p1X 6= 0 and p1X ∈ annE(X)

(
X[p]

)
. It is

also clear that im(p1X) ⊂ pX, so p1X ∈ annE(X)

(
X/pX

)
, and thus

annE(X)

(
X[p]

) ∩ annE(X)

(
X/pX

) 6= {0}.

Further, since pX ⊂ X[p], we have annE(X)

(
X[p]

) ⊂ annE(X)

(
pX

)
. Finally, since

pX 6= {0}, it follows that pX 6⊂ ker(1X), so 1X /∈ annE(X)

(
pX

)
, and hence

annE(X)

(
pX

) 6= E(X). We shall show that the inclusions

annE(X)

(
X[p]

) ∩ annE(X)

(
X/pX

) ⊂ annE(X)

(
X[p]

) ⊂ annE(X)

(
pX

)

are strict. Let ξ : X → X/X[p] and η : X → X/pX denote the canonical projections,
and fix any a ∈ X\X[p] and b ∈ X[p]\pX. Then o(a) = p2 and o(ξ(a)) = p = o(η(b)).
By Lemma 2, we can write

X/X[p] = 〈ξ(a)〉 ⊕A and X/pX = 〈η(b)〉 ⊕B,

where A and B are closed subgroups in X/X[p] and X/pX, respectively. Let
λ : 〈ξ(a)〉 → X and µ : 〈η(b)〉 → X be the group homomorphisms given by
λ(ξ(a)) = µ(η(b)) = b. Denoting by ϕ the canonical projection of X/X[p] onto
〈ξ(a)〉 with kernel A, we see that λ ◦ ϕ ◦ ξ ∈ annE(X)

(
X[p]

)
, and λ ◦ ϕ ◦ ξ 6∈

annE(X)

(
X/pX

)
(because (λ ◦ ϕ ◦ ξ)(a) = b /∈ pX), so annE(X)

(
X[p]

)
properly

contains annE(X)

(
X[p]

) ∩ annE(X)

(
X/pX

)
. Similarly, denoting by ψ the canonical

projection of X/pX onto 〈η(b)〉 with kernel B, we see that µ ◦ψ ◦ η ∈ annE(X)

(
pX

)
and µ ◦ ψ ◦ η 6∈ annE(X)

(
X[p]

)
(because b ∈ X[p] and (µ ◦ ψ ◦ η)(b) = b), so

annE(X)

(
pX

)
properly contains annE(X)

(
X[p]

)
. Consequently, the inclusions

annE(X)

(
X[p]

) ∩ annE(X)

(
X/pX

) ⊂ annE(X)

(
X[p]

) ⊂ annE(X)

(
pX

)

are strict.

Lemma 4. Let p ∈ P, let X ∈ L be a group of finite exponent p2 such that pX =
X[p], and let C be a non-zero closed ideal of E(X). Further, let P be the set of
all ordered pairs (a, G), where a is an element of order p2 of X and G is a closed
subgroup of X satisfying X = 〈a〉 ⊕ G, and for each (a,G) ∈ P let εa,G ∈ E(X)
denote the canonical projection of X onto 〈a〉 with kernel G. Then:

(i) If C contains elements of order p2, then C ⊃ (εa,G | (a,G) ∈ P).

(ii) If pC = {0}, then C ⊃ (pεa,G | (a,G) ∈ P).

Proof. For (a,G) ∈ P and b ∈ X, we define fa,G,b ∈ E(X) by the rule

fa,G,b(t) =

{
b, if t = a;
0, if t ∈ G.
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(i) Pick any u ∈ C with o(u) = p2. Since pu 6= 0, there exists x ∈ X such that
(pu)(x) 6= 0, and so o(u(x)) = p2. It then follows from Lemma 2 that there exists a
closed subgroup Y of X such that X = 〈u(x)〉 ⊕ Y. Now, given any (a,G) ∈ P, it is
straightforward to check that εa,G = fu(x),Y,a ◦ u ◦ fa,G,x, so εa,G ∈ C.

(ii) Pick any non-zero u ∈ C and any x ∈ X such that u(x) 6= 0. Since pu = 0,
we have pX ⊂ ker(u), so X[p] ⊂ ker(u), and therefore o(x) = p2. In particular,
by Lemma 2 we may write X = 〈x〉 ⊕ Y for some closed subgroup Y of X. Now,
fix an arbitrary open subgroup U of X such that u(x) /∈ U. Since X[p] = pX,
there exists z ∈ X satisfying pz − u(x) ∈ U. As u(x) /∈ U, we cannot have pz = 0,
and so o(z) = p2. Let π denote the canonical projection of X onto the quotient
group X/U. Clearly, π(u(x)) 6= 0 and π(u(x)) = π(pz) = pπ(z), so o(π(z)) = p2.
Hence we can write X/U = 〈π(z)〉 ⊕ Γ for some subgroup Γ of X/U [3, Lemma
15.1]. Denoting by ϕ the canonical projection of X/U onto 〈π(z)〉 with kernel Γ and
letting h : 〈π(z)〉 → X be the group homomorphism defined by h(π(z)) = x, it is
clear that h ◦ ϕ ◦ π ∈ E(X) and (h ◦ ϕ ◦ π) ◦ u ◦ εx,Y = pεx,Y , so pεx,Y ∈ C. Finally,
given any (a, G) ∈ P, we have pεa,G = fx,Y,a ◦ (pεx,Y ) ◦ fa,G,x ∈ C.

Lemma 5. Let X ∈ L be a group of finite exponent pn, where p is a prime and n is a
positive integer. If the subgroup A of X is a finite direct sum of cyclic groups of order
pn, then A splits topologically from X. Moreover, the complement of A can be chosen
so as to contain a preassigned open subgroup V of X with property A ∩ V = {0}.

Proof. We induct on the number of summands, k, in the decomposition of A as a
direct sum A = A1 ⊕ . . . ⊕ Ak of cyclic groups of order pn. If k = 1, the assertion
holds trivially since this is just Lemma 2. Assume k ≥ 2, and assume the result
is true for any group of finite exponent pn in L and any its subgroup written as a
direct sum of k − 1 cyclic subgroups of order pn. Given an arbitrary open subgroup
V of X satisfying A ∩ V = {0}, it is clear that V1 = A2 ⊕ . . . ⊕ Ak ⊕ V is an open
subgroup of X and A1 ∩ V1 = {0}. By Lemma 2, we can write X = A1 ⊕ X1 for
some subgroup X1 of X containing V1. Now, applying the inductive hypothesis to
X1, A2 ⊕ . . .⊕Ak, and V, we can find a subgroup Xk of X such that Xk ∩ V = {0}
and X1 = A2 ⊕ . . .⊕Ak ⊕Xk. Then X = A1 ⊕A2 ⊕ . . .⊕Ak ⊕Xk.

Lemma 6. Let p ∈ P, and let X ∈ L be a group of finite exponent p2 satisfying
pX = X[p]. For any compact subset K of X and any neighbourhood U of zero in X,
there exist two compact open subgroups K ′, U ′ of X such that K ∪U ′ ⊂ K ′, U ′ ⊂ U,
and K ′ =

⊕
i∈I〈ai〉⊕U ′ for some finite family (ai)i∈I of elements of order p2 of K ′.

Proof. Pick an arbitrary compact subset K of X and an arbitrary neighbourhood
U of zero in X. Since X is totally disconnected, we can find a compact open sub-
group U0 of X such that U0 ⊂ U [5, (7.7)]. Let K0 = 〈K ∪ U0〉. Then K0 is
compact [5, (9.8)], and U0 ⊂ K0. In particular, K0 is topologically isomorphic to a
topological direct product of cyclic p-groups of order at most p2 [5, (25.9)], and so
there exist two disjoint sets I1 and I2 such that K0

∼= ∏
i∈I1∪I2

Ci, where Ci = Z(p)
for i ∈ I1 and Ci = Z(p2) for i ∈ I2. Fix a topological isomorphism f from K0 onto
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∏
i∈I1∪I2

Ci. Given an arbitrary subset J of I1 ∪ I2, we denote by C ′
J the subgroup

of all (ci)i∈I1∪I2 ∈
∏

i∈I1∪I2
Ci satisfying ci = 0 for all i /∈ J. Since U0 is open in K0,

there exist finite subsets J1 ⊂ I1 and J2 ⊂ I2 such that f(U0) ⊃ C ′
(I1\J1)∪(I2\J2). We

then have
∏

i∈I1∪I2

Ci =
( ⊕

i∈J1∪J2

C ′
i

)
⊕ C ′

(I1\J1)∪(I2\J2),

so

K0 =
( ⊕

i∈J1∪J2

f−1(C ′
i)

)
⊕ f−1(C ′

(I1\J1)∪(I2\J2)),

where C ′
i stands for C ′

{i}. Set U ′ = f−1(C(I1\J1)∪(I2\J2)) and, for i ∈ J1 ∪ J2, let ai

be a generator of f−1(C ′
i). Then U ′ is an open subgroup of X contained in U0 and

K0 =
( ⊕

i∈J1∪J2

〈ai〉
)
⊕ U ′.

We also have o(ai) = p if i ∈ J1, and o(ai) = p2 if i ∈ J2. In the following, we
shall construct a compact subgroup K ′ ⊃ K0 which admits a decomposition similar
to that of K0, by replacing the elements ai with i ∈ J1 by elements of order p2.
If J1 = ∅, we set K ′ = K0. Suppose J1 6= ∅, and pick an arbitrary j ∈ J1. Since
X[p] = pX, there exists bj ∈ X such that aj − pbj ∈ U ′. As aj /∈ U ′, we cannot have
pbj = 0, so o(bj) = p2. We claim that

〈pbj〉 ∩
(( ⊕

i∈(J1\{j})∪J2

〈ai〉
)
⊕ U ′

)
= {0}.

Indeed, given any x ∈ 〈pbj〉 ∩
((⊕

i∈(J1\{j})∪J2
〈ai〉

)
⊕ U ′

)
, we can write

x = lpbj =
( ∑

i∈(J1\{j})∪J2

liai

)
+ y′

for some non-negative integers l, li and some y′ ∈ U ′. Since y′ + l(aj − pbj) ∈ U ′, it
follows that

laj =
( ∑

i∈(J1\{j})∪J2

liai

)
+ y′ + l(aj − pbj)

∈ 〈aj〉 ∩
(( ⊕

i∈(J1\{j})∪J2

〈ai〉
)
⊕ U ′

)
= {0},

so p divides l, and hence x = 0. This proves our claim that

〈pbj〉 ∩
(( ⊕

i∈(J1\{j})∪J2

〈ai〉
)
⊕ U ′

)
= {0}.
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Clearly, we then also have

〈bj〉 ∩
(( ⊕

i∈(J1\{j})∪J2

〈ai〉
)
⊕ U ′

)
= {0}.

We replace K0 by

K1 = 〈bj〉 ⊕
( ⊕

i∈(J1\{j})∪J2

〈ai〉
)
⊕ U ′.

Now, if J1 \ {j} 6= ∅, we can apply the preceding procedure to K1, and so, after a
finite number of steps, we shall arrive at a compact subgroup K ′ of X having the
following form:

K ′ =
(⊕

i∈J1

〈bi〉
)
⊕

(⊕

i∈J2

〈ai〉
)
⊕ U ′,

where o(bi) = p2 for all i ∈ J1. Since ai ∈ K ′ for all i ∈ J1, we also have K ∪ U ′ ⊂
K0 ⊂ K ′, so K ′ and U ′ are those required.

Lemma 7. Let p ∈ P, let X ∈ L be a group of finite exponent p2 satisfying pX =
X[p], and let P be the set of all ordered pairs (a, G), where a is an element of order
p2 of X and G is a closed subgroup of X satisfying X = 〈a〉 ⊕ G. Then the ideal
(εa,G | (a, G) ∈ P) , where εa,G ∈ E(X) denotes the canonical projection of X onto
〈a〉 with kernel G, is dense in E(X).

Proof. Pick an arbitrary compact subset K of X and an arbitrary open neighbour-
hood U of zero in X. It suffices to show that

(εa,G | (a,G) ∈ P) ∩ [1X + Ω(K, U)] 6= ∅.

By Lemma 6, we can find two compact open subgroups K ′, U ′ of X such that
K ∪ U ′ ⊂ K ′, U ′ ⊂ U, and K ′ =

⊕
i∈I〈ai〉 ⊕ U ′ for some finite family (ai)i∈I of

elements of order p2 of K ′. Further, by Lemma 5 there is a subgroup G of X such
that U ′ ⊂ G and X =

⊕
i∈I〈ai〉 ⊕G. Then (aj ,

⊕
i∈I\{j}〈ai〉 ⊕G) ∈ P for all j ∈ I,

and
∑

j∈I

ε(aj ,
⊕

i∈I\{j}〈ai〉⊕G) − 1X ∈ Ω(K ′, U ′) ⊂ Ω(K,U).

We now combine the preceding lemmas to obtain the main result of this section.

Theorem 2. Let p ∈ P, and let X ∈ L be a group of finite exponent p2. The following
statements are equivalent:

(i) E(X) has only one non-trivial closed ideal.
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(ii) Every non-trivial closed ideal of E(X) is strongly topologically maximal.

(iii) Every non-trivial closed ideal of E(X) is topologically maximal.

(iv) X[p] = pX.

Proof. Obviously, (i) implies (ii), and (ii) implies (iii). The fact that (iii) implies
(iv) follows from Lemma 3.

Assume (iv), and let P be the set of all ordered pairs (a,G), where a is an element
of order p2 of X and G is a closed subgroup of X satisfying X = 〈a〉 ⊕G. Further,
for (a,G) ∈ P, let εa,G ∈ E(X) denote the canonical projection of X onto 〈a〉 with
kernel G. Now, pick an arbitrary non-zero closed ideal C of E(X). We distinguish
cases when C contains elements of order p2 and when pC = {0}.

First, suppose C contains elements of order p2. Then (εa,G | (a,G) ∈ P) ⊂ C by
Lemma 4, and hence C = E(X) by Lemma 7.

Next suppose that pC = {0}. Then (pεa,G | (a, G) ∈ P) ⊂ C by Lemma 4. In
order to establish the reverse inclusion, pick any u ∈ C, and let K be a compact
subset of X and U an open neighbourhood of zero in X. By Lemma 6, we can find
two compact open subgroups K ′, U ′ of X such that K ∪U ′ ⊂ K ′, U ′ ⊂ u−1(U), and
K ′ =

⊕
i∈I〈ai〉 ⊕ U ′ for some finite family (ai)i∈I of elements of order p2 of K ′. It

then follows from Lemma 5 that X =
⊕

i∈I〈ai〉 ⊕ Y for some closed subgroup Y of
X containing U ′. Since im(u) ⊂ X[p] and X[p] = pX, for every i ∈ I there exists
bi ∈ X such that pbi−u(ai) ∈ U ′. Define v ∈ E(X) by setting v(ai) = bi for all i ∈ I
and v(y) = 0 for all y ∈ Y. Then clearly pv − u ∈ Ω(K ′, U ′). Finally, by Lemma
7, there exists w ∈ (εa,G | (a,G) ∈ P) such that w − v ∈ Ω(K ′, U ′). Since U ′ is a
subgroup in X, we have p(w − v) ∈ Ω(K ′, U ′), and hence

pw − u = p(w − v) + (pv − u) ∈ Ω(K ′, U ′) ⊂ Ω(K, U).

As pw ∈ (pεa,G | (a,G) ∈ P), we conclude that u ∈ (pεa,G | (a, G) ∈ P).

Remark 2. Lemma 3 and Theorem 2 give an answer to the considered question in
the case of LCA groups of finite exponent p2, where p ∈ P.

5 Groups of finite exponent p3

In this section, we determine the groups X ∈ L of finite exponent p3, where p ∈ P,
such that the ring E(X) has at most two non-trivial closed ideals. In preparation
to this we establish four lemmas, which are similar to Lemmas 3, 4, 6, and 7 of the
preceding section.

Lemma 8. Let p ∈ P, and let X ∈ L be a group of finite exponent p3. If E(X) has
no more than two non-trivial closed ideals, then pX = X[p2] and p2X = X[p].

Proof. Suppose first that pX 6= X[p2]. To get a contradiction, it is enough to
indicate three distinct, non-trivial, closed ideals of E(X). Clearly, p21X 6= 0
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and p21X ∈ annE(X)

(
X[p2]

)
. It is also clear that im(p21X) = p2X ⊂ pX, so

p21X ∈ annE(X)

(
X/pX

)
, and thus

annE(X)

(
X[p2]

) ∩ annE(X)

(
X/pX

) 6= {0}.

Further, since pX ⊂ X[p2], we have annE(X)

(
X[p2]

) ⊂ annE(X)

(
pX

)
. Now, given

any u ∈ annE(X)

(
pX

)
, we have pu(X) = u(pX) = {0}, so im(u) ⊂ X[p] ⊂ X[p2],

and hence u ∈ annE(X)

(
X/X[p2]

)
. As u ∈ annE(X)

(
pX

)
was arbitrary, it follows

that annE(X)

(
pX

) ⊂ annE(X)

(
X/X[p2]

)
. Finally, since p2X 6= {0}, it follows that

im(1X) 6⊂ X[p2], so 1X /∈ annE(X)

(
X/X[p2]

)
, and hence annE(X)

(
X/X[p2]

) 6=
E(X). We shall show that at least two of the inclusions

annE(X)

(
X[p2]

) ∩ annE(X)

(
X/pX

) ⊂ annE(X)

(
X[p2]

)

⊂ annE(X)

(
pX

) ⊂ annE(X)

(
X/X[p2]

)

are strict. Let ξ : X → X/X[p2] and η : X → X/pX be the canonical projections,
and fix any a ∈ X \X[p2] and b ∈ X[p2] \ pX. Then o(a) = p3 and o(ξ(a)) = p =
o(η(b)). By Lemma 2, we can write

X/X[p2] = 〈ξ(a)〉 ⊕A, X/pX = 〈η(b)〉 ⊕B, and X = 〈a〉 ⊕ Y,

where A, B, and Y are closed subgroups in X/X[p2], X/pX, and X, respectively.
In the following, we distinguish the cases when o(b) = p and when o(b) = p2.

First assume that o(b) = p. Let λ : 〈ξ(a)〉 → X and µ : 〈η(b)〉 → X be the
group homomorphisms given by the rule λ(ξ(a)) = µ(η(b)) = b. Denoting by ϕ the
canonical projection of X/X[p2] onto 〈ξ(a)〉 with kernel A, we see that λ ◦ ϕ ◦ ξ ∈
annE(X)

(
X[p2]

)
, and λ ◦ϕ ◦ ξ /∈ annE(X)

(
X/pX

)
(because (λ ◦ϕ ◦ ξ)(a) = b /∈ pX),

so annE(X)

(
X[p2]

)
properly contains annE(X)

(
X[p2]

)∩ annE(X)

(
X/pX

)
. Similarly,

denoting by ψ the canonical projection of X/pX onto 〈η(b)〉 with kernel B, we see
that µ ◦ ψ ◦ η ∈ annE(X)

(
pX

)
, and µ ◦ ψ ◦ η /∈ annE(X)

(
X[p2]

)
(because b ∈ X[p2]

and (µ ◦ ψ ◦ η)(b) = b), so annE(X)

(
pX

)
properly contains annE(X)

(
X[p2]

)
as well.

Next we consider the case when o(b) = p2. Let µ′ : 〈η(b)〉 → X denote the group
homomorphism given by the rule µ′(η(b)) = pb. Then µ′ ◦ψ ◦ η ∈ annE(X)

(
pX

)
and

µ′ ◦ ψ ◦ η /∈ annE(X)

(
X[p2]

)
, so annE(X)

(
pX

)
properly contains annE(X)

(
X[p2]

)
.

Further, let v ∈ E(X) be defined by v(a) = b and v(y) = 0 for all y ∈ Y. Since
v(pa) = pb 6= 0, we conclude that v /∈ annE(X)

(
pX

)
. On the other hand, since

p2v(a) = p2b = 0, it is clear that im(v) ⊂ X[p2], so v ∈ annE(X)

(
X/X[p2]

)
, and

hence annE(X)

(
X/X[p2]

)
properly contains annE(X)

(
pX

)
.

We have shown that at least two of the inclusions

annE(X)

(
X[p2]

) ∩ annE(X)

(
X/pX

) ⊂ annE(X)

(
X[p2]

)

⊂ annE(X)

(
pX

) ⊂ annE(X)

(
X/X[p2]

)

are strict, a contradiction. Consequently, we must have pX = X[p2].
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Now suppose that p2X 6= X[p]. As we already mentioned, p21X 6= 0 and p21X ∈
annE(X)

(
X[p2]

)
. Since im(p21X) ⊂ p2X, we also have p21X ∈ annE(X)

(
X/p2X

)
, so

annE(X)

(
X[p2]

) ∩ annE(X)

(
X/p2X

) 6= {0}.

Further, since X[p] ⊂ X[p2], we have annE(X)

(
X[p2]

) ⊂ annE(X)

(
X[p]

)
. Finally,

since X[p] 6= {0}, it follows that X[p] 6⊂ ker(1X), so 1X /∈ annE(X)

(
X[p]

)
, and hence

annE(X)

(
X[p]

) 6= E(X). We shall show that the inclusions

annE(X)

(
X[p2]

) ∩ annE(X)

(
X/p2X

) ⊂ annE(X)

(
X[p2]

) ⊂ annE(X)

(
X[p]

)

are strict. Let ξ : X → X/X[p2] denote the canonical projection, and fix any
a ∈ X \X[p2] and b ∈ X[p]\p2X. Then o(a) = p3, so o(ξ(a)) = p = o(b). By Lemma
2, we can write

X/X[p2] = 〈ξ(a)〉 ⊕A,

where A is a closed subgroup of X/X[p2]. Let λ : 〈ξ(a)〉 → X be the group homo-
morphism given by λ(ξ(a)) = b. Denoting by ϕ the canonical projection of X/X[p2]
onto 〈ξ(a)〉 with kernel A, we see that λ ◦ ϕ ◦ ξ ∈ annE(X)

(
X[p2]

)
, and λ ◦ ϕ ◦ ξ /∈

annE(X)

(
X/p2X

)
(because (λ ◦ ϕ ◦ ξ)(a) = b /∈ p2X), so annE(X)

(
X[p2]

)
properly

contains annE(X)

(
X[p2]

) ∩ annE(X)

(
X/p2X

)
. Finally, since p1X /∈ annE(X)

(
X[p2]

)
and p1X ∈ annE(X)

(
X[p]

)
, annE(X)

(
X[p]

)
properly contains annE(X)

(
X[p2]

)
. Con-

sequently, the inclusions

annE(X)

(
X[p]

) ∩ annE(X)

(
X/p2X

) ⊂ annE(X)

(
X[p2]

) ⊂ annE(X)

(
X[p]

)

are strict. As this contradicts our hypothesis, we must have p2X = X[p].

Lemma 9. Let p ∈ P, let X ∈ L be a group of finite exponent p3 such that pX =
X[p2] and p2X = X[p], and let C be a non-zero closed ideal of E(X). Further, let
P be the set of all ordered pairs (a,G), where a is an element of order p3 of X and
G is a closed subgroup of X satisfying X = 〈a〉 ⊕ G, and for each (a, G) ∈ P let
εa,G ∈ E(X) denote the canonical projection of X onto 〈a〉 with kernel G. Then:

(i) If C contains elements of order p3, then C ⊃ (εa,G | (a,G) ∈ P).

(ii) If p2C = {0} and pC 6= {0}, then C ⊃ (pεa,G | (a,G) ∈ P).

(iii) If pC = {0}, then C ⊃ (p2εa,G | (a,G) ∈ P).

Proof. As in the proof of Lemma 4, for any (a,G) ∈ P and b ∈ X, we let fa,G,b ∈
E(X) be defined by the rule

fa,G,b(t) =

{
b, if t = a;
0, if t ∈ G.
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(i) Pick any u ∈ C with o(u) = p3. Since p2u 6= 0, there exists x ∈ X such that
(p2u)(x) 6= 0, and so o(u(x)) = p3. By Lemma 2, there exists a closed subgroup
Y of X such that X = 〈u(x)〉 ⊕ Y. Given any (a,G) ∈ P, we then have εa,G =
fu(x),Y,a ◦ u ◦ fa,G,x, so εa,G ∈ C.

(ii) Pick any u ∈ C with o(u) = p2. Since pu 6= 0, there exists x ∈ X such that
(pu)(x) 6= 0, so px /∈ ker(u) and o(u(x)) = p2. On the other hand, since p2u = 0,
we have p2X ⊂ ker(u), so X[p] ⊂ ker(u). It follows that px /∈ X[p], so p2x 6= 0, and
hence o(x) = p3. In particular, we can write X = 〈x〉 ⊕ Y for some closed subgroup
Y of X. Now, fix an arbitrary open subgroup U of X such that pu(x) /∈ U. Since
u(x) ∈ X[p2] = pX, there exists z ∈ X such that pz−u(x) ∈ U. As p(pz−u(x)) ∈ U
and pu(x) /∈ U, we cannot have p2z = 0, so o(z) = p3. Let π denote the canonical
projection of X onto X/U. Clearly, π(pu(x)) 6= 0 and π(pu(x)) = π(p2z) = p2π(z),
so o(π(z)) = p3. Hence we can write X/U = 〈π(z)〉 ⊕ Γ for some subgroup Γ of
X/U [3, Lemma 15.1]. Denoting by ϕ the canonical projection of X/U onto 〈π(z)〉
with kernel Γ and letting h : 〈π(z)〉 → X be the group homomorphism defined by
h(π(z)) = x, it is clear that h ◦ ϕ ◦ π ∈ E(X) and (h ◦ ϕ ◦ π) ◦ u ◦ εx,Y = pεx,Y , so
pεx,Y ∈ C. Now, given any (a, G) ∈ P, we have pεa,G = fx,Y,a ◦ (pεx,Y ) ◦ fa,G,x ∈ C.

(iii) Pick any non-zero u ∈ C and any x ∈ X such that u(x) 6= 0. Since pu = 0,
we have pX ⊂ ker(u), so X[p2] ⊂ ker(u), and therefore o(x) = p3. In particular,
X = 〈x〉⊕Y for some closed subgroup Y of X. Now, fix an arbitrary open subgroup
U of X such that u(x) /∈ U. Since u(x) ∈ X[p] = p2X, there exists z ∈ X such that
p2z−u(x) ∈ U. As u(x) /∈ U, we cannot have p2z = 0, so o(z) = p3. Let π : X → X/U
be the canonical projection. Clearly, π(u(x)) 6= 0 and π(u(x)) = π(p2z) = p2π(z), so
o(π(z)) = p3. Hence we can write X/U = 〈π(z)〉⊕Γ for some subgroup Γ of X/U [3,
Lemma 15.1]. Denoting by ϕ the canonical projection of X/U onto 〈π(z)〉 with kernel
Γ and letting h : 〈π(z)〉 → X be the group homomorphism defined by h(π(z)) = x,
it is clear that h ◦ ϕ ◦ π ∈ E(X) and (h ◦ ϕ ◦ π) ◦ u ◦ εx,Y = p2εx,Y , so p2εx,Y ∈ C.
Consequently, for any (a,G) ∈ P, we have p2εa,G = fx,Y,a ◦ (p2εx,Y )◦ fa,G,x ∈ C.

Lemma 10. Let p ∈ P, and let X ∈ L be a group of finite exponent p3 satisfying
pX = X[p2] and p2X = X[p]. For any compact subset K of X and any neighbourhood
U of zero in X, there exist two compact open subgroups K ′, U ′ of X such that
K ∪ U ′ ⊂ K ′, U ′ ⊂ U, and K ′ =

⊕
i∈I〈ai〉 ⊕ U ′ for some finite family (ai)i∈I of

elements of order p3 of K ′.

Proof. Pick an arbitrary compact subset K of X and an arbitrary neighbourhood U
of zero in X. Since X is totally disconnected, we can find a compact open subgroup U0

of X such that U0 ⊂ U [5, (7.7)]. Let K0 = 〈K ∪U0〉. Then K0 is compact [5, (9.8)],
and U0 ⊂ K0. In particular, K0 is topologically isomorphic to a topological direct
product of cyclic p-groups of order at most p3 [5, (25.9)], and so there exist three
disjoint sets I1, I2, and I3 such that K0

∼= ∏
i∈I1∪I2∪I3

Ci, where Ci = Z(p) for i ∈ I1,
Ci = Z(p2) for i ∈ I2, and Ci = Z(p3) for i ∈ I3. Fix a topological isomorphism f
from K0 onto

∏
i∈I1∪I2∪I3

Ci. Given an arbitrary subset J of I1 ∪ I2 ∪ I3, we denote
by C ′

J the subgroup of all (ci)i∈I1∪I2∪I3 ∈
∏

i∈I1∪I2∪I3
Ci satisfying ci = 0 for all

i /∈ J. Since U0 is open in K0, there exist finite subsets J1 ⊂ I1, J2 ⊂ I2, and J3 ⊂ I3
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such that f(U0) ⊃ C ′
(I1\J1)∪(I2\J2)∪(I3\J3). We then have

∏

i∈I1∪I2∪I3

Ci =
( ⊕

i∈J1∪J2∪J3

C ′
i

)
⊕ C ′

(I1\J1)∪(I2\J2)∪(I3\J3),

so

K0 =
( ⊕

i∈J1∪J2∪J3

f−1(C ′
i)

)
⊕ f−1(C ′

(I1\J1)∪(I2\J2)∪(I3\J3)),

where C ′
i stands for C ′

{i}. Set U ′ = f−1(C ′
(I1\J1)∪(I2\J2)∪(I3\J3)) and, for i ∈ J1 ∪J2 ∪

J3, let ai be a generator of f−1(C ′
i). Then U ′ is an open subgroup of X contained

in U0 and
K0 =

( ⊕

i∈J1∪J2∪J3

〈ai〉
)
⊕ U ′.

We also have o(ai) = p if i ∈ J1, o(ai) = p2 if i ∈ J2, and o(ai) = p3 if i ∈ J3.
In the following, we shall construct a compact subgroup K ′ ⊃ K0 which admits a
decomposition similar to that of K0, by replacing the elements ai with i ∈ J1 ∪ J2

by elements of order p3. If J1 ∪ J2 = ∅, we set K ′ = K0. Suppose J1 ∪ J2 6= ∅, and
fix an arbitrary j ∈ J1 ∪ J2. We distinguish the cases when j ∈ J1 and when j ∈ J2.
In the former case we use the equality X[p] = p2X to find an element bj ∈ X such
that aj − p2bj ∈ U ′. As aj /∈ U ′, we cannot have p2bj = 0, so o(bj) = p3. We claim
that

〈p2bj〉 ∩
(( ⊕

i∈(J1\{j})∪J2∪J3

〈ai〉
)
⊕ U ′

)
= {0}.

Indeed, given any x ∈ 〈p2bj〉 ∩
((⊕

i∈(J1\{j})∪J2∪J3
〈ai〉

)
⊕ U ′

)
, we can write

x = lp2bj =
( ∑

i∈(J1\{j})∪J2∪J3

liai

)
+ y′

for some non-negative integers l, li and some y′ ∈ U ′. Since y′ + l(aj − p2bj) ∈ U ′, it
follows that

laj =
( ∑

i∈(J1\{j})∪J2∪J3

liai

)
+ y′ + l(aj − p2bj)

∈ 〈aj〉 ∩
(( ⊕

i∈(J1\{j})∪J2∪J3

〈ai〉
)
⊕ U ′

)
= {0},

so p divides l, and hence x = 0. This proves our claim that

〈p2bj〉 ∩
(( ⊕

i∈(J1\{j})∪J2∪J3

〈ai〉
)
⊕ U ′

)
= {0}.
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Clearly, we then also have

〈bj〉 ∩
(( ⊕

i∈(J1\{j})∪J2∪J3

〈ai〉
)
⊕ U ′

)
= {0}.

In this case, we replace K0 by

K1 = 〈bj〉 ⊕
( ⊕

i∈(J1\{j})∪J2∪J3

〈ai〉
)
⊕ U ′.

Next we consider the second case when j ∈ J2. We use the equality X[p2] = pX to
find an element bj ∈ X such that aj − pbj ∈ U ′. Since then paj − p2bj ∈ U ′ and
paj /∈ U ′, we cannot have p2bj = 0, so o(bj) = p3. We claim that

〈pbj〉 ∩
(( ⊕

i∈J1∪(J2\{j})∪J3

〈ai〉
)
⊕ U ′

)
= {0}.

Indeed, given any x ∈ 〈pbj〉 ∩
((⊕

i∈J1∪(J2\{j})∪J3
〈ai〉

)
⊕ U ′

)
, we can write

x = lpbj =
( ∑

i∈J1∪(J2\{j})∪J3

liai

)
+ y′

for some non-negative integers l, li and y′ ∈ U ′. Since y′+ l(aj − pbj) ∈ U ′, it follows
that

laj =
∑

i∈J1∪(J2\{j})∪J3

liai + y′ + l(aj − pbj)

∈ 〈aj〉 ∩
(( ⊕

i∈J1∪(J2\{j})∪J3

〈ai〉
)
⊕ U ′

)
= {0},

so p2 divides l, and hence x = 0. This proves our claim that

〈pbj〉 ∩
(( ⊕

i∈J1∪(J2\{j})∪J3

〈ai〉
)
⊕ U ′

)
= {0}.

Clearly, we then also have

〈bj〉 ∩
(( ⊕

i∈J1∪(J2\{j})∪J3

〈ai〉
)
⊕ U ′

)
= {0}.

Consequently, in this case we can enlarge K0 by considering

K1 = 〈bj〉 ⊕
( ⊕

i∈J1∪(J2\{j})∪J3

〈ai〉
)
⊕ U ′.
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Now, if (J1 ∪ J2) \ {j} 6= ∅, we can apply the preceding procedure to K1, and so,
after a finite number of steps, we shall arrive at a compact subgroup K ′ of X having
the following form:

K ′ =
( ⊕

i∈J1∪J2

〈bi〉
)
⊕

(⊕

i∈J3

〈ai〉
)
⊕ U ′,

where o(bi) = p3 for all i ∈ J1 ∪ J2. Since ai ∈ K ′ for all i ∈ J1 ∪ J2, we also have
K ∪ U ′ ⊂ K0 ⊂ K ′, so K ′ and U ′ are those required.

Lemma 11. Let p ∈ P, let X ∈ L be a group of finite exponent p3 satisfying
pX = X[p2] and p2X = X[p], and let P be the set of all ordered pairs (a,G),
where a is an element of order p3 of X and G is a closed subgroup of X satisfying
X = 〈a〉 ⊕ G. Then the ideal (εa,G | (a,G) ∈ P) , where εa,G ∈ E(X) denotes the
canonical projection of X onto 〈a〉 with kernel G, is dense in E(X).

Proof. Pick an arbitrary compact subset K of X and an arbitrary open neighbour-
hood U of zero in X. It suffices to show that

(εa,G | (a,G) ∈ P) ∩ [1X + Ω(K, U)] 6= ∅.

By Lemma 10, we can find two compact open subgroups K ′, U ′ of X such that
K ∪ U ′ ⊂ K ′, U ′ ⊂ U, and K ′ =

⊕
i∈I〈ai〉 ⊕ U ′ for some finite family (ai)i∈I of

elements of order p3 of K ′. Further, by Lemma 5 there is a subgroup G of X such
that U ′ ⊂ G and X =

⊕
i∈I〈ai〉 ⊕G. Then (aj ,

⊕
i∈I\{j}〈ai〉 ⊕G) ∈ P for all j ∈ I,

and
∑

j∈I

ε(aj ,
⊕

i∈I\{j}〈ai〉⊕G) − 1X ∈ Ω(K ′, U ′) ⊂ Ω(K,U).

With this preparation, we can now state the main result of this section.

Theorem 3. Let p ∈ P, and let X ∈ L be a group of finite exponent p3. The following
statements are equivalent:

(i) E(X) has exactly two non-trivial closed ideals.

(ii) pX = X[p2] and p2X = X[p].

Moreover, in case these conditions hold, the corresponding ideals are comparable
with respect to set-theoretic inclusion.

Proof. The fact that (i) implies (ii) follows from Lemma 8. Assume (ii), and let P
denote the set of all ordered pairs (a,G), where a is an element of order p3 of X
and G is a closed subgroup of X satisfying X = 〈a〉⊕G. Further, for (a,G) ∈ P, let
εa,G ∈ E(X) denote the canonical projection of X onto 〈a〉 with kernel G. Now, fix
a non-zero closed ideal C of E(X). We can have three possibilities for C.



106 VALERIU POPA

First, suppose C contains elements of order p3. Then (εa,G | (a,G) ∈ P) ⊂ C by
Lemma 9, and hence C = E(X) by Lemma 11.

Next suppose p2C = {0} and pC 6= {0}. Then (pεa,G | (a,G) ∈ P) ⊂ C by
Lemma 9. To show the opposite inclusion, we pick any u ∈ C, and let K be a
compact subset of X and U an open neighbourhood of zero in X. By Lemma 10, we
can find two compact open subgroups K ′, U ′ of X such that K ∪ U ′ ⊂ K ′, U ′ ⊂ U,
and K ′ =

⊕
i∈I〈ai〉 ⊕U ′ for some finite family (ai)i∈I of elements of order p3 of K ′.

It then follows from Lemma 5 that X =
⊕

i∈I〈ai〉 ⊕ Y for some closed subgroup
Y of X containing U ′. Since im(u) ⊂ X[p2] and X[p2] = pX, for every i ∈ I there
exists bi ∈ X such that pbi − u(ai) ∈ U ′. Define v ∈ E(X) by setting v(ai) = bi for
all i ∈ I and v(y) = 0 for all y ∈ Y. Then clearly pv − u ∈ Ω(K ′, U ′). Finally, by
Lemma 11, there exists w ∈ (εa,G | (a,G) ∈ P) such that w − v ∈ Ω(K ′, U ′). Since
U ′ is a subgroup in X, we have p(w − v) ∈ Ω(K ′, U ′), and hence

pw − u = p(w − v) + (pv − u) ∈ Ω(K ′, U ′) ⊂ Ω(K, U).

As pw ∈ (pεa,G | (a,G) ∈ P), it follows that u ∈ (pεa,G | (a,G) ∈ P).
Lastly, suppose pC = {0}. Then (p2εa,G | (a,G) ∈ P) ⊂ C by Lemma 9. In

order to establish the reverse inclusion, fix any u ∈ C, and let K be a compact
subset of X and U an open neighbourhood of zero in X. By Lemma 10, there exist
two compact open subgroups K ′, U ′ of X such that K ∪ U ′ ⊂ K ′, U ′ ⊂ U, and
K ′ =

⊕
i∈I〈ai〉 ⊕ U ′ for some finite family (ai)i∈I of elements of order p3 of K ′.

Consequently, X =
⊕

i∈I〈ai〉 ⊕ Y for some closed subgroup Y of X containing U ′.
Since im(u) ⊂ X[p] and X[p] = p2X, for every i ∈ I there exists bi ∈ X such that
p2bi − u(ai) ∈ U ′. Define v ∈ E(X) by setting v(ai) = bi for all i ∈ I and v(y) = 0
for all y ∈ Y. It is then clear that p2v − u ∈ Ω(K ′, U ′). By Lemma 11, there exists
w ∈ (εa,G | (a,G) ∈ P) such that w − v ∈ Ω(K ′, U ′). As U ′ is a subgroup in X, we
have p2(w − v) ∈ Ω(K ′, U ′), and hence

p2w − u = p2(w − v) + (p2v − u) ∈ Ω(K ′, U ′) ⊂ Ω(K,U).

Since p2w ∈ (p2εa,G | (a,G) ∈ P), it follows that u ∈ (p2εa,G | (a,G) ∈ P).

Remark 3. Lemma 8 and Theorem 3 give an answer to our question in the case of
LCA groups of finite exponent p3, where p ∈ P.

References

[1] Armacost D. L. The structure of locally compact abelian groups, Pure and Applied Mathe-
matics Series, Vol. 68 (Marcel Dekker, ed.), New York, 1981.

[2] Braconnier J. Sur les groupes topologiques localement compact, J. Math. Pures Apl., 1948,
27, No. 9, 1–85.

[3] Fuchs L. Infinite abelian groups, Vol. 1, Academic Press, New York and London, 1970.

[4] Engelking R. General topology, Warszawa, 1977.



RINGS OF CONTINUOUS ENDOMORPHISMS WITH FEW CLOSED IDEALS 107

[5] Hewitt E., Ross K. Abstract Harmonic Analysis, Vol. 1, Moscow, Nauka, 1975.

[6] Perticani F. Commutative rings in which every proper ideal is maximal, Fund. Math., 1971,
LXXI, 193–198.

[7] Popa V. Units, idempotents and nilpotents of an endomorphism ring. II, Bul. Acad. Şt. Rep.
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