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Inclusion Radii for the Zeros of Special Polynomials

Matthias Dehmer

Abstract. To locate the zeros of complex-valued polynomials is a classical problem in
algebra and function theory. For this, numerous inclusion radii have been established
to estimate the moduli of the zeros of an underlying polynomial. In this note, we
particularly state bounds for polynomials whose coefficients satisfy special conditions.

Mathematics subject classification: 30C15.

Keywords and phrases: Complex polynomials, zeros, inequalities.

1 Introduction

The analytic theory of polynomials [5] investigates properties of polynomials
representing analytic functions. In particular the location of zeros of complex and
real-valued polynomials has been extensively investigated [1–5]. To tackle this prob-
lem, we determine disks in the complex plane

K(z0, r) := {z ∈ C | |z − z0| ≤ r}, z0 ∈ C, r ∈ R+,

containing all zeros of a complex valued polynomial

f(z) =
n∑

i=0

aiz
i, ai ∈ C, an 6= 0.

r is called inclusion radius. Clearly, r = r(a0, a1, . . . , an).

In this paper, we examine the location of zeros of special complex-valued poly-
nomials of the form

f(z) := fn1(z)gn2(z) = (bn1z
n1 + fn1−1(z))(cn2z

n2 + gn2−1(z)). (1)

That means, we infer bounds for the moduli of their zeros given by an inclusion
radius. It turns out that these bounds are more practicable for this class of polyno-
mials rather than applying existing zero bounds for general polynomials, see [1–5].
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2 Results

In [1], Dehmer proved the following theorem.

Theorem 2.1. Let f(z) be a complex polynomial, such that f(z) is reducible in
C[z], namely

f(z) := fn1(z)gn2(z) = (bn1z
n1 + fn1−1(z))(cn2z

n2 + gn2−1(z))

where
|bn1 | > |bi|, 0 ≤ i ≤ n1 − 1, |cn2 | > |ci|, 0 ≤ i ≤ n2 − 1. (2)

If n1 + n2 > 1, then all zeros of the polynomial f(z) lie in the closed disk K(0, δ),
where δ > 1 is the positive root of the equation

zn1+n2+2 − 4zn1+n2+1 + 2zn1+n2 + zn2+1 + zn1+1 − 1 = 0. (3)

It holds 1 < δ < 2 +
√

2.

In the following, we prove some related theorems for this class of polynomials
(see Equation (1)). An improvement of Theorem 2.1 is

Theorem 2.2. Let

f(z) := fn1(z)gn2(z) = (bn1z
n1 + fn1−1(z))(cn2z

n2 + gn2−1(z)),

where

φ1 :=
|bn1−1|
|bn1 |

and φ2 :=
|cn2−1|
|cn2 |

, (4)

and

|bn1 | > |bi|, 0 ≤ i ≤ n1 − 1, |cn2 | > |ci|, 0 ≤ i ≤ n2 − 1. (5)

All zeros of the polynomial f(z) lie in the closed disk

K

(
0,max

[
1 + φ1

2
+

√
(φ1 − 1)2 + 4

2
,
1 + φ2

2
+

√
(φ2 − 1)2 + 4

2

])
.

Proof. We start the proof by obtaining the estimation

|fn1(z)| = |bn1z
n1 + fn1−1(z)| =

= |bn1z
n1 + bn1−1z

n1−1 + · · ·+ b1z + b0| ≥
≥ |bn1 ||z|n1 − [|bn1−1||z|n1−1 + · · ·+ |b1||z|+ |b0|

]
.

Using the relations |bn1 | > |bi|, 0 ≤ i ≤ n1 − 1 (see Inequalities (5)), Equation (4)
and |z| > 1, we further obtain
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|fn1(z)| ≥ |bn1 |
[
|z|n1 − φ1|z|n1−1 − [|z|n1−2 + · · ·+ |z|+ 1

]
]

(6)

= |bn1 |
[
|z|n1 − φ1|z|n1−1 − |z|n1−1 − 1

|z| − 1

]

> |bn1 |
[
|z|n1 − φ1|z|n1−1 − |z|n1−1

|z| − 1

]

=
|bn1 ||z|n1−1

|z| − 1

[
|z|2 − |z|(1 + φ1) + (φ1 − 1)

]
.

Clearly, applying this procedure to fn2(z) also yields

|fn2(z)| > |cn2 ||z|n2−1

|z| − 1

[
|z|2 − |z|(1 + φ2) + (φ2 − 1)

]
.

By defining
H1,2(z) := z2 − z(1 + φ1,2) + (φ1,2 − 1),

we get

|fn1(z) · fn2(z)| > |bn1 ||z|n1−1

|z| − 1
· |cn2 ||z|n2−1

|z| − 1
H1(|z|) ·H2(|z|),

and
|fn1(z) · fn2(z)| > 0 if H1(|z|) ·H2(|z|) > 0.

Solving the last inequality requires to determine the zeros of H1,2(z). The zeros of
H1(z) and H2(z) are

1 + φ1

2
±

√
(φ1 − 1)2 + 4

2
,

and
1 + φ2

2
±

√
(φ2 − 1)2 + 4

2
,

respectively. We easily see that

α1 :=
1 + φ1

2
+

√
(φ1 − 1)2 + 4

2
> 1,

and

α2 :=
1 + φ2

2
+

√
(φ2 − 1)2 + 4

2
> 1.

This finally implies
|fn1(z) · fn2(z)| > 0,
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if

|z| > max

(
1 + φ1

2
+

√
(φ1 − 1)2 + 4

2
,

1 + φ2

2
+

√
(φ2 − 1)2 + 4

2

)
,

and all zeros of f(z) lie in |z| ≤ max(α1, α2). 2

Remark 1. The bound given by Theorem 2.2 is an improvement of the upper bound
of Equation (3) given in Theorem 2.1 since

1 + φ1,2

2
+

√
(φ1,2 − 1)2 + 4

2
< 2 +

√
2

if φ1,2 < 3. But this is fulfilled by assumption, see Inequalities (5).

Assuming the special conditions for the polynomial’s coefficients also leads to a
bound whose value does not depend on any coefficients.

Theorem 2.3. Let

f(z) := fn1(z)gn2(z) = (bn1z
n1 + fn1−1(z))(cn2z

n2 + gn2−1(z)),

where

φ1 :=
|bn1−1|
|bn1 |

and φ2 :=
|cn2−1|
|cn2 |

,

and
|bn1 | > |bi|, 0 ≤ i ≤ n1 − 1, |cn2 | > |ci|, 0 ≤ i ≤ n2 − 1. (7)

All zeros of the polynomial f(z) lie in the closed disk K (0, 2) .

Proof. Using the Inequalities (7) and |z| > 1, we obtain

|fn1(z)| ≥ |bn1 |
[
|z|n1 −

[
|bn1−1|
|bn1 |

|z|n1−1 + · · ·+ |b1|
|bn1 |

|z|+ |b0|
|bn1 |

]]

= |bn1 |
[
|z|n1 − |z|n1 − 1

|z| − 1

]
> |bn1 |

[
|z|n1 − |z|n1

|z| − 1

]

=
|bn1 ||z|n1

|z| − 1

[
|z| − 2

]
.

Analogously, we also conclude (|z| > 1)

|fn2(z)| > |cn2 ||z|n1

|z| − 1

[
|z| − 2

]
.
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Finally,
|fn1(z) · fn2(z)| > 0 if |z| > 2,

and, hence, all zeros of f(z) lie in |z| ≤ 2. 2

A more general statement is

Theorem 2.4. Let

f(z) := fn1(z)gn2(z) = (bn1z
n1 + fn1−1(z))(cn2z

n2 + gn2−1(z)).

Define

φ1 :=
|bn1−1|
|bn1 |

and φ2 :=
|cn2−1|
|cn2 |

,

M1 := max
0≤i≤n1−2

∣∣∣∣
bi

bn1

∣∣∣∣ and M2 := max
0≤i≤n2−2

∣∣∣∣
ci

cn2

∣∣∣∣ .

All zeros of the polynomial f(z) lie in the closed disk

K

(
0, max

[
1 + φ1

2
+

√
(φ1 − 1)2 + 4M1

2
,
1 + φ2

2
+

√
(φ2 − 1)2 + 4M2

2

])
.

Proof. Similar to Inequality (6) and by assuming |z| > 1, we infer

|fn1(z)| ≥ |bn1 |
[
|z|n1 − |bn1−1|

|bn1 |
|z|n1−1 −M1

[|z|n1−2 + · · ·+ |z|+ 1
]
]

= |bn1 |
[
|z|n1 − |bn1−1|

|bn1 |
|z|n1−1 −M1

|z|n1−1 − 1
|z| − 1

]

> |bn1 |
[
|z|n1 − |bn1−1|

|bn1 |
|z|n1−1 −M1

|z|n1−1

|z| − 1

]

=
|bn1 |
|z| − 1

[
|z|n1+1 − |z|n1

(
1 +

|bn1−1|
|bn1 |

)
+ |z|n1−1

( |bn1−1|
|bn1 |

−M1

) ]

=
|bn1 ||z|n1−1

|z| − 1

[
|z|2 − |z| (1 + φ1) + (φ1 −M1)

]
,

and

|fn1(z)| ≥ |cn2 ||z|n1−1

|z| − 1

[
|z|2 − |z| (1 + φ2) + (φ2 −M2)

]
.

The rest of the proof is analogous to the proof steps of Theorem (2.2). 2
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3 Numerical Results

In this section, we evaluate the obtained bounds by using the following polyno-
mials:

f1(z) := (100z3 − z2 + iz + 50) · (4z4 + z3 + 3z − 1),

f2(z) :=
(

2z3 − z2 +
z

2
+

1
10

)
·
(

z3

2
+

z2

3
− z

5
+

1
3

)
.

We start by evaluating the statements for f1(z) and first determine its zeros:

z1
.= −1.3039,

z2
.= −0.7903 + 0.0041i,

z3
.= 0.1285− 0.7933i,

z4
.= 0.1285 + 0.7933i,

z5
.= 0.2968,

z6
.= 0.3965 + 0.6852i,

z7
.= 0.4038− 0.6894i.

max(|z1|, |z2|, . . . , |z7|) = 1.3039. Then, we yield K(0, 3.3734) (Theorem 2.1),
K(0, 1.8827) (Theorem 2.2), K(0, 2) (Theorem 2.3) and K(0, 1.75) (Theorem 2.4).
We see that Theorem 2.2 – Theorem 2.4 clearly outperform Theorem 2.1. For
polynomials for which the conditions of the Equations (2) are satisfied, the bound
given by Theorem 2.4 is always an improvement of Theorem 2.2 as M1,M2 < 1.

For f2(z), we get
z1

.= −1.3380,

z2
.= −0.1454,

z3
.= 0.3227− 0.4896i,

z4
.= 0.3227 + 0.4896i,

z5
.= 0.3356− 0.6209i,

z6
.= 0.3356 + 0.6209i.

max(|z1|, |z2|, . . . , |z6|) = 1.3380. This leads to the disks K(0, 3.3499) (Theo-
rem 2.1), K(0, 1.847127) (Theorem 2.2), K(0, 2) (Theorem 2.3) and K(0, 1.6666)
(Theorem 2.4). By inspecting the bound values for this polynomial, we see that we
get the same situation as in the case of f1(z).
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