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Categorial aspects of the semireflexivity

Dumitru Botnaru, Olga Cerbu

Abstract. We examine the properties of semireflexive product, the relations between
semireflexive subcategories, the right product of two subcategories and the factori-
zation structures. We construct examples of semireflexive subcategories, also some
problems are formulated.
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1 Introduction

For the theory of locally convex spaces we refer the reader to the monograph
of Schaeffer (see [6]). Semireflexive and reflexive spaces are defined using the dual
space. Many scientists have studied different classes of semireflexive spaces (see [1,
2, 5, 6]) by modifying this definition.

Definition 1 (see [6, Section IV 5.4]). A locally convex space E is called semire-
flexive if the canonic inclusion E −→ (E′

β)′ is a surjective mapping: E = (E′
β)′.

Definition 2 (see [6, Section IV 5.5]). A locally convex space E is called reflexive if
the canonic inclusion E −→ (E′

β)′β is a topological isomorphism of the space E on
the second dual space with strong topology: E = (E′

β)′β.

Proposition 1 (see [6, Section IV 5.5]). For a locally convex space E the following
statements are equivalent:

(a) the space E is semireflexive;
(b) every functional β(E′, E)-continuous on E′ is also continuous in the weak

topology σ(E′, E);
(c) the space E′

τ (the space E′ endowed with Mackey topology τ) is tunneled;
(d) every bounded set in E is compact in the weak topology σ(E,E′);
(e) the space E is quasicomplete in the weak topology σ(E, E′).

The criterium (e) permits a categorial formulation. It is used in the definition of
the semireflexive product and of the semireflexive subcategories (see Definition 7).

We study the properties of semireflexive subcategories, the relations of the
semireflexive product with the right product and we construct some examples.

Concerning the factorization structures (bicategory structures) see [4].
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In Section 2 we examine the problem of factorization of one reflector functor
within the factorization structures. In Section 3 we introduce the notion of κ-
functor (Definition 5), and Theorem 5 allows to construct examples of such functors.
The property (SRt) generalizes the property (SR) which often takes place in locally
convex spaces. These conditions permit us to characterize and to construct examples
of semireflexive subcategories in category C2V of locally convex topological Hausdorff
vector spaces.

Definition 3. Let A and B be two classes of morphisms of the category C. The
class A is B-hereditary if f · g ∈ A and f ∈ B imply that g ∈ A.

Dual notion: the class is B-cohereditary.

Definition 4. The class A of morphisms of the category C is called right stable if
from the fact that u′ · v = v′ · u is pullback and u ∈ A it follows that u′ ∈ A.

Dual notion: the class of morphisms is left stable.
We denote by Mu the class of right stable monomorphisms.
In the category C2V the monomorphism m : X −→ Y belongs to the class Mu

iff any functional defined on X is expanded through m (see [4]).

2 The factorization of the reflector functor

Any factorization structure (P, I) of the category C2V divides the class R of the
non-zero reflective subcategories into three classes:

a) The class R(P) of the P-reflective subcategories.
b) The class R(I) of the I-reflective subcategories.
c) The class R(P, I) = (R\(R(P) ∪ R(I))) ∪ {C2V} consisting of the

subcategories which are neither P-reflective nor I-reflective (with the exception of
the element C2V). All these classes have the last element C2V.

Theorem 1. 1 (see [7, Theorem 1.3]). The class R(P) possesses the first ele-
ment S.

2 (see [7, Theorem 2.2]). Let (I ∩Epi, (I ∩Epi)⊥) be a right factorization struc-
ture. Then R(I) possesses the first element A and

R(I) = {R ∈ R | A ⊂ R}.

We mention that in the category C2V a proper class of the factorization structures
has been constructed which possesses the property indicated in the previous theorem.

In the case of the factorization structures (Eu,Mp) = (the class of universal epi-
morphisms, the class of exact monomorphisms) = (the class of surgective mappings,
the class of topological embeddings) we have the following division of the lattice R
in three complete sublattices:
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a) The sublattice R(Eu) of the Eu-reflective subcategories. A Eu-reflective
subcategory R is characterized by the fact that the R-replica of every object of the
category C2V is a bijection. Another characteristic is:

R(Eu) = {R ∈ R | R ⊃ S},
where S is the subcategory of spaces with the weak topology.

b) The sublattice R(Mp) of the Mp-reflective subcategories, that means the
class of those reflective subcategories R for which the R-replica for any object of
the category C2V is a topological embedding:

R(Mp) = {R ∈ R | R ⊃ Γ0},
where Γ0 is the subcategory of complete spaces.

c) R(Eu,Mp) = (R\(R(Eu) ∪ R(Mp))) ∪ {C2V}.
R(Eu,Mp) is also a complete sublattice with the first element Π and the last element
C2V.

Let (P, I) be a factorization structure in the category C2V, and L a non-zero
reflective subcategory. For any object X of the category C2V let lX : X → lX be the
L-replica, and

lX = iX · pX , (1)

the (P, I)-factorization of respective morphism. We denote by B = B(L) the full
subcategory of the category C2V formed from all objects isomorphic with the objects
bX when X ∈| C2V |. The subcategory B is P-reflective, and bX : X → bX is the
B-replica of object X.

Let A′′ = A′′(L) be the full subcategory of all objects A with the property:
For any object X of the category C2V, every morphism f : bX → A is extended

via the morphism iX : f = g · iX for some morphism g.
The subcategory A′′ is closed under products and Mf -subobjects. So it is re-

flective, and iX : bX −→ lX is the A′′-replica of the object bX.
Let l : C2V → L, b : C2V → B and a′′ : C2V → A′′ be the respective reflector

functors. Then
l = a′′ · b. (2)

Starting from this remarks we will denote:
by G(L) the class of all I-reflective subcategories A of the category C2V for which

the reflector functor a : C2V → A verifies the relation l = a · b;
by G(L) the class of all reflective subcategories A for which l = a · b.
It is possible that G(L) be the empty class. Also we mention that G(L) =

G(L) ∩ R(I).

Theorem 2 (see [7, Theorem 3.2]). Let (P, I) be a factorization structure in the
category C2V so that (I ∩ Epi, (I ∩ Epi)⊥) is a right factorization structure. Then
for every element L ∈ R we have:

1. A′′(L) ∈ G(L).
2. The subcategory A′ = A′(L) = ∩{R | R ∈ G(L)} belongs to class R(I).
3. G(L) = {R ∈ R | A′ ⊂ R ⊂ A′′}.
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For the class G(L) things are easier.

Theorem 3 (see [5, Theorem 2.7]). For any factorization structure (P, I) we have:

G(L) = {R ∈ R | L ⊂ R ⊂ A′′}.

3 κ-Functors

Definition 5. A functor t : C2V → C2V is called a κ-functor if

t(E, u) = (E, t(u)), u ≤ t(u)

for every object (E, u).

Any non-zero coreflector functor t : C2V −→ K in composition with the embed-
ding functor i : K −→ C2V is a κ-functor.

Let R and K be two non-zero subcategories of the category C2V, where the R
is reflective and the K is coreflective. For every object X of the category C2V let
rX : X −→ rX and krX : krX −→ rX be the R-replica and the K-coreplica of the
respective objects. On these two morphisms we construct a pullback:

rX · tX = krX · uX . (1)

Theorem 4 (see [5, Theorem 3.4]). The correspondence X −→ tX defines a
κ-functor in the category C2V.

Definition 6. The functor t defined in the previous section is called the κ-functor
generated by the reflective subcategory R and the coreflective one K.

Remark 1. We mention that a κ-functor is not always a coreflector functor, since a
κ-functor is not necessarily idempotent.

Let t : C2V → C2V be a κ-functor. For subcategory R we define the following
condition:

(SRt) Let (E, u) ∈| R |. Then, for every locally convex topology v on the vector
space E

u ≤ v ≤ t(u),

the space (E, v) belongs to subcategory R.

Remark 2. 1. Let M be the coreflective subcategory of the spaces with Mackey
topology, m : C2V →M be the coreflector functor. We denote the (SRm) condition
simply by (SR).

2. Categorically, the condition (SRt) can be formulated as follows:
(SRt) If X ∈| R | and f : Y → X is a monomorphism such that tX = f · g for

some morphism g, then Y ∈ |R|.
Since tX is a bijective mapping, we deduce that so is f . In the given equality f

and tX are bijective mappings, so it follows that g is also a bijective mapping.
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We will examine the property (SR) for any elements of the classes R(Eu),R(Mp)
and R(Eu,Mp).

Theorem 5 (see [5, Theorem 3.8]). 1. Every element of the class R(Mp) possesses
the property (SR).

2. Let an element L of the class R(Eu) possess the property (SR). Then
L = C2V.

4 Semireflexive product of two subcategories

Definition 7. 1. Let R be a reflective subcategory, and A be a subcategory of
the category C. The object X of the category C is called (R,A)-semireflexive if its
R-replica belongs to the subcategory A.

2. The full subcategory of all (R,A)-semireflexive objects is called the semire-
flexive product of the subcategories R and A, and is denoted by L = R×sr A.

3. The subcategory L ∈ R(Eu,Mp),L 6= C2V of the category C2V is called semire-
flexive if these exists a reflective subcategory R ∈ R(Eu) and a reflective subcategory
Γ ∈ R(Mp) of the category C2V so that L = R×sr Γ.

Remark 3. The respective condition from the definition of the semireflexive subcat-
egories has been imposed to exclude the trivial cases. So every subcategory L of the
category C can be presented as L = C ×sr L.

Let (P, I) be a factorization structure in the category C2V, and L be a non-zero
reflective subcategory. The (P, I)-factorization of the reflector functor l : C2V → L
generates the P-reflective subcategory B = B(L) and the lattice G(L). Let Γ ∈ G(L).
We examine the following conditions:

A. L = B ×sr Γ, where B = B(L) and Γ ∈ G(L).
B. There exists a pair of reflective subcategories R ∈ R(P) and Γ ∈ R(I) of the

category C2V so that L = R×sr Γ.
C. The subcategory L is closed under (P ∩Mu)-subobjects.
D. The subcategory L verifies the condition (SR) that means the subcategory L

is closed under (Eu ∩Mu)-subobjects.
E. The subcategory B = B(L) verifies the condition (SRt) for κ-functor

t : C2V → C2V generated by the reflective subcategory Γ ∈ G(L) and the coreflec-
tive subcategory M of the spaces with Mackey topology.

Lemma 1. 1. In the previous conditions we have L ⊂ B ×sr Γ, where B = B(L)
and Γ ∈ G(L).

2. For the objects of the subcategories L(L ⊂ B(L)) the condition (SRt) coincides
with the condition (SR).

Theorem 6 (see [5, Theorem 4.5]). The following implications are true:
1. C =⇒ A =⇒ B.
2. Let P be an Mu-hereditary class. Then B =⇒ C.
3. Let P ⊂ Eu. Then E =⇒ D =⇒ C.
4. Let I be a right stable class. Then D =⇒ E.
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Theorem 7 (see [5, Theorem 4.6]). In the case when (P, I) = (Eu,Mp) the condi-
tions A− E are equivalent.

5 Examples, conclusions, problems

Let qΓ0 be a subcategory of the quasicomplete spaces, sR be a subcategory of
semireflexive spaces [6],S be a subcategory of the spaces with weak topology, N be
a subcategory of nuclear spaces. Then

R×sr (qΓ0) = sR,

for any reflective subcategory R with the property S ⊂ R ⊂ N .

For the subcategory Sc of the Schwartz spaces and the subcategory Γ0 of the
complete spaces we have

Sc×sr Γ0 = K ×d (Sc ∩ Γ0) = iR,

where iR is the subcategory of semireflexive inductive spaces (see [1, Theorem 1.5]),
and K is the coreflective subcategory of the category C2V which forms with the
subcategory Sc a pair of conjugate subcategories [4].

The subcategory Π of complete spaces with weak topology is semireflexive. For
the case (P, I) = (Eu,Mp) we have B(Π) = S, the subcategory of spaces with weak
topology, A′(Π) = Γ0, and A′′(Π) contains all normed spaces. From this, it follows
that G(Π) is a proper class.

The condition D from Theorem 6 indicates the fact that the property of any sub-
category to be semireflexive does not depend on the factorization structure (P, I).

Definition 8. The subcategory A of the category C2V is called closed under exten-
sions if f : A → B ∈ Epi ∩Mp and A ∈| A | implies also that B ∈| A |.

Problem 1. Let R be a reflective subcategory closed under extensions, and K be a
coreflective subcategory of the category C2V. When the right product K×dR of the
subcategories K and R is closed under extensions?
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Let B = K×d R and assume that B is a reflective subcategory (see [3, Theorem
2.5] and [2, Theorem 5.3]), and moreover B is closed under extensions. In this case
for every Γ ∈ R(Mp) we have

B ∩ Γ = B ×sr Γ1, Γ1 ∈ G̃(B ∩ Γ).

Based on Theorem 2.12 [5] the subcategory B verifies the condition (SRt), where
t : C2V → K is the coreflector functor.
Problem 2. Is it true that B ∩ Γ is a semireflexive subcategory?

Often, semireflexive subcategories can be presented as the right product of some
subcategories [2, Theorem 5.4].
Problem 3. Is it true that every semireflexive subcategory is the right product of
two subcategories?

References

[1] Berezansky I. A. Inductive reflexive locally convex spaces, DAN SSSR, 1968, 182, No. 1,
p. 20–22 (in Russian).

[2] Botnaru D., Cerbu O. Semireflexive product of two subcategories. Proceedings of the 6th.
Congress of Romanian Mathematicians, 2007, I, 5–19.

[3] Botnaru D., Turcanu A. Les produits de gauche et de droite de deux souscategories. Acta et
Com., 2003, III, Chisinau, 57–73.

[4] Botnaru D., Turcanu A. On Giraux subcategories in locally convex spaces. ROMAI Journal,
2005, I, No. 1, 7–30.

[5] Cerbu O., Botnaru D., Some property of semireflexivity. Non-cummutative Structures in
Mathematics and Physics, July 22–26, 2008, Brussel, p. 71-84.

[6] Schaeffer H.H. Topological vector spaces. The Macmillan Company, New York, Collier-
Macmillan Limited, London, 1966.

[7] Turcanu A. The factorization of reflective functors. Bull. Inst. Politechn., Iasi, 2007, T. LII,
(LVII), fasc. 5, 377–391.

Dumitru Botnaru, Olga Cerbu
State University of Moldova
str. Al.Mateevici, 60
Chisinau, MD-2009 Moldova

E-mail: dumitru.botnaru@gmail.com,
olga.cerbu@gmail.com

Received April 4, 2011


