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Vague Lie Ideals of Lie Algebras
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Abstract. In this paper, we have introduced the notion of vague Lie ideal and
have studied their related properties. The cartesian products of vague Lie ideals are
discussed. In particular, the Lie homomorphisms between the vague Lie ideals of a Lie
algebra and the relationship between the domains and the co-domains of the vague
Lie ideals under these Lie homomorphisms are investigated.
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1 Introduction

Lie algebras were first discovered by Sophus Lie (1842–1899) when he attempted
to classify certain smooth subgroups of general linear groups. The groups he consid-
ered are now called Lie groups. By taking the tangent space at the identity element
of such a group, he obtained the Lie algebra and hence the problems on groups can
be reduced to problems on Lie algebras so that it becomes more tractable. To study
more about Lie algebras see [12]. There are many applications of Lie algebras in
many branches of mathematics and physics [9].

The notion of fuzzy sets was first introduced by Zadeh [18]. Fuzzy set theory has
been developed in many directions by many scholars and has evoked great interest
among mathematicians working in different fields of mathematics [15, 16]. Later
many authors applied fuzzy set theory in Lie algebras [2–6, 10, 13, 14, 17].

The notion of vague theory was first introduced by Gau and Buechrer [11] in
1993. Later vague theory of the “group” concept into “vague group” was made by
Biswas [7]. This work was the first vagueness of any algebraic structure and thus
opened a new direction, new exploration, new path of thinking to mathematicians,
engineers, computer scientists and many others in various tests. Further, in [1]
Akram and Shum have studied vague Lie subalgebras over a vague field. Recently,
Borumand Saeid applied vague set theory in BCI/BCK−algebras in [8]. The theory
of vague sets started with the aim of interpreting the real life problems in a better
way than the fuzzy sets do.

In this paper, we have introduced the notion of vague Lie ideals of Lie algebras
and have studied their related properties. Characterization of vague Lie ideals on
Lie homomorphisms is also presented.
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2 Preliminaries

In this section, we first review some elementary aspects that are necessary for
this paper.

Definition 2.1. A Lie algebra is a vector space L over a field F (equal to R or C)
on which L×L −→ L denoted by (x, y) −→ [x, y] is defined satisfying the following
axioms:

(L1) [x, y] is bilinear,
(L2) [x, x] = 0 for all x ∈ L ,
(L3) [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 for all x, y, z ∈ L (Jacobi identity).

In what follows, we denote L for Lie algebra, unless otherwise specified.
We note that the multiplication in a Lie algebra is not associative, i.e., it is not

true in general that [[x, y], z] = [x, [y, z]]. But it is anticommutative, i.e., [x, y] =
−[y, x]. We call a subspace H of L closed under [·, ·] a Lie subalgebra. A subspace
I of L with the property [I, L] ⊆ I is called a Lie ideal of L. Obviously, any Lie
ideal is a subalgebra.

Definition 2.1 [13]. A fuzzy set µ : L → [0, 1] is said to be a fuzzy Lie ideal of L
if the following conditions are satisfied:

(F1) ((∀x, y ∈ L), µ(x + y) ≥ min{µ(x), µ(y)}),
(F2) ((∀x, y ∈ L and α ∈ F ), µ(αx) ≥ µ(x)),
(F3) ((∀x, y ∈ L), µ([x, y]) ≥ max{µ(x), µ(y)}).

Definition 2.2 [3]. Let µ be a fuzzy set on L, i.e., a map µ : L → [0, 1]. Then, µ
is said to be an anti fuzzy Lie ideal of L if the following conditions are satisfied:

(AF1) ((∀x, y ∈ L), µ(x + y) ≤ max{µ(x), µ(y)}),
(AF2) ((∀x, y ∈ L and α ∈ F ), µ(αx) ≤ µ(x)),
(AF3) ((∀x, y ∈ L), µ([x, y]) ≤ µ(x)).

Definition 2.3 [11]. A vague set A in the universe of discourse U is characterized
by two membership functions given by:

(V1) A true membership function tA : U → [0, 1], and
(V2) A false membership function fA : U → [0, 1],

where tA(u) is a lower bound on the grade of membership of u derived from the
“evidence for u”, fA(u) is a lower bound on the negation of u derived from the
“evidence against u”, and tA(u) + fA(u) ≤ 1.

Thus the grade of membership of u in the vague set A is bounded by a subinterval
[tA(u), 1 − fA(u)] of [0, 1]. This indicates that if the actual grade of membership u
is µ(u), then

tA(u) ≤ µ(u) ≤ 1− fA(u).

The vague set A is written as

A = {〈u, [tA(u), fA(u)]〉|u ∈ U},
where the interval [tA(u), 1− fA(u)] is called the vague value of u in A, denoted by
VA(u).
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3 Vague Lie Ideals

In this section, we define the notion of vague Lie ideals.
For our discussion, we shall use the following notations on interval arithmetic:
Let I[0, 1] denote the family of all closed subintervals of [0, 1]. We define the

term “imax” to mean the maximum of two intervals as:

imax(I1, I2) ' [max(a1, a2),max(b1, b2)],

where I1 = [a1, b1], I2 = [a2, b2]. Similarly, we define “imin”. The concept of
“imax” and “imin” could be extended to define “isup” and “iinf” of infinite number
of elements of [0, 1].

It is obvious that L = {I[0, 1], isup, iinf,º} is a lattice with universal bounds
[0, 0] and [1, 1].

Also, if I1 = [a1, b1] and I2 = [a2, b2] are two subintervals of [0, 1], we can define
a relation between I1 and I2 by I1 º I2 if and only if a1 ≥ a2 and b1 ≥ b2.

Definition 3.1. LetL be a Lie algebra. A vague set A of L is called a vague Lie
subalgebra of L if the following axioms hold:

(VLI1) (∀x, y ∈ L), (V (x + y) º imin{V (x), V (y)}),
(VLI2) (∀x ∈ L, a ∈ F ), (V (ax)) º V (x)).
(VLI3) (∀x, y ∈ L), (V ([x, y]) º imin{V (x), V (y)}).
That is,

tA(x + y) ≥ min{tA(x), tA(y)})
1− fA(x + y) ≥ min{1− fA(x), 1− fA(y)}

tA(ax) ≥ tA(x)
1− fA(ax) ≥ 1− fA(x))

tA([x, y]) ≥ min{tA(x), tA(y)})
1− fA([x, y]) ≥ min{1− fA(x), 1− fA(y)}.

Definition 3.2. Let L be a Lie algebra. A vague set A of L is called a vague Lie
ideal of L if the following axioms hold:

It satisfies (VLI1), (VLI2) and (VLI4)(∀x, y ∈ L), (V ([x, y]) º imax{V (x), V (y)}).
That is,

tA([x, y]) ≥ max{tA(x), tA(y)})
1− fA([x, y]) ≥ max{1− fA(x), 1− fA(y)}.

Example 3.3. Let R3 = {(x, y, z) : x, y, z ∈ R} be the set of all 3-dimensional real
vectors. Then R3 with the bracket [·, ·] defined as the usual cross product, i.e.,

[x, y] = x× y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1),

forms a real Lie algebra over the field R.
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(1) Let A be the vague set in R3 defined as follows:

A =





[0.8, 0.1] if x = y = z = 0,

[0.7, 0.2] if x 6= 0, y = z = 0,

[0.5, 0.3] otherwise.

By routine calculations, it is clear that A is a vague Lie subalgebra of R3, but not
a vague ideal of R3, since

tA([(1, 0, 0), (1, 1, 1)]) = tA(0,−1, 1) = 0.5

and
max{tA(1, 0, 0), tA(1, 1, 1)} = max{0.7, 0.5} = 0.7.

Also,

1− fA([(1, 0, 0), (1, 1, 1)]) = 1− fA(0,−1, 1) = 0.7

and
max{1− fA(1, 0, 0), 1− fA(1, 1, 1)} = max{0.8, 0.7} = 0.8.

(2) Let A be the vague set in R3 defined as follows:

A =





[0.8, 0.1] if (x, y, z) = (0, 0, 0),

[0.6, 0.2] otherwise.

By routine calculations, it is clear that A is a vague Lie ideal of R3.

Proposition 3.4. Let A be a vague set of L. Then A is a vague ideal of L if and
only if tA is a fuzzy ideal of L and fA is an anti fuzzy ideal of L.

Proof. The proof is obvious. 2

For α, β ∈ [0, 1], now we define (α, β)− cut and α− cut of a vague set.

Definition 3.5. Let A be a vague set in L with true membership function tA and
the false membership function fA. The (α, β) − cut of the vague set A is a crisp
subset A(α,β) of the set L given by

A(α,β) = {x ∈ L |VA(x) º [α, β]}.

Clearly, A(0,0) = L. The (α, β)−cuts of the vague set A are also called vague sets
of A.

Definition 3.6. The α − cut of the vague set A is a crisp subset Aα of the set L
given by Aα = A(α,α).
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Note that A0 = L, and if α ≥ β then Aα ⊆ Aβ and A(α,β) = Aα. Equivalently,
we can define the α−cut as

A(α) = {x ∈ L |tA(x) ≥ α}.

Theorem 3.7. Let A be a vague set of L. Then A is a vague Lie ideal of L if and
only if A(α,β) is a Lie ideal of L for every α, β ∈ (0, 1].

Proof. Let A be a vague set of L. Suppose A is a vague Lie ideal of L .

For all x, y ∈ A(α,β) and α, β ∈ (0, 1], then

tA(x), tA(y) ≥ α and 1− fA(x), 1− fA(y) ≥ β.

Then we have
(i)

tA(x + y) ≥ tA(x) ≥ min{tA(x), tA(y)} ≥ α

and
1− fA(x + y) ≥ 1− fA(x) ≥ min{1− fA(x), 1− fA(y)} ≥ β.

Thus x + y ∈ A(α,β).
(ii)

tA(ax) ≥ tA(x) ≥ α and 1− fA(ax) ≥ 1− fA(x) ≥ β.

Thus ax ∈ A(α,β).
(iii)

tA([x, y]) ≥ max{tA(x), tA(y)} ≥ α,

and
1− fA([x, y]) ≥ max{1− fA(x), 1− fA(y)} ≥ β,

which implies [x, y] ∈ A(α,β). Thus A(α,β) is a Lie ideal ofL .

Conversely, assume that A(α,β) 6= ∅ is a Lie ideal of L for every α, β ∈ (0, 1].
Assume that

V (x + y) ≺ imin{V (x), V (y)}
for some x, y ∈ L. Taking

α1 =
1
2
{tA(x + y) + min{tA(x), tA(y)}}

and
β2 =

1
2
{1− fA(x + y) + min{1− fA(x), 1− fA(y)}}

for some x, y ∈ L, we have

tA(x + y) < α1 < min{tA(x), tA(y)}
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and
1− fA(x + y) < β2 < min{1− fA(x), 1− fA(y)}.

So, we have x+ y /∈ A(α1,β2), for all x, y ∈ A(α1,β2). This is a contradiction. Thus

V (x + y) º imin{V (x), V (y)}.

Similarly, we can prove (VLI2), (VLI3) and (VLI4). Hence A is a vague ideal of L.
This completes the proof. 2

Theorem 3.8.If {Ai|i ∈ I} is an arbitrary family of vague Lie ideals of L then⋂
Ai is a vague Lie ideals of L, where

⋂
Ai(x) = inf{Ai(x)|i ∈ I)}, for all x ∈ L.

Proof. The proof is trivial. 2

However, the union of two vague Lie ideals cannot be a vague ideal. Let A and
B be two vague Lie ideals of L. Define

(A ∪B)(x) = max{A(x), B(x)}, for all x ∈ L.

The following example shows that A ∪B, cannot be a vague Lie ideal of L.
Example 3.9. Let {e1, e2, ..., e8} be a basis of a vector space V over a field F . Then,
it is not difficult to see that, by putting: [e1, e2] = e5, [e1, e3] = e6, [e1, e4] = e7,
[e1; e5] = −e8, [e2, e3] = e8, [e2; e4] = e6, [e2, e6] = −e7, [e3, e4] = −e5, [e3, e5] = −e7,
[e4; e6] = −e8, [ei; ej ] = −[ej , ei] and [ei, ej ] = 0 for all i ≤ j, we can obtain a Lie
algebra over the field F . Define the vague sets A and B for all x ∈ V as follows:

A =





[0.8, 0.1] if x = 0, e8,
[0.6, 0.2] if x = e7,
[0.2, 0.6] otherwise.

and

B =





[0.8, 0.1] if x = 0, e7,
[0.5, 0.3] if x = e8,
[0.2, 0.6] otherwise.

Then A and B are vague Lie ideal of V , since by Theorem 3.7, the vague-cut sets,
A(0.8,0.1) = 〈e8〉, B(0.8,0.1) = 〈e7〉 and A(0.6,0.2) = B(0.5,0.3) = 〈e7, e8〉 are vague Lie
ideals of V , but

(tA ∪ tB) (e7 + e8) = max{tA(e7 + e8), tB(e7 + e8)} ≥

≥ max{min{tA(e7), tA(e8)}, min{tB(e7), tB(e8)}} = max{0.6, 0.5} = 0.6.

and
(1− fA ∪ fB) (e7 + e8) = max{1− fA(e7 + e8), 1− fB(e7 + e8)} ≥
≥ max{min{1− fA(e7), 1− fA(e8)}, min{1− fB(e7), 1− fB(e8)}} =

= max{0.8, 0.7} = 0.8.
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On the other hand
min{(tA ∪ tB)(e7), (tA ∪ tB)(e8)} =

= min{max{tA(e7), tB(e7)}, max{tA(e8), tB(e8)}} =

= min{0.8, 0.8} = 0.8.

and
min{1− (fA ∪ fB)(e7), 1− (fA ∪ fB)(e8)} =

= min{max{1− fA(e7), 1− fB(e7)}, max{1− fA(e8), 1− fB(e8)}} =

= min{0.9, 0.9} = 0.9.

Thus we have

(tA ∪ tB) (e7 + e8) = 0.6 � 0.8 = min{(tA ∪ tB)(e7), (tA ∪ tB)(e8)}

and

1− (fA ∪ fB) (e7 + e8) = 0.8 � 0.9 = min{1− (fA ∪ fB)(e7), 1− (fA ∪ fB)(e8)}.

Therefore, (A
⋃

B) is not a vague Lie ideal.

Definition 3.10. Let A and B be two vague Lie ideals of L. We define the
sup−minproduct [AB] of A and B by

[tAtB](x) =





sup
x=[yz]

min{tA(y), tB(z)},

0, x 6= yz

and

[1− fAfB](x) =





sup
x=[yz]

min{1− fA(y), 1− fB(z)},

0, x 6= yz.

Let A and B be vague Lie ideals of the Lie algebra L. Then [AB] may not be a
vague Lie ideal of L as this can be seen in the following counter-example:

Example 3.11. Let {e1, e2, ..., e8} be a basis of a vector space over a field F . Then,
it is not difficult to see that, by putting: [e1, e2] = e5, [e1, e3] = e6, [e1, e4] = e7,
[e1; e5] = −e8, [e2, e3] = e8, [e2; e4] = e6, [e2, e6] = −e7, [e3, e4] = −e5, [e3, e5] = −e7,
[e4; e6] = −e8, [ei; ej ] = −[ej , ei] and [ei, ej ] = 0 for all i ≤ j, we can obtain a Lie
algebra over the field F . The following vague sets

A =





[0.7, 0.1] if x = 0, e1, e5, e6, e7, e8,

[0.2, 0.6] otherwise.
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and

B =





[0.7, 0.1] if x = 0,

[0.5, 0.2] if x = e2, e5, e6, e7, e8,

[0.2, 0.6] otherwise.

Thus A and B are vague Lie ideals of L because the cut Lie ideals of L
A(0.7,0.1) =< e1, e5, e6, e7, e8 > and B(0.5,0.2) =< e2, e5, e6, e7, e8 > are vague-cut
Lie ideals of L. But [AB] is not a vague Lie ideal because the following condition
does not hold:

[VAVB](e7 + e8) º imin{[VAB](e7), [VAB](e8)},

tAtB(e7) = sup





min{tA(e1), tB(e4)} = min{0.7, 0.2} = 0.2, e7 = [e1, e4],
min{tA(e2), tB(e6)} = min{0.2, 0.5} = 0.2, e7 = −[e2, e6],
min{tA(e3), tB(e5)} = min{0.2, 0.5} = 0.2, e7 = −[e3, e5],
min{tA(e4), tB(e1)} = min{0.2, 0.2} = 0.2, e7 = −[e4, e1],
min{tA(e6), tB(e2)} = min{0.7, 0.5} = 0.5, e7 = [e6, e2],
min{tA(e5), tB(e3)} = min{0.7, 0.2} = 0.2, e7 = [e5, e3]

and
1− fAfB(e7) =

= sup





min{1− fA(e1), 1− fB(e4)} = min{0.9, 0.4} = 0.4, e7 = [e1, e4],
min{1− fA(e2), 1− fB(e6)} = min{0.4, 0.8} = 0.4, e7 = −[e2, e6],
min{1− fA(e3), 1− fB(e5)} = min{0.4, 0.8} = 0.4, e7 = −[e3, e5],
min{1− fA(e4), 1− fB(e1)} = min{0.9, 0.4} = 0.4, e7 = −[e4, e1],
min{1− fA(e6), 1− fB(e2)} = min{0.9, 0.8} = 0.8, e7 = [e6, e2],
min{1− fA(e5), 1− fB(e3)} = min{0.9, 0.4} = 0.4, e7 = [e5, e3].

Thus tAtB(e7) = 0.5 and 1− fAfB(e7) = 0.8.
Similarly, we can get tAtB(e8) = 0.5 and 1− fAfB(e8) = 0.8.
On the other hand, we have

tAtB(e7 + e8) = sup{i− vi}

and
1− fAfB(e7 + e8) = sup{i− vi}

(i) if e7 + e8 = [e1(e4 − e5)], then

min{tA(e1), tB(e4 − e5)} = min{tA(e1), tB(e4), tB(e5)} = 0.2,

since tB(e4) = 0.2, and if e7 + e8 = [(e5 − e4)e1], then

min{tA(e5 − e4), tB(e1)} = min{tA(e5), tA(e4), tB(e1)} = 0.2,

since tA(e4) = 0.2.
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Similarly,
(ii) the cases e7 + e8 = [e2(e3 − e6)]; then the value is 0.2,
(iii) the cases e7 + e8 = [e3(−e2 − e5)]; then the value is 0.2,
(iv) the cases e7 + e8 = [e4(−e1 − e6)]; then the value is 0.2,
(v) the cases e7 + e8 = [e5(−e3 − e1)]; then the value is 0.2,
(vi) the cases e7 + e8 = [e6(−e2 − e4)]; then the value is 0.2.
Thus,

tAtB(e7 + e8) = min{0.2, 0.2, 0.2, 0.2, 0.2, 0.2} = 0.2.

Hence, we have proved that

tAtB(e7 + e8) = 0.2 � 0.5 = min{tAtB(e7), tAtB(e8)}.

On the other hand, we can prove
1− fAfB(e7 + e8) = 0.4 � 0.8 = min{1− fAfB(e7), 1− fAfB(e8)}.
Now we redefine the product of two vague Lie ideals A and B of L to an extended

form.

Definition 3.12. Let A and B be two vague sets of L. Then, we define the
sup−min product [[AB]] of A and B, as follows, for all x, y, z ∈ L:

[[tAtB]] (x) =





sup
x=

n∑
i=1

[xiyi]

{
min
i∈N

{min (tA (xi) , tB (yi))}
}

,

0, x 6=
n∑

i=1
[xiyi]

and

[[1− fAfB]] (x) =





sup
x=

n∑
i=1

[xiyi]

{
min
i∈N

{min (1− fA (xi) , 1− fB (yi))}
}

,

0, x 6=
n∑

i=1
[xiyi] .

From the definitions of [AB] and [[AB]], we can easily see that [AB] ⊆ [[AB]] and
[AB] 6= [[AB]].

The following theorem proves [[AB]] is a vague Lie ideal of L if A and B are
vague Lie ideals of L.

Theorem 3.13. Let A and B be any two vague Lie ideals of L. Then [[AB]] is also
a vague Lie ideal of L.

Proof. It is easy to prove [[AB]] is a vague Lie subalgebra of L.
(iv) Suppose x, y ∈ L. Let if possible,

[[VAVB]] ([x, y]) ≺ imax{[[VAVB]] (x), [[VAVB]] (y)}.
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Then we have

[[VAVB]] ([x, y]) ≺ [[VAVB]] (x) or [[VAVB]] ([x, y]) ≺ [[VAVB]] (y).

Choose a number t < s ∈ [0, 1] such that

[[tAtB]] ([x, y]) < t < [[tAtB]] (x), [[tAtB]] ([x, y]) < t < [[tAtB]] (y).

and
[[1− fAfB]] ([x, y]) < s < [[1− fAfB]] (x),

[[1− fAfB]] ([x, y]) < s < [[1− fAfB]] (y).

There exist xi, yi ∈ L such that x =
n∑

i=1
[xiyi].

For all i, j we have,
tA(xi) > t, tB(yi) > t

and
1− fA(xi) > s, 1− fB(yi) > s.

Since [x, y] =
[

n∑
i=1

[xi, yi] , y
]
, we have

[[tAtB]] ([x, y]) = [[tAtB]]

([
n∑

i=1

[xi, yi] , y

])

= [[tAtB]]

(
n∑

i=1

[[xi, yi], y]

)

≥ [[tAtB]] ([[xi, yi] , y]) , for all i

= [[tAtB]] ([[xi, y] , yi]− [[yi, y] , xi])
≥ [[tAtB]] ([[xi, y] , yi])
≥ max {tA [xi, y] , tB(yi)}
≥ max {max{tA(xi), tA(y)}, tB(yi)}
> t.

and

[[1− fAfB]] ([x, y]) = [[1− fAfB]]

([
n∑

i=1

[xi, yi] , y

])

= [[1− fAfB]]

(
n∑

i=1

[[xi, yi], y]

)

≥ [[1− fAfB]] ([[xi, yi] , y]) , for all i

= [[1− fAfB]] ([[xi, y] , yi]− [[yi, y] , xi])
≥ [[1− fAfB]] ([[xi, y] , yi])
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≥ max {1− fA [xi, y] , 1− fB(yi)}
≥ max {max{1− fA(xi), 1− fA(y)}, 1− fB(yi)}
> s.

Thus, we have

[[1− fAfB]] ([x, y]) > t and [[1− fAfB]] ([x, y]) > s,

which is a contradiction. Thus [[AB]] satisfies (VLI4). Hence [[AB]] is a vague Lie
ideal of L. 2

The following theorem characterized congruence relation on L.

Theorem 3.14. Let A be a vague Lie ideal of L. Define a binary relation ∼ on L
by x ∼ y if and only if tA(x− y) = tA(0), 1− fA(x− y) = 1− fA(0) for all x, y ∈ L.
Then ∼ is a congruence relation on L.

Proof. To prove ∼ is an equivalent relation, it is enough to show the transitivity of ∼
because the reflectivity and symmetricity of∼ hold trivially. Let x, y, z ∈ L. If x ∼ y
and y ∼ z, then tA(x− y) = tA(0), tA(y− z) = tA(0) and 1− fA(x− y) = 1− fA(0),
1− fA(y − z) = 1− fA(0). Hence it follows that

tA(x− z) = tA(x− y + y − z) ≥ min{tA(x− y), tA(y − z)} = tA(0)

and

1−fA(x−z) = 1−fA(x−y+y−z) ≥ min{1−fA(x−y), 1−fA(y−z)} = 1−fA(0).

Consequently x ∼ z. We now verify that “ ∼ ” is a congruence relation on L.
For this purpose, we let x ∼ y and y ∼ z. Then

tA(x− y) = tA(0), tA(y − z) = tA(0)

and
1− fA(x− y) = 1− fA(0), 1− fA(y − z) = 1− fA(0).

Now, for x1, x2, y1, y2 ∈ L, we have
(i)

tA((x1 + x2)− (y1 + y2)) = tA((x1 − y1) + (x2 − y2))
≥ min{tA(x1 − y1), tA(x2 − y2) = tA(0)

and

1− fA((x1 + x2)− (y1 + y2)) = 1− fA((x1 − y1) + (x2 − y2))
≥ min{1− fA(x1 − y1), 1− fA(x2 − y2)}
= 1− fA(0),

(ii)
tA((ax1 − ay1)) = tA(a(x1 − y1)) ≥ tA(x1, y1) = tA(0)
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and

1− fA((ax1 − ay1)) = 1− fA(a(x1 − y1)) ≥ 1− fA(x1, y1) = 1− fA(0),

(iii)

tA([x1, x2]− [y1, y2]) = tA([(x1 − y1), (x2 − y2)])
≥ max{tA(x1 − y1), tA(x2 − y2)} = tA(0)

and

1− fA([x1, x2]− [y1, y2]) = 1− fA([(x1 − y1), (x2 − y2)])
≥ max{1− fA(x1 − y1), 1− fA(x2 − y2)}
= 1− fA(0).

That is, x1 + x2 ∼ y1 + y2, ax1 ∼ ay1 and [x1, x2] ∼ [y1, y2]. Thus, “ ∼ ” is
indeed a congruence relation on L. 2

4 Characterization of vague Lie ideals on Lie Homomorphisms

Definition 4.1. Let L and L′ be two Lie algebras over a field F . Then a linear
transformation f : A → B is called a Lie homomorphism if g[x, y] = [g(x), g(y)]
holds, for all x, y ∈ L.

Let g : L −→ L′ be a Lie homomorphism. For any vague set A in L′, we define
the preimage of A under g, denoted by g−1(A), is a vague set in L defined by

g−1(tA) = tAg−1 (x) = tA(g(x))

and
1− g−1(fA) = 1− fAg−1 (x) = 1− fA(g(x)), ∀x ∈ L.

For any vague set A in G, we define the image of A under a linear transformation
g, denoted by g(A), is a vague set in G′ defined by

g (tA) (y) =

{
sup

x∈g−1(y)

tA(x) if g−1(y) 6= φ,

0 otherwise.

and

g (fA) (y) =

{
inf

x∈g−1(y)
fA(x) if g−1(y) 6= φ,

0 otherwise.

for all x ∈ L and y ∈ L′.

Theorem 4.2. Let g be a surjective Lie homomorphism from L into L′.
(i) If A and B are two vague Lie ideals of L, then

g(A + B) = g(A) + g(B).
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(ii) If {Ai|i ∈ I} is a set of g−invariant vague Lie ideal of L, then

g

(⋂

i∈I

Ai

)
=

⋂

i∈I

g (Ai) .

(iii) If A and B are two vague Lie ideals of L, then

g([[VAVB]]) ' [[g(VA)g(VB)]] .

Proof. The proofs of (i) and (ii) are trivial. To prove (iii), let x ∈ L. Suppose
g([[VAVB]])(x) ≺ [[g(VA)g(VB)]] (x). Now, we can choose a number t < s ∈ [0, 1] such
that

g([[tAtB]])(x) < t < [[g(tA)g(tB)]] (x)

and
g([[1− fAfB]])(x) < s < [[g(1− fA)g(1− fB)]] (x).

Then, there exist yi, zi ∈ L′ such that x =
n∑

i=1
[yi, zi] with g(tA) > t, g(tB) > t and

g(1 − fA) > s, g(1 − fB) > s. Since g is surjective, there exists a y ∈ L such that

g(y) = x and y =
n∑

i=1
[ai, bi], for some ai ∈ g−1(yi) and bi ∈ g−1(zi) with g(ai) = yi

and g(ai) = yi, tA(ai) > t, tB(bi) > t and 1− fA(ai) > s, 1− fB(bi) > s. Since

g

(
n∑

i=1

[ai, bi]

)
=

n∑

i=1

g ([ai, bi]) =
n∑

i=1

[g(ai), g(bi)]

=
n∑

i=1

[yi, zi] = x,

we have g([[tAtB]])(x) > t and g([[1− fAfB]])(x) > s. This is a contradiction.
Similarly, for the case g([[VAVB]])(x) Â [[g(VA)g(VB)]] (x) we get the contradiction.

Hence, g([[VAVB]])(x) ' [[g(VA)g(VB)]] (x). 2

Definition 4.3. Let A and B be two vague Lie ideals of L. Then A is said to
be of the same type as B if there exists g ∈ Aut(L) such that A = B ◦ g, i.e.,
VA(x) ' VB(g(x)), for all x ∈ L.

Theorem 4.4. Let A and B be two vague Lie ideals of L. Then A is a vague Lie
ideal having the same type as B if and only if A is isomorphic to B.

Proof. We only need to prove the necessity because the sufficiency part is trivial.
Let A be a vague Lie ideal having the same type as B. Then there exists g ∈ Aut(L)
such that VA(x) ' VB(g(x)), for all x ∈ L. Let φ : A(L) −→ B(L) be a mapping
defined by φ(A(x)) = B(g(x)), for all x ∈ L, that is φ(VA(x)) ' VB(g(x)), for
all x ∈ L. Then it is clear that f is surjective. For all x, y ∈ L, if φ(tA(x)) =
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φ(tA(y)), then tB(g(x)) = tB(g(y)) and hence tA(x) = tA(y). Similarly, we can
prove φ(1−fA(x)) = φ(1−fA(y)), for all x ∈ L implies 1−fB(g(x)) = 1−fB(g(y)).
Thus φ is one-to-one. Now we need to prove φ is a homomorphism. Let all x, y ∈ L,
we have

φ(tA(x + y)) = tB(g(x + y)) = tB(g(x) + g(y)) = tB(g(x)) + tB(g(y))
= φ(tA(x)) + φ(tA(y))

and

φ(1− fA(x + y)) = 1− fB(g(x + y)) = 1− fB(g(x) + g(y))
= 1− fB(g(x)) + 1− fB(g(y))
= φ(1− fA(x)) + φ(1− fA(y)).

Let all x ∈ L and a ∈ F , we have

φ(tA(ax)) = tB(g(ax)) = tB(ag(x)) = atB(g(x)) = aφ(tA(x)).

and

φ(1− fA(ax)) = 1− fB(g(ax)) = 1− fB(ag(x)) = a(1− fB(g(x)))
= aφ(1− fA(x)).

Let all x, y ∈ L, we have

φ(tA([x, y])) = tB(g([x, y])) = tB([g(x), g(y)]) = [tB(g(x)), tB(g(y))]
= [φ(tA(x)), φ(tA(y)]

and

φ(1− fA([x, y])) = 1− fB(g([x, y])) = 1− fB([g(x), g(y)])
= [1− fB(g(x)), 1− fB(g(y))]
= [φ(1− fA(x)), φ(1− fA(y))].

This completes the proof. 2
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