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Transversals in loops. 3. Loop transversals

Eugene Kuznetsov

Abstract. The investigation of the new notion of a transversal in a loop to its
subloop (begun in [10]) is continued in the present article. This notion generalized
the well-known notion of a transversal in a group to its subgroup and can be correctly
defined only in the case when some specific condition (Condition A) for a loop and its
subloop holds. The connections between loop transversals in some loop to its subloop
and loop transversals in multiplicative group of this loop to some suitable subgroup
are investigated in this work.
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1 Introduction

In group theory, in group representations theory and in quasigroup theory the
following notion is well-known – the notion of a left (right) transversal in a group
to its subgroup [1, 5, 6, 11].

Definition 1. Let G be a group and H be a subgroup in G. A complete set
T = {ti}i∈E of representatives of the left (right) cosets Hi in G to H (e = t1 ∈ H,
ti ∈ Hi) is called a left (right) transversal in G to H.

In the present work we continue to study a variant of natural generalization of
the notion of transversal to the class of loops, begun in [10]. As the elements of a
left (right) transversal in a group to its subgroup are representatives of every left
(right) coset to the subgroup, the notion of a left (right) transversal in a loop to its
subloop can be correctly defined only in the case when this loop admits a left (right)
coset decomposition by its subloop (see the Condition A below).

In Section 2 of this article we remember the most important notions and theorems
from the first part of this investigation [10].

In Section 3 different structural theorems are proved. They demonstrate a con-
nection between transversals in a loop to its subloop and transversals in a multi-
plicative group of this loop to its suitable subgroup.

In Section 4 one of the most important particular cases of transversals in a loop
to its subloop is investigated – the case of a loop transversal. Some criteria of the
existence of a loop transversal in a given loop to its subloop are proved.
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Further we shall use the following notations:
〈L, ·, e〉 is an initial loop with the unit e;
〈R, ·, e〉 is its proper subloop;
E is a set of indexes (1 ∈ E) of the left (right) cosets Ri in L to R

(moreover, R1 = R).

2 Preliminaries

Definition 2. A system 〈E, ·〉 is called [2] a right (left) quasigroup if for arbitrary
a, b ∈ E the equation x · a = b (a · y = b) has a unique solution in the set E. If the
system 〈E, ·〉 is both a right and left quasigroup, then it is called a quasigroup. If in
a right (left) quasigroup 〈E, ·〉 there exists an element e ∈ E such that x·e = e·x = x
for every x ∈ E, then the system 〈E, ·〉 is called a right (left) loop (the element
e is called a unit or identity element). If a system 〈E, ·〉 is both a right and left
loop, then it is called a loop.

At the beginning let us define a partition of a loop by left (right) cosets to its
proper subloop.

Definition 3 (see [12]). Let 〈L, ·〉 be a loop and 〈R, ·〉 be its proper subloop. Then
a left coset in L to R is a set of the form xR = {xr | r ∈ R}, and a right coset
is a set of the form Rx = {rx | r ∈ R}.

In a general case the cosets in a loop to its subloop do not necessarily form a
partition of the loop. This leads us to the following definition.

Definition 4 (see [12]). A loop L has a left (right) coset decomposition by its
proper subloop R, if the left (right) cosets form a partition of the loop L, i.e. for
some set of indexes E:

1. ∪
i∈E

(aiR) = L;

2. For every i, j ∈ E, i 6= j, (aiR) ∩ (ajR) = ∅.

In order to define correctly the notion of a left (right) transversal in a loop to
its proper subloop, the following condition must be necessarily fulfilled.

Definition 5 ( see [10]). (Left Condition A) Let R be a subloop of a loop L. For
all a, b ∈ L there exists an element c ∈ L such that

a(bR) = cR. (1)

The right Condition A is defined analogously.
Let us denote (see [13]) ∀a, b ∈ L: a left inner mapping

la,b (x) = (a · b) \ (a · (b · x)) , x ∈ L, (2)
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where ”\” is a left division in the loop 〈L, ·, e〉, and a right inner mapping

ra,b (x) = ((x · b) · a) / (b · a) , x ∈ L, (3)

where ”/” is a right division in the loop 〈L, ·, e〉.
Lemma 1 (see [10]). Let the left Condition A be fulfilled. Then ∀a, b ∈ L:
la,b (R) = R.

Lemma 2 (see [10]). Let the right Condition A be fulfilled. Then ∀a, b ∈ L:
ra,b (R) = R.

Definition 6 (see [9]). Let 〈L, ·, e〉 be a loop, 〈R, ·, e〉 be its subloop and the left
Condition A be fulfilled. Let {Rx}x∈E be the set of all left cosets in L to R that
form a left coset decomposition of the loop L. A set T = {tx}x∈E ⊂ L is called a
left transversal in L to R if T is a complete set of representatives of the left cosets
Rx in L to R, i.e. there exists a unique element tx ∈ T such that tx ∈ Rx for every
x ∈ E.

A right and two-sided transversal in L to R is defined analogously.
On a set E it is possible to define correctly the following operations:

x
(T )· y = z

def⇔ tx · ty = tz · r, where tx, ty, tz ∈ T, r ∈ R, (4)

if T is a left transversal in L to R, and

x
(T )◦ y = z

def⇔ tx · ty = r · tz, where tx, ty, tz ∈ T, r ∈ R, (5)

if T is a right transversal in L to R.

Definition 7. Let T be a left (right) transversal in L to R. If the transversal

operation 〈E,
(T )· , 1〉 (〈E,

(T )◦ , 1〉) is a loop then the transversal T is called a left
(right) loop transversal in L to R.

Let still 〈L, ·, e〉 be a loop, 〈R, ·, e〉 be its subloop, and the left Condition A be
fulfilled. Let T = {tx}x∈E be a left transversal in L to R. Define the following map:

f : L× E → E,

f : (g, x) → y = ĝ (x) , (6)

ĝ (x) = y
def⇔ g · (tx ·R) = ty ·R.

By virtue of the left Condition A this definition (a left action of the loop L on a
set E) is correct.

Lemma 3 (see [10]). A map ĝ is a permutation on a set E for every element
g ∈ L.
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Lemma 4 (see [10]). For an arbitrary left transversal T = {tx}x∈E in a loop L =
〈L, ·, e〉 to its subloop R = 〈R, ·, e〉 the following propositions are true:

1. ∀r ∈ R: r̂(1) = 1;

2. ∀x, y ∈ E: t̂x(y) = x
(T )· y, t̂−1

x (y) = x\y,
where t̂−1

x is an inverse permutation to a permutation t̂x in SE, and ”\” is a left

division in a left loop 〈E,
(T )· , 1〉. Moreover,

t̂x(1) = x, t̂1(x) = x, t̂−1
x (1) = x\1, t̂−1

x (x) = 1.

Lemma 5 (see [10]). The following conditions are equivalent:

1. A set T = {tx}x∈E is a left loop transversal in a loop L to its subloop R;

2. A set T̂ = {t̂x}x∈E is a sharply transitive set of permutations in the group SE.

3 Semidirect products of loops and suitable subgroups

Remind the definition (see [8, 13]) of the semidirect product of a left loop
L = 〈E, ·, 1〉 with two-sided unit 1 on a suitable permutation group H on the set E
(H ⊆ St1(SE)). Let the following conditions hold:

1. ∀a, b ∈ E : l−1
a, bLaLb ∈ H;

2. ∀u ∈ E and ∀h ∈ H : ϕ(u, h)L−1
h(u)hLuh−1 ∈ H,

where La is the left translation by an element a in 〈E, ·, 1〉 (i.e. La(x) = a · x).
Then on the set

E ×H = {(u, h)|u ∈ E, h ∈ H}
it is possible to define correctly the operation

(u, h1) ∗ (v, h2)
def
= (u · h1(v), lu,h1(v)ϕ(v, h1)h1h2).

The system G = 〈E ×H, ∗, (1, id)〉 is a group, which is called the semidirect
product G = L h H of the left loop L on the group H. This product satisfies the
following properties:

1. The map (û, h) : E → E :

(û, h)) (x)
def
= u · h(x)

is an action, i.e.

(a) It is a permutation on E;

(b) If (û, h1)(x) = (v̂, h2)(x) ∀x ∈ E, then u = v and h1 = h2;
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(c) If (û, h)(x) = (x) ∀x ∈ E, then (u, h) ≡ (1, id).

2. ∀x ∈ E it is true that

( ̂(u, h1) ∗ (v, h2))(x) = (û, h1)((v̂, h2)(x)) = Luh1Lvh2(x).

3. (u, h)−1 = (h−1(u\1), L−1
h−1(u\1)

h−1L−1
u ),

and, in particular (u, id)−1 = (u\1, L−1
u\1L

−1
u ).

4. The system Ĥ = 〈H∗, ∗, (1, id)〉 (where H∗ = {(1, h)|h ∈ H}) is a subgroup
in G, isomorphic to the group H.

5. The set T̂ = {(u, id)|u ∈ E} is a left transversal in G to Ĥ, and the operation〈
E,

(T )· , 1
〉

coincides with the operation 〈E, ·, 1〉.

We remind the definitions of the left multiplicative group of a left loop L:

LM(L)
def
= 〈Lx|x ∈ L,Lx(u) = x · u〉 ,

and the left inner permutation group of a left loop L:

LI(L)
def
= 〈la, b|a, b ∈ L〉 .

It was shown in [8] that:

LI(L) = St1(LM(L)) ⊂ LM(L), LM(L) = L h LI(L).

Lemma 6. Let L = 〈E, ·, 1〉 be a loop, R = 〈E1, ·, 1〉 be its subloop, and the left
Condition A be fulfilled for them. Let T0 = {tx}x∈E0 be a left transversal in L to
R.

Assume
G = LM(L) = L h LI(L), H = LI(L).

Then:

1. The set K = {(r, h)| r ∈ R, h ∈ H} is a subgroup in G, and H ⊆ K ⊂ G;

2. The set T ∗0 = {(tx, id)| tx ∈ T0, x ∈ E0} is a left transversal in G to K, and
〈

E0,
(T0)· , 1

〉
≡

〈
E0,

(T ∗0 )· , 1
〉

.

Proof. 1. Let the conditions of the lemma hold. According to properties of semidi-
rect product we have

H = {(1, h)|h ∈ H = LI(L)} ⊂ {(u, h)|u ∈ L, h ∈ H} = G.
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Since R ⊆ L, then

∀a, b ∈ R : la,b ∈ LI(L) = H,

∀u ∈ R ∀h ∈ H : ϕ(u, h) ∈ {ϕ(u, h)|u ∈ R, h ∈ H} ⊆
⊆ {ϕ(u, h)|u ∈ L, h ∈ H} ⊆ LI(L) = H.

Then it is possible to define correctly a semidirect product on the set

K = R×H = {(r, h)| r ∈ R, h ∈ H} ⊆ G.

It is obvious that H ⊆ K.
Besides for any two elements (r1, h1) and (r2, h2) from K we have:

(r1, h1) ∗ (r2, h2) = (r1
(R)· h1(r2), lr1,h1(r2)ϕ(r2, h1)h1h2).

In order that the group K be a subgroup in G it is necessary and sufficient that the
following condition be fulfilled:

∀r1, r2 ∈ R ∀h ∈ H : (r1
(R)· h(r2)) ∈ R.

But it is equivalent to the following: ∀h ∈ H : h(R) ⊆ R, i.e. ∀a, b ∈ L :
la,b(R) ⊆ R. According to Lemma 1 the last conditions are equivalent to the left
Condition A for loops L and R.

2. Let T0 = {tx}x∈E0 be a left transversal in L to R. Then we consider the set

T ∗0 = {(tx, id)| tx ∈ T0, x ∈ E0}.

For an arbitrary x ∈ E0 we consider the set:

(tx, id) ∗K = {(tx, id) ∗ (r, h)|r ∈ R, h ∈ H} = (7)

= {(tx
(L)· r, ltx,rh)|r ∈ R, h ∈ H}.

Let us show that this set is a left coset in G to K. Since the set

{tx
(L)· r| r ∈ R} = tx

(L)· R

is a left coset in L to R, if x1 6= x2 then by (7) we have:

((tx1 , id) ∗K) ∩ ((tx2 , id) ∗K) = ∅.

Further, let g0 be an arbitrary element from G; by virtue of the representation
G = L×H we have that g0 = (u0, h0), where u0 ∈ L, h0 ∈ H. Since T0 = {tx}x∈E0

is the left transversal in L to R, then u0 = tx0

(L)· r0, where tx0 ∈ T0, r0 ∈ R.
Therefore supposing h1 = l−1

tx0 ,r0
h0 ∈ H, we obtain

(tx0 , id)∈T ∗0 ∗ (r0, h1)∈K = (tx0

(L)· r0, ltx0 ,r0h1) = (u0, h0) = g0.
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So, sets of the form (tx, id) ∗K, x ∈ E0 are left cosets in G to K. Therefore the set

T ∗0 = {(tx, id)| tx ∈ T0, x ∈ E0}

is a left transversal in G to K. The corresponding transversal operation is〈
E0,

(T ∗0 )· , 1
〉

, for which we have:

x
(T ∗0 )· y = z ⇔ (tx, id) ∗ (ty, id) = (tz, id) ∗ (r, h), (r, h ∈ K),

(tx
(L)· ty, ltx,ty) = (tz

(L)· r, ltz ,rh),

tx
(L)· ty = tz

(L)· r; r ∈ R,

x
(T0)· y = z,

i.e.
x

(T ∗0 )· y = x
(T0)· y, ∀x, y ∈ E0,

as required.

Let us prove one additional lemma.

Lemma 7. Let T0 = {tx}x∈E0 be a left transversal in L to R. Then ∀tu, tx ∈ T0

and ∀r ∈ R it is true that:

(tu · r) · tx = tu · (r · l−1
tu,r(tx)),

where la,b ∈ LI(L).

Proof. Really, by virtue of the definition of la,b,

l
(z)
a,b = (a · b)\(a · (b · z)).

Then
(tu · r)\(tu · (r · l−1

tu,r(rx))) = ltu,rl
−1
tu,r(tx) = tx,

i.e.
(tu · r) · tx = tu · (r · l−1

tu,r(tx)),

as required.

Let us consider the permutation representations of loop L by left cosets to a
subloop R and group G by left cosets to a subgroup K.

Lemma 8. Let L̂ be the permutation representation of a loop L by left cosets to a
subloop R, i.e. ∀g ∈ L:

ĝ(x) = y ⇔ g
(L)· (tx

(L)· R) = ty
(L)· R,
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where T0 = {tx}x∈E0 is a left transversal in L to R. Then in the group G to
its subgroup K (see Lemma 6) there exists such a left transversal T ∗0 = {t∗x}x∈E0

that for a suitable permutation representation Ğ of the group G by left cosets to its
subgroup K the following is true:

∀g ∈ L ∃ g′ ∈ G such that ĝ(x) = ğ′(x) ∀x ∈ E0.

Proof. Let the conditions of the lemma hold. According to Lemma 6, we can consider
the following left transversal

T ∗0 = {(tx, id)| tx ∈ T0}.
We have in the loop L: if g = tu · r (where tu ∈ T0, r ∈ R), then

ĝ(x) = y ,

g · (tx ·R) = ty ·R ,

g · tx = ty · r′; r′ ∈ R;
(tu · r) · tx = ty · r′.

By virtue of Lemma 7 we obtain:

tu · (r · l−1
tu,r(tx)) = ty · r′. (8)

Now pass to the group G. As an element g′ we take

g′ = (tu, k′) = (tu, id) · (r, l−1
tu,r),

where k′ ∈ K, k′ = (r, l−1
tu,r). Then we have:

ğ′(x) = z ⇔ g′t∗xK = t∗zK ⇔ g′t∗x = t∗zk
′, k′ ∈ K. (9)

And so

(tu, id) ∗ (r, l−1
tu,r) ∗ (tx, id) =

(tu, id) ∗ (r · l−1
tu,r(tx), lr,l−1

tu,r(t∗)ϕ(tx, l−1
tu,r)l

−1
tu,r) =

(tu · (r · l−1
tu,r(tx)), ltu,r·l−1

tu,r(tx)lr,l−1
tu,r(tx)ϕ(tx, l−1

tu,r)l
−1
tu,r) =

(8)
= (ty · r′, ltu,r·l−1

tu,r(tx)lr,l−1
tu,r(tx)ϕ(tx, l−1

tu,r)l
−1
tu,r︸ ︷︷ ︸

h′

) = (ty, id) ∗ (r′, h′′)︸ ︷︷ ︸
∈K

,

where h′, h′′ ∈ LI(L).
Since (r′, h′′) ∈ K, then from (9) we obtain

t∗zk
′ = g′t∗x = (ty, id)︸ ︷︷ ︸

t∗y

∗ (r′, h′′)︸ ︷︷ ︸
∈K

.

Since T ∗0 = {t∗x}x∈E0 is a left transversal in G to K then

t∗z ≡ t∗y ⇔ tz = ty; ⇔ z = y,

i. e. ğ′(x) = ĝ(x), as required.
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4 Loop transversal in loop by its subloop

Let again L be a loop, R be its subloop, and Condition A be fulfilled for them.
Define under what conditions a left transversal T0 = {tx}x∈E0 will be a left loop
transversal in a loop L by its subloop R.

First prove one preliminary lemma.

Lemma 9. Let L be a loop, R be its subloop and Condition A be fulfilled for them.
Then

1. ∀a, b, c ∈ L:
c\(a · (b ·R)) = (c\(a · b)) ·R; (10)

2. ∀a, b, c ∈ L:
a · (b · (c\R)) = (a · (b · (c\1))) ·R.

3. ∀h ∈ LI(L):
h(a ·R) = h(a) ·R, ∀a ∈ L. (11)

Proof. 1. ∀a, b, c ∈ L by virtue of Condition A we have:

c · [(c\(a · b)) ·R] = (c · (c\(a · b)) ·R = (a · b) ·R = a · (b ·R),

i.e.
c\(a · (b ·R) = (c\(a · b) ·R.

2. Using 1 we have for a · b = 1:

c\R = c\(1 ·R) = c\((a · b) ·R) = (c\(a · b)) ·R = (c\1) ·R. (12)

Then by virtue of Condition A and (12) we have:

a · (b · (c\R)) = a · (b · ((c\1) ·R)) = a · ((b · (c\1)) ·R) =

= (a · (b · (c\1))) ·R.

3. For arbitrary la,b ∈ LI(L) using 1 and Condition A we have: ∀c ∈ L

la,b(c ·R) = (a · b)\(a · (b · (c ·R))) = (a · b)\((a · (b · c)) ·R) =

= ((a · b)\(a · (b · c))) ·R = la,b(c) ·R.

Besides ∀a, b ∈ L we have: ∀c ∈ L

l−1
a,b(c ·R) = b\(a\((a · b) · (c ·R))) =

= b\(a\(((a · b) · c) ·R)) = b\((a\((a · b) · c)) ·R) =

= (b\((a · b) · c))) ·R = l−1
a,b(c) ·R.
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Since any h ∈ LI(L) may be represented in the form

h = l±1
a1,b1

· ... · l±1
ak,bk

,

then ∀h ∈ LI(L) we have: ∀a ∈ L

h(a ·R) = l±1
a1,b1

· ... · l±1
ak,bk

(a ·R) = l±1
a1,b1

· ... · l±1
ak,bk

(a) ·R = h(a) ·R.

Lemma 10. Let L be an arbitrary loop, R be its subloop, and Condition A be
fulfilled for them. Then the following conditions for an arbitrary left transversal
T0 = {tx}x∈E0 in L to R are equivalent:

1. T0 is a left transversal in L to R;

2. ∀u ∈ L and ∀h ∈ LI(L) the set Tu,h{u·h(tx·h−1(u\1))}x∈E0 is a left transversal
in L to R;

3. ∀v ∈ E0 the set Tv{tv · (tx(tv\1))}x∈E0 is a left transversal in L to R;

4. ∀u ∈ L the set T ∗u{(u\(tx · u))}x∈E0 is a left transversal in L to R;

5. ∀v ∈ E0 the set T ∗v {tv\(tx · tv)}x∈E0 is a left transversal in L to R.

Proof. Let conditions of the lemma hold. Using the results of the previous section
we have the following sequence of equivalent statements (according to Lemma 6):

– a left transversal T0 = {tx}x∈E0 in L to R is a left loop by a transversal in
L to R

⇔ the operation
〈

E0,
(T0)· , 1

〉
is a loop ⇔

– the left transversal T ∗0 = {(tx, id)︸ ︷︷ ︸
t∗x

}x∈E0 in a group G to its subgroup K is a

loop transversal (where G = L h LI(L), K = R h LI(L)), and
〈

E0,
(T ∗0 )· , 1

〉
is a

loop, coincides with the loop
〈

E0,
(T0)· , 1

〉
.

The last statement is equivalent to every of the following statements
(see [1, 6, 11]):

1. ∀g ∈ G the set gT ∗0 g−1 is a left transversal in G to K;

2. ∀x ∈ E0 the set t∗xT ∗0 t∗−1
x is a left transversal in G to K;

3. ∀g ∈ G the set g−1T ∗0 g is a left transversal in G to K;

4. ∀x ∈ E0 the set t∗−1
x T ∗0 t∗x is a left transversal in G to K.
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Further we have: if g ∈ G, g = (u, h), where u ∈ L, h ∈ H = LI(L), therefore
∀x ∈ E0:

((u, h) ∗ (tx, id) ∗ (u, h)−1(z) = (Luh) ∗ Ltx ∗ (Luh)−1(z) =

= LuhLtxh−1L−1
u (z). (13)

The set gT ∗0 g−1 is a left transversal in G to K if and only if
1)

⋃
x∈E0

(gt∗xg−1) ∗K = G;

2) ∀x1 6= x2 from E0:

(gt∗x1
g−1) ∗K ∩ (gt∗x2

g−1) ∗K = ∅. (14)

So ∀v ∈ L and h ∈ H we have

(v, h) ∗K =
⋃

r∈R, h1∈H

((v, h) ∗ (r, h1)) =

=
⋃

r∈R, h1∈H

(v · h(r), lv,h(v)ϕ(r, h)hh1) =

= (v · h(R),H) = (Lvh(R),H).

Then the conditions (14) (using (13)) are equivalent to the following:
1)

⋃
x∈E0

(LuhLtxh−1L−1
u (R)) = L;

2) ∀x1, x2 ∈ E0, x1 6= x2:

(LuhLtx1
(R)) ∩ (LuhLtx2

h−1L−1
u (R)) = ∅. (15)

By virtue of item 2 from Lemma 9 we obtain that the conditions (15) are equivalent
to the following:

1)
⋃

x∈E0

[(u · h(tx · h−1(u\1))) ·R] = L;

2) ∀x1, x2 ∈ E0, x1 6= x2:

[(u · h(tx1 · h−1(u\1))) ·R] ∩ [(u · h(tx2 · h−1(u\1))) ·R] = ∅. (16)

The conditions (16) are equivalent to that the set Tu,h{u · h(tx · h−1(u\1))} is a left
transversal in L by R. Remembering that the reasoning was carried out ∀g ∈ G, i.e.
∀u ∈ L and ∀h ∈ H = LI(L), we obtain item 2 of the present lemma.

The items 3, 4 and 5 are proved similarly to the previous reasoning, using the
corresponding statements and Lemma 9.

Corollary 1. Let L be a loop, R be its subloop, and Condition A be fulfilled for
them. Let T0 = {tx}x∈E0 be a left loop transversal in L to R. Then ∀u ∈ L the set
Tu{u · (tx · (u\1))}x∈E0 is a left transversal in L to R.

Proof. The proof easily follows from Lemma 10, 2, when h = id.
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