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Abstract. This paper deals with a generalization of Hardy-Hilbert’s inequality
for non-homogeneous kernel by considering sequences (sn), (tn), the functions φp, φq

and parameter λ. This inequality generalizes both Hardy-Hilbert’s inequality and
Mulholland’s inequality, which includes most of the recent results of this type. As
applications, the equivalent form, some particular results and a generalized Hardy-
Littlewood inequality are established.
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1 Introduction

If an, bn ≥ 0 satisfy
∑∞

n=1 a2
n < ∞ and

∑∞
n=1 b2

n < ∞, then the well known
Hilbert’s inequality (see [1]) is given by

∞∑

m=1

∞∑

n=1

ambn

m + n
< π

{ ∞∑

n=1

a2
n

∞∑

n=1

b2
n

} 1
2

(1)

and an equivalent form is given by

∞∑

n=1

( ∞∑

m=1

am

m + n

)2

< π2
∞∑

n=1

a2
n, (2)

where the constant factors π and π2 are the best possible. In 1925, Hardy [2]
gave some extensions of (1) and (2) by introducing the (p, q)-parameters as: if
p > 1, 1

p + 1
q = 1, an, bn ≥ 0 satisfy

∑∞
n=1 ap

n < ∞ and
∑∞

n=1 bq
n < ∞, then

∞∑

m=1

∞∑

n=1

ambn

m + n
<

π

sin(π/p)

{ ∞∑

n=1

ap
n

}1/p { ∞∑

n=1

bq
n

}1/q

(3)

and an equivalent form is given by

∞∑

n=1

( ∞∑

m=1

am

m + n

)p

<

[
π

sin(π/p)

]p ∞∑

n=1

ap
n, (4)
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where the constant factors π
sin(π/p) and [ π

sin(π/p) ]
p are the best possible. Inequality (3)

is called Hardy-Hilbert’s inequality and is important in analysis and its applications
(cf. Mintrinovic et al. [4]). Recently many generalizations and refinements of these
inequalities were also obtained. Some of them are given in [5–15].

If p > 1, 1
p + 1

q = 1, an, bn ≥ 0 satisfy 0 <
∑∞

m=2
1
m ap

m < ∞ and 0 <
∑∞

n=2
1
n bq

n <
∞, then the Mulholland’s inequality (cf. [1, 3]) is given by

∞∑

m=2

∞∑

n=2

ambn

mn lnmn
<

π

sin(π/p)

{ ∞∑

n=2

1
n

ap
n

}1/p { ∞∑

n=2

1
n

bq
n

}1/q

; (5)

where the constant factor π
sin(π/p) is the best possible. Replacing am with mam and

bn with nbn we have the following inequality:
If p > 1, 1

p + 1
q = 1, am, bn ≥ 0 satisfy 0 <

∑∞
n=2 np−1ap

n < ∞ and 0 <∑∞
n=2 nq−1bq

n < ∞, then the inequality

∞∑

m=2

∞∑

n=2

ambn

lnmn
<

π

sin(π/p)

{ ∞∑

n=2

np−1ap
n

} 1
p

{ ∞∑

n=2

nq−1bq
n

} 1
q

(6)

holds, where the constant factor π
sin(π/p) is the best possible. The inequality (6) is

also referred to as Mulholland’s inequality. Some generalizations of these inequalities
are given in [16,17].

Most of the recent generalizations of inequalities (1) and (3) (cf. [5–15]) estimate
the upper bounds of the double sum of the form

∑∑
K(m, n)ambn, where the

kernel K(m, n) is homogeneous in m and n. In this paper, we give a generalization
of Hardy-Hilbert’s inequality for non-homogeneous kernel K(m,n) = (sm + tn)−1

by considering the sequences (sn), (tn), the functions φp, φq and parameter λ. This
inequality generalizes both Hardy-Hilbert’s inequality and Mulholland’s inequality,
from which all the inequalities given in [5–17] are obtained as particular cases. As
applications, the equivalent form, some particular results and a generalized Hardy-
Littlewood inequality are established.

2 Some Lemmas

We first set the following notations. Suppose p > 1, 1
p + 1

q = 1 and φr (r = p, q)
is a function of r such that 0 < φr < λ (r = p, q). Let m0, n0 ∈ N and s(x), t(x) are
differentiable strictly increasing functions in (m0−1,∞) and (n0−1,∞), respectively,
such that s((m0 − 1)+) = t((n0 − 1)+) = 0 and s(∞) = t(∞) = ∞, s′(x)

(s(x))1−φq
and

t′(x)

(t(x))1−φp
are decreasing in (m0 − 1,∞) and (n0 − 1,∞), respectively. We write

s(m) = sm, s′(m) = s′m, t(n) = tn and t′(n) = t′n.
We need the formula of the β−function as (cf. Wang et al. [18]):

B(p, q) =
∫ ∞

0

1
(1 + u)p+q

up−1du = B(q, p) (p, q > 0). (7)
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Lemma 1. Define the weight functions ωλ(s, t, p, m) and ωλ(t, s, q, n) as

ωλ(s, t, p,m) =
∞∑

n=n0

1
(sm + tn)λ

t′n
(tn)1−φp

, (m ≥ m0); (8)

ωλ(t, s, q, n) =
∞∑

m=m0

1
(sm + tn)λ

s′m
(sm)1−φq

, (n ≥ n0). (9)

Then

ωλ(s, t, p,m) < B(φp, λ− φp)(sm)φp−λ, (m ≥ m0); (10)

ωλ(t, s, q, n) < B(φq, λ− φq)(tn)φq−λ, (n ≥ n0). (11)

Proof. Since λ > 0, s(x), t(x) are differentiable, strictly increasing functions and
s′(x)

(s(x))1−φq
and t′(x)

(t(x))1−φp
are decreasing in (m0 − 1,∞) and (n0 − 1,∞), respectively.

So

ωλ(s, t, p,m) <

∞∑
n=n0

∫ n

n−1

1
(sm + t(y))λ

t′(y)
(t(y))1−φp

dy

=
∫ ∞

n0−1

(t(y))φp−1t′(y)
(sm + t(y))λ

dy

= (sm)φp−λ

∫ ∞

0

1
(1 + u)λ

uφp−1du

(
setting u =

t(y)
sm

)
.

Then by (7), we get (10). Similarly, (11) can be proved. The lemma is proved.

Lemma 2. If φp + φq = λ and 0 < ε < qφp, then

∑
1

: =
∞∑

m=m0

∞∑
n=n0

1
(sm + tn)λ

× s′m
(sm)1−φq+ ε

p

× t′n
(tn)1−φp+ ε

q

>
1

ε(sm0)ε
B

(
φp − ε

q
, φq +

ε

q

)
−©(1).

(12)

Proof. Since λ > 0, s(x), t(x) are differentiable strictly increasing functions and
s′(x)

(s(x))1−φq
and t′(x)

(t(x))1−φp
are decreasing in (m0 − 1,∞) and (n0 − 1,∞), respectively,
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we have
∑

1
>

∫ ∞

m0

∫ ∞

n0

1
(s(x) + t(y))λ

× s′(x)

(s(x))1−φq+ ε
p

× t′(y)

(t(y))1−φp+ ε
q

dxdy

=
∫ ∞

m0

s′(x)
(s(x))1+ε

[∫ ∞

t(n0)
s(x)

1
(1 + u)λ

u
φp− ε

q
−1

du

]
dx

(
setting u =

t(y)
s(x)

)

=
∫ ∞

m0

s′(x)
(s(x))1+ε

dx

∫ ∞

0

u
φp− ε

q
−1

(1 + u)λ
du−

∫ ∞

m0

s′(x)
(s(x))1+ε

[∫ t(n0)
s(x)

0

u
φp− ε

q
−1

(1 + u)λ
du

]
dx

>
1

ε(s(m0))ε

∫ ∞

0

u
φp− ε

q
−1

(1 + u)λ
du−

∫ ∞

m0

s′(x)
(s(x))1+ε

[∫ t(n0)
s(x)

0
u

φp− ε
q
−1

du

]
dx

=
1

ε(sm0)ε

∫ ∞

0

u
φp− ε

q
−1

(1 + u)λ
du− (tn0)

φp− ε
q

(um0)
φp− ε

q
+ε

(
φp − ε

q

)−1(
φp − ε

q
+ ε

)−1

.

Then by (7), (12) is valid. The lemma is proved.

3 Main Result

Theorem 1. If p > 1, 1
p + 1

q = 1, 0 < φr < λ (r = p, q) and an, bn ≥ 0 satisfy

0 <
∑∞

m=m0

(sm)φp−λ+(p−1)(1−φq)

(s′m)p−1 ap
m < ∞ and 0 <

∑∞
n=n0

(tn)φq−λ+(q−1)(1−φp)

(t′n)q−1 bq
n < ∞,

then

∞∑
m=m0

∞∑
n=n0

ambn

(sm + tn)λ
< Hλ(φp, φq)

{ ∞∑
m=m0

(sm)φp−λ+(p−1)(1−φq)

(s′m)p−1
ap

m

} 1
p

×
{ ∞∑

n=n0

(tn)φq−λ+(q−1)(1−φp)

(t′n)q−1
bq
n

} 1
q

(13)

where Hλ(φp, φq) = B
1
p (φp, λ− φp)B

1
q (φq, λ− φq).

Proof. By Hölder’s inequality with weight (cf. Kuang [19]), we have

∞∑
m=m0

∞∑
n=n0

ambn

(sm + tn)λ

=
∞∑

m=m0

∞∑
n=n0

1
(sm + tn)λ

{
(tn)(φp−1)/p(t′n)1/p

(sm)(φq−1)/q(s′m)1/q
am

}{
(sm)(φq−1)/q(s′m)1/q

(tn)(φp−1)/p(t′n)1/p
bn

}

≤
{ ∞∑

m=m0

[ ∞∑
n=n0

1
(sm + tn)λ

t′n
(tn)1−φp

]
(sm)(p−1)(1−φq)

(s′m)p−1
ap

m

} 1
p

×
{ ∞∑

n=n0

[ ∞∑
m=m0

1
(sm + tn)λ

s′m
(sm)1−φq

]
(tn)(q−1)(1−φp)

(t′n)q−1
bq
n

} 1
q

.
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Then by (8) and (9), we have

∞∑
m=m0

∞∑
n=n0

ambn

(sm + tn)λ
≤

{ ∞∑
m=m0

ωλ(s, t, p, m)
(sm)(p−1)(1−φq)

(s′m)p−1
ap

m

} 1
p

×
{ ∞∑

n=n0

ωλ(t, s, q, n)
(tn)(q−1)(1−φp)

(t′n)q−1
bq
n

} 1
q

and in view of (10) and (11), it follows that (13) is valid. The theorem is proved.

Theorem 2. If p > 1, 1
p + 1

q = 1, 0 < φr < λ (r = p, q) and an ≥ 0 satisfy

0 <
∑∞

m=m0

(sm)φp−λ+(p−1)(1−φq)

(s′m)p−1 ap
m < ∞, then we obtain an equivalent inequality of

(13) as follows:

∞∑
n=n0

t′n
(tn)1−φp+(p−1)(φq−λ)

[ ∞∑
m=m0

am

(sm + tn)λ

]p

< [Hλ(φp, φq)]
p

∞∑
m=m0

(sm)φp−λ+(p−1)(1−φq)

(s′m)p−1
ap

m.

(14)

Proof. Setting bn = t′n
(tn)1−φp+(p−1)(φq−λ)

[∑∞
m=m0

am

(sm+tn)λ

]p−1
and using (13) we

obtain

0 <
∞∑

n=n0

(tn)φq−λ+(q−1)(1−φp)

(t′n)q−1
bq
n

=
∞∑

n=n0

t′n
(tn)1−φp+(p−1)(φq−λ)

[ ∞∑
m=m0

am

(sm + tn)λ

]p

=
∞∑

m=m0

∞∑
n=n0

ambn

(sm + tn)λ

≤ Hλ(φp, φq)

{ ∞∑
m=m0

(sm)φp−λ+(p−1)(1−φq)

(s′m)p−1
ap

m

} 1
p

×
{ ∞∑

n=n0

(tn)φq−λ+(q−1)(1−φp)

(t′n)q−1
bq
n

} 1
q

.

(15)
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Hence

0 <

[ ∞∑
n=n0

(tn)φq−λ+(q−1)(1−φp)

(t′n)q−1
bq
n

] 1
p

=

{ ∞∑
n=n0

t′n
(tn)1−φp+(p−1)(φq−λ)

[ ∞∑
m=m0

am

(sm + tn)λ

]p} 1
p

≤ Hλ(φp, φq)

{ ∞∑
m=m0

(sm)φp−λ+(p−1)(1−φq)

(s′m)p−1
ap

m

} 1
p

< ∞.

(16)

By using (13) it follows that (15) takes the form of strict inequality; so does (16).
Hence we get (14).

On the other hand, if (14) holds, then by Hölder’s inequality, we have

∞∑
m=m0

∞∑
n=n0

ambn

(sm + tn)λ

=
∞∑

n=n0

[
(t′n)1/p

(tn)(1−φp+(p−1)(φq−λ))/p

∞∑
m=m0

am

(sm + tn)λ

][
(tn)(1−φp+(p−1)(φq−λ))/p

(t′n)1/p
bn

]

≤
{ ∞∑

n=n0

t′n
(tn)1−φp+(p−1)(φq−λ)

[ ∞∑
m=m0

am

(sm + tn)λ

]p}1
p
{ ∞∑

n=n0

(tn)φq−λ+(q−1)(1−φp)

(t′n)q−1
bq
n

}1
q

.

Hence by (14), (13) yields. Thus it follows that (13) and (14) are equivalent. The
theorem is proved.

Theorem 3. If p > 1, 1
p + 1

q = 1, φr > 0 (r = p, q), φp + φq = λ, an, bn ≥ 0 satisfy

0 <
∑∞

m=m0

(sm)p(1−φq)−1

(s′m)p−1 ap
m < ∞ and 0 <

∑∞
n=n0

(tn)q(1−φp)−1

(t′n)q−1 bq
n < ∞, then

∞∑
m=m0

∞∑
n=n0

ambn

(sm + tn)λ
< B(φp, φq)

{ ∞∑
m=m0

(sm)p(1−φq)−1

(s′m)p−1
ap

m

}1
p
{ ∞∑

n=n0

(tn)q(1−φp)−1

(t′n)q−1
bq
n

}1
q

(17)

where the constant factor B(φp, φq) is the best possible.

Proof. Since φp + φq = λ, then by Theorem 1, (17) is valid. For 0 < ε < qφp, we
take

ãm = (sm)−1+φq−ε/p s′m (m ≥ m0),

b̃n = (tn)−1+φp−ε/q t′n (n ≥ n0).
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Since s′(x)
(s(x))1+ε = s′(x)

(s(x))1−φq
1

(s(x))φq+ε is decreasing in (m0 − 1,∞), we have

∞∑
m=m0

(sm)p(1−φq)−1

(s′m)p−1
ãp

m =
s′m0

(sm0)1+ε
+

∞∑

m=m0+1

s′m
(sm)1+ε

≤ s′m0

(sm0)1+ε
+

∫ ∞

m0

s′(x)
(s(x))1+ε

dx

=
1
ε

[
ε

s′m0

(sm0)1+ε
+

1
(sm0)ε

]
.

(18)

Similarly,
∞∑

n=n0

(tn)q(1−φp)−1

(t′n)q−1
b̃q
n ≤

1
ε

[
ε

t′n0

(tn0)1+ε
+

1
(tn0)ε

]
. (19)

If the constant factor B(φp, φq) in (17) is not the best possible, then there exists a
positive constant K < B(φp, φq) such that (17) is still valid if we replace B(φp, φq)
by K. In particular by (12), (18) and (19), we have

1
(sm0)ε

B

(
φp − ε

q
, φq +

ε

q

)
− ε© (1)

< ε
∑

1
= ε

∞∑
m=m0

∞∑
n=n0

ãmb̃n

(sm + tn)λ

< εK

{ ∞∑
m=m0

(sm)p(1−φq)−1

(s′m)p−1
ãp

m

} 1
p

{ ∞∑
n=n0

(tn)q(1−φp)−1

(t′n)q−1
b̃q
n

} 1
q

< K

{
ε

s′m0

(sm0)1+ε
+

1
(sm0)ε

} 1
p

{
ε

t′n0

(tn0)1+ε
+

1
(tn0)ε

} 1
q

and taking ε → 0+, we get B(φp, φq) ≤ K. This contradiction leads to the conclusion
that the constant factor B(φp, φq) in (17) is the best possible. The theorem is
proved.

Corollary 1. If p > 1, 1
p + 1

q = 1 and am ≥ 0 satisfy 0 <
∑∞

m=m0
(s′m)1−rar

m < ∞
(r = p, q), then

∞∑
m=m0

∞∑
n=m0

aman

sm + sn
<

π

sin π
p

( ∞∑
m=m0

(s′m)1−pap
m

) 1
p

( ∞∑
m=m0

(s′m)1−qaq
m

) 1
q

(20)

where the constant factor π
sin(π/p) is the best possible.

Proof. Taking an = bn, sn = tn, λ = 1, φr = 1
r (r = p, q) in (17), we get (20). The

corollary is proved.



36 NAMITA DAS, SRINIBAS SAHOO

Corollary 2. If p > 1, 1
p + 1

q = 1 and am ≥ 0 satisfy 0 <
∑∞

m=m0

(sm)
r
2−1

(s′m)r−1 ar
m < ∞

(r = p, q), then

∞∑
m=m0

∞∑
n=m0

aman

sm + sn
< π

( ∞∑
m=m0

(sm)
p
2
−1

(s′m)p−1
ap

m

) 1
p

( ∞∑
m=m0

(sm)
q
2
−1

(s′m)q−1
aq

m

) 1
q

(21)

where the constant factor π is the best possible.

Proof. Taking an = bn, sn = tn, λ = 1, φr = 1
2 (r = p, q) in (17), we get (21). The

corollary is proved.

Theorem 4. If p > 1, 1
p + 1

q = 1, φr > 0 (r = p, q), φp + φq = λ, an ≥ 0 satisfy

0 <
∑∞

m=m0

(sm)p(1−φq)−1

(s′m)p−1 ap
m < ∞, then we obtain an equivalent inequality of (17)

as follows:
∞∑

n=n0

t′n
(tn)1−pφp

[ ∞∑
m=m0

am

(sm + tn)λ

]p

< [B(φp, φq)]
p

∞∑
m=m0

(sm)p(1−φq)−1

(s′m)p−1
ap

m (22)

where the constant factor [B(φp, φq)]
p is the best possible.

Proof. Since φp + φq = λ, then by Theorem 2, we get inequalities (17) and (22) are
equivalent. By Theorem 3, the constant factor in (17) is best possible, hence the
constant factor in (22) is best possible. The theorem is proved.

4 Generalization of Hardy-Hilbert’s Inequality

Theorem 5. If p > 1, 1
p + 1

q = 1, 0 < φr < λ(r = p, q), A,B > 0, 0 < α ≤ 1
φq

,

0 < β ≤ 1
φp

, an, bn ≥ 0 satisfy 0 <
∑∞

m=1 mα(φp−λ+(1−p)φq)+p−1ap
m < ∞ and

0 <
∑∞

n=1 nβ(φq−λ+(1−q)φp)+q−1bq
n < ∞, then the following two equivalent inequali-

ties hold:

∞∑

m=1

∞∑

n=1

ambn

(Amα + Bnβ)λ
< µHλ(φp, φq)

{ ∞∑

m=1

mα(φp−λ+(1−p)φq)+p−1ap
m

} 1
p

×
{ ∞∑

n=1

nβ(φq−λ+(1−q)φp)+q−1bq
n

} 1
q

;

(23)

∞∑

n=1

nβ(φp+(1−p)(φq−λ))−1

[ ∞∑

m=1

am

(Amα + Bnβ)λ

]p

< [µHλ(φp, φq)]
p
∞∑

m=1

mα(φp−λ+(1−p)φq)+p−1ap
m

(24)

where µ =
(

Aφp−λ

βBφp

) 1
p

(
Bφq−λ

αAφq

) 1
q and Hλ(φp, φq) = B

1
p (φp, λ−φp)B

1
q (φq, λ−φq). The

constant factors µHλ(φp, φq) and [µHλ(φp, φq)]
p are the best possible if φp +φq = λ.
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Proof. Setting sm = Amα, tn = Bnβ in Theorem 1 and Theorem 2, we get both
the inequalities (23) and (24) are valid and equivalent. From Theorem 3 and Theo-
rem 4, it follows that the constant factors are the best possible. This completes the
proof.

We discuss a number of special cases of inequality (23). Similar inequalities can
also be derived from inequality (24).

Example 1. Setting φp = 1 − A2p, φq = 1 − A1q in Theorem 5, we have the
following inequality: If p > 1, 1

p + 1
q = 1, A,B > 0, A1 < 1

q , A2 < 1
p , 0 <

α ≤ 1
1−A1q , 0 < β ≤ 1

1−A2p , λ > max {1−A2p, 1−A1q} , am, bn ≥ 0 satisfy 0 <∑∞
m=1 mα(2−p−λ+p(A1−A2))+p−1ap

m <∞ and 0 <
∑∞

n=1 nβ(2−q−λ+q(A2−A1))+q−1bq
n <

∞, then

∞∑

m=1

∞∑

n=1

ambn

(Amα + Bnβ)λ
< L

{ ∞∑

m=1

mα(2−p−λ+p(A1−A2))+p−1ap
m

} 1
p

×
{ ∞∑

n=1

nβ(2−q−λ+q(A2−A1))+q−1bq
n

} 1
q

(25)

where L =
(

A1−A2p−λ

βB1−A2p

) 1
p

(
B1−A1q−λ

αA1−A1q

) 1
q
Hλ (1−A2p, 1−A1q). For A = B = α =

β = 1, we get the result of Brnetic and Pecaric [5, Theorem 2].

Example 2. Setting φr = λ
r (r = p, q) in Theorem 5, we have the following inequal-

ity: If p > 1, 1
p + 1

q = 1, A, B > 0, 0 < α ≤ q
λ , 0 < β ≤ p

λ , λ > 0, am, bn ≥ 0
satisfy 0 <

∑∞
m=1 m(p−1)(1−αλ)ap

m < ∞ and 0 <
∑∞

n=1 n(q−1)(1−βλ)bq
n < ∞, then

∞∑

m=1

∞∑

n=1

ambn

(Amα+Bnβ)λ
<µB

(
λ

p
,
λ

q

){ ∞∑

m=1

m(p−1)(1−αλ)ap
m

}1
p
{∞∑

n=1

n(q−1)(1−βλ)bq
n

}1
q

(26)

where µ =
(
A

λ
q B

λ
p α

1
q β

1
p

)−1
and the constant factor µB

(
λ
p , λ

q

)
is the best possible.

For A = B = λ = 1, α = β, we get the result of Yang [7]. Setting α = β = 1, p =
q = 2, we get the result of Yang [13] and setting α = β = 1, we get the result of
Yang [15].

Example 3. Setting φr = λ(1 − 1
r ) (r = p, q) in Theorem 5, we have the following

inequality: If p > 1, 1
p + 1

q = 1, A, B > 0, 0 < α ≤ p
λ , 0 < β ≤ q

λ , λ > 0 and
am, bn ≥ 0 satisfy 0 <

∑∞
m=1 mp−αλ−1ap

m < ∞ and 0 <
∑∞

n=1 nq−βλ−1bq
n < ∞, then

∞∑

m=1

∞∑

n=1

ambn

(Amα+Bnβ)λ
< µB

(
λ

p
,
λ

q

){ ∞∑

m=1

mp−αλ−1ap
m

}1
p
{ ∞∑

n=1

nq−βλ−1bq
n

}1
q

(27)
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where µ =
(
A

λ
p B

λ
q α

1
q β

1
p

)−1
and the constant factor µB

(
λ
p , λ

q

)
is the best possible.

For λ = 1, α = β, we get the result of Yang [8]. Setting A = B = α = β = 1, we
recover the result of Yang [9].

Example 4. Setting φr = 1 + λ−2
r (r = p, q) in Theorem 5, we have the following

inequality: If p > 1, 1
p + 1

q = 1, A, B > 0, 0 < α ≤ q
q+λ−2 , 0 < β ≤ p

p+λ−2 ,

λ > 2 − min{p, q}, am, bn ≥ 0 satisfy 0 <
∑∞

m=1 m(p−1)(1−α(q+λ−2))ap
m < ∞ and

0 <
∑∞

n=1 n(q−1)(1−β(p+λ−2))bq
n < ∞, then

∞∑

m=1

∞∑

n=1

ambn

(Amα + Bnβ)λ
<L1

{ ∞∑

m=1

m(p−1)(1−α(q+λ−2))ap
m

}1
p
{∞∑

n=1

n(q−1)(1−β(p+λ−2))bq
n

}1
q

(28)

where the constant factor L1 =
(
A

q+λ−2
q B

p+λ−2
p α

1
q β

1
p

)−1

×B
(

p+λ−2
p , q+λ−2

q

)
is the

best possible. In particular for α = β = 1, p = q = 2, we get the result of Yang [13].

Example 5. Setting φr = 1 + (1 − 1
r )(λ − 2) (r = p, q) in Theorem 5, we have

the following inequality: If p > 1, 1
p + 1

q = 1, A, B > 0, 0 < α ≤ p
p+λ−2 ,

0 < β ≤ q
q+λ−2 , λ > 2−min{p, q}, am, bn ≥ 0 satisfy 0 <

∑∞
m=1 mα(2−λ−p)+p−1ap

m <

∞ and 0 <
∑∞

n=1 nβ(2−λ−q)+q−1bq
n < ∞, then

∞∑

m=1

∞∑

n=1

ambn

(Amα + Bnβ)λ
<L2

{ ∞∑

m=1

mα(2−λ−p)+p−1ap
m

}1
p
{ ∞∑

n=1

nβ(2−λ−q)+q−1bq
n

}1
q

(29)

where the constant factor L2 =
(
A

p+λ−2
p B

q+λ−2
q α

1
q β

1
p

)−1

×B
(

p+λ−2
p , q+λ−2

q

)
is the

best possible. For α = β = 1, we get the result of Yang and Debnath [6]. Setting
A = B = λ = 1, α = β, we recover the result of Yang [7].

Example 6. Setting φr = λ−1
2 + 1

r (r = p, q), in Theorem 5, we have the
following inequality: If p > 1, 1

p + 1
q = 1, A,B > 0, 0 < α ≤ (λ−1

2 +
1
q )−1, 0 < β ≤ (λ−1

2 + 1
p)−1, λ > 1 − 2 min{1

p , 1
q}, am, bn ≥ 0 satisfy 0 <∑∞

m=1 mp−1+α(2−pλ−p)/2ap
m < ∞ and 0 <

∑∞
n=1 nq−1+β(2−qλ−q)/2bq

n < ∞, then

∞∑

m=1

∞∑

n=1

ambn

(Amα + Bnβ)λ
<L3

{ ∞∑

m=1

mp−1+α(2−pλ−p)/2ap
m

}1
p
{∞∑

n=1

nq−1+β(2−qλ−q)/2bq
n

}1
q

(30)

where the constant factor L3 =
(
A

λ−1
2

+ 1
q B

λ−1
2

+ 1
p α

1
q β

1
p

)−1
×B

(
λ−1

2 + 1
p , λ−1

2 + 1
q

)

is the best possible. Setting A = B = λ = 1, α = β, we recover the result of
Yang [7].
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Example 7. Setting φp = λ( 1
α + (1 − 1

p)(α − 2)), φq = λ( 1
β + (1 − 1

q )(β − 2))
in Theorem 5, we have the following inequality: If p > 1, 1

p + 1
q = 1, A, B, λ > 0,

2 − p < α ≤ 2 + p(λ−1
λ ), 2 − q < β ≤ 2 + q(λ−1

λ ), am, bn ≥ 0 satisfy
0 <

∑∞
m=1 mλ(2−α−p)+p−1ap

m < ∞ and 0 <
∑∞

n=1 nλ(2−β−q)+q−1bq
n < ∞, then

∞∑

m=1

∞∑

n=1

ambn

(Amα + Bnβ)λ
< L4

{ ∞∑

m=1

mλ(2−α−p)+p−1ap
m

}1
p
{ ∞∑

n=1

nλ(2−β−q)+q−1bq
n

}1
q

(31)

where the constant factor L4 =
(

A
λ(p+α−2)

pα B
λ(q+β−2)

qβ α
1
q β

1
p

)−1

× B
(

λ(p+α−2)
pα ,

λ(q+β−2)
qβ

)
is the best possible. For A = B = λ = 1, α = β, we get the result

of Yang [12].

Remark 1. Setting (i) φr = 1
r (r = p, q), (ii) φr = 1 − 1

r (r = p, q),
(iii) φr = λ+1

2 − 1
r (r = p, q) in Theorem 5, we get new inequalities.

Remark 2. Taking α = β, A = B = 1, φr = ϕr

α (r = p, q) in (23), we get the result
of Yang [10].
Remark 3. Taking sm = tm = u(m) in Theorem 3, we get the result of Yang [14].

For other appropriate values of λ, φp, φq and suitably choosing sequences sm and
tn in Theorem 1 and Theorem 3, one can obtain many new inequalities.

5 Generalization of Mulholland’s Inequality

Theorem 6. If p > 1, 1
p + 1

q = 1, 0 < φr ≤ 1 (r = p, q), λ > max{φp, φq},
α, β > 0 and an, bn ≥ 0 satisfy 0 <

∑∞
m=2 mp−1(lnm)φp−λ+(p−1)(1−φq)ap

m < ∞
and 0 <

∑∞
n=2 nq−1(lnn)φq−λ+(q−1)(1−φp)bq

n < ∞, then the following two equivalent
inequalities holds:

∞∑

m=2

∞∑

n=2

ambn

(lnmαnβ)λ
< ηHλ(φp, φq)

{ ∞∑

m=2

mp−1(lnm)φp−λ+(p−1)(1−φq)ap
m

} 1
p

×
{ ∞∑

n=2

nq−1(lnn)φq−λ+(q−1)(1−φp)bq
n

} 1
q

;

(32)

∞∑

n=2

(lnn)φp−1+(p−1)(λ−φq)

n

[ ∞∑

m=2

am

(lnmαnβ)λ

]p

< [ηHλ(φp, φq)]
p
∞∑

m=2

mp−1(lnm)φp−λ+(p−1)(1−φq)ap
m

(33)

where η =
(

αφp−λ

βφp

) 1
p

(
βφq−λ

αφq

) 1
q and Hλ(φp, φq) = B

1
p (φp, λ − φp)B

1
q (φq, λ − φq).

The constant factors ηHλ(φp, φq) and [ηHλ(φp, φq)]
p are the best possible if

φp + φq = λ.
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Proof. Setting sm = lnmα, tn = lnnβ in Theorem 1 and Theorem 2, we get both
the inequalities (32) and (33) are valid and equivalent. The constant factors are
the best possible obtained from Theorem 3 and Theorem 4. This completes the
proof.

Example 8. Setting φr = 1
r (r = p, q) in Theorem 6, we obtain the following

inequality: If p > 1, 1
p + 1

q = 1, α > 0, β > 0, λ > max
{

1
p , 1

q

}
, am, bn ≥ 0 satisfy

0 <
∑∞

m=2 mp−1(lnm)1−λap
m < ∞ and 0 <

∑∞
n=2 nq−1(lnn)1−λbq

n < ∞, then

∞∑

m=2

∞∑

n=2

ambn

(lnmαnβ)λ
<ηHλ

(
1
p
,
1
q

){ ∞∑

m=2

mp−1(lnm)1−λap
m

}1
p
{ ∞∑

n=2

nq−1(lnn)1−λbq
n

}1
q

.

(34)

In particular for α = β = λ = 1, we get the result of Yang [16, Theorem 2.1].

Example 9. Setting φr = λ
r (r = p, q) in Theorem 6, we have the following

inequality: If p > 1, 1
p + 1

q = 1, α > 0, β > 0, 0 < λ ≤ min{p, q}, am, bn ≥ 0 satisfy
0 <

∑∞
m=2 mp−1(lnm)(p−1)(1−λ)ap

m < ∞ and 0 <
∑∞

n=2 nq−1(lnn)(q−1)(1−λ)bq
n < ∞,

then

∞∑

m=2

∞∑

n=2

ambn

(lnmαnβ)λ
<

1

α
λ
q β

λ
p

B

(
λ

p
,
λ

q

){ ∞∑

m=2

mp−1(lnm)(p−1)(1−λ)ap
m

} 1
p

×
{ ∞∑

n=2

nq−1(lnn)(q−1)(1−λ)bq
n

} 1
q

(35)

where the constant factor 1
αλ/qβλ/p B

(
λ
p , λ

q

)
is the best possible. In particular for

α = β = λ = 1, we get the result of Yang [16, Theorem 2.1].

Example 10. Setting φr = λ(1− 1
r ) (r = p, q) in Theorem 6, we have the following

inequality: If p > 1, 1
p + 1

q = 1, α > 0, β > 0, 0 < λ ≤ min{p, q}, am, bn ≥ 0 satisfy
0 <

∑∞
m=2 mp−1(lnm)p−λ−1ap

m < ∞ and 0 <
∑∞

n=2 nq−1(lnn)q−λ−1bq
n < ∞, then

∞∑

m=2

∞∑

n=2

ambn

(lnmαnβ)λ
<

1

α
λ
p β

λ
q

B

(
λ

p
,
λ

q

){ ∞∑

m=2

mp−1(lnm)p−λ−1ap
m

} 1
p

×
{ ∞∑

n=2

nq−1(lnn)q−λ−1bq
n

} 1
q

(36)

where the constant factor 1
αλ/pβλ/q B

(
λ
p , λ

q

)
is the best possible.

In particular for α = β = λ = 1, it reduces to

∞∑

m=2

∞∑

n=2

ambn

(lnmn)λ
<

π

sin π
p

{ ∞∑

m=2

mp−1(lnm)p−2ap
m

}1
p
{ ∞∑

n=2

nq−1(lnn)q−2bq
n

}1
q

(37)
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and we obtain a new inequality in (p, q)-parameter form other than (6), with the
same best constant factor.

Example 11. Setting φr = 1+(1− 1
r )(λ−2)(r = p, q) in Theorem 6, we have the fol-

lowing inequality: If p > 1, 1
p+ 1

q = 1, α > 0, β > 0, 2−min{p, q} < λ ≤ 2, am, bn ≥
0 satisfy 0 <

∑∞
m=2 mp−1(lnm)1−λap

m < ∞ and 0 <
∑∞

n=2 nq−1(lnn)1−λbq
n < ∞,

then

∞∑

m=2

∞∑

n=2

ambn

(lnmαnβ)λ
<ηkλ(p)

{ ∞∑

m=2

mp−1(lnm)1−λap
m

}1
p
{∞∑

n=2

nq−1(lnn)1−λbq
n

}1
q

(38)

where η = α
2−λ−p

p β
2−λ−q

q , kλ(p) = B
(

p+λ−2
p , q+λ−2

q

)
and the constant factor

ηkλ(p) is the best possible.

In particular for α = β = 1 , we get

∞∑

m=2

∞∑

n=2

ambn

(lnmn)λ
<kλ(p)

{ ∞∑

m=2

mp−1(lnm)1−λap
m

}1
p
{ ∞∑

n=2

nq−1(lnn)1−λbq
n

}1
q

(39)

where the constant factor kλ(p) is the best possible. For λ = 1, it reduces to the
result of Yang [16, Theorem 2.1]. Replacing am, bn by am

mr , bn
ns respectively, we get

the result of Yang and Debnath [17, Theorem 1]).

Example 12. Setting φr = λ−1
2 + 1

r (r = p, q) in Theorem 6, we have the fol-
lowing inequality: If p > 1, 1

p + 1
q = 1, α > 0, β > 0, 1 − 2min{1

p , 1
q} < λ <

1 + 2 min{1
p , 1

q}, am, bn ≥ 0 satisfy 0 <
∑∞

m=2 mp−1(lnm)p(1−λ)/2ap
m < ∞ and

0 <
∑∞

n=2 nq−1(lnn)q(1−λ)/2bq
n < ∞, then

∞∑

m=2

∞∑

n=2

ambn

(lnmαnβ)λ

< ηk̃λ(p)

{ ∞∑

m=2

mp−1(lnm)p(1−λ)/2ap
m

} 1
p

{ ∞∑

n=2

nq−1(lnn)q(1−λ)/2bq
n

} 1
q

(40)

where η = α
1−λ

2
− 1

q β
1−λ

2
− 1

p , k̃λ(p) = B
(

λ−1
2 + 1

p , λ−1
2 + 1

q

)
and the constant factor

ηk̃λ(p) is the best possible. In particular for α = β = λ = 1, it reduces to (6).

Remark 4. Setting (i) φr = 1 − 1
r (r = p, q), (ii) φr = 1 + λ−2

r (r = p, q),
(iii) φr = λ+1

2 − 1
r (r = p, q) in Theorem 6, we get new inequalities.
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6 Applications

In this section, we will give the generalizations of Hardy-Littlewood’s inequality.
Let f ∈ L2(0, 1) and f(x) 6= 0. If

an =
∫ 1

0
xnf(x)dx, n = 0, 1, 2, 3, . . .

then we have the Hardy-Littlewood’s inequality (see [1]) of the form

∞∑

n=0

a2
n < π

∫ 1

0
f2(x)dx (41)

where the constant factor π is the best possible. Yang [11] gave a generalization of
(41) for p ≥ 2 as

( ∞∑

n=0

ap
n

)1+ 1
p

<
π

sin π
p

( ∞∑

n=0

ap(p−1)
n

) 1
p ∫ 1

0
f2(x)dx. (42)

Theorem 7. Let p > 1, 1
p + 1

q = 1, f ∈ L2(0, 1), f(x) 6= 0 and

an = (s′n)
1
p

∫ 1

0
xsn− 1

2 f(x)dx, n ≥ m0.

If 0 <
∑∞

n=m0
(s′n)2−pa

p(p−1)
n < ∞, then

( ∞∑
n=m0

ap
n

)1+ 1
p

<
π

sin π
p

( ∞∑
n=m0

(s′n)2−pap(p−1)
n

) 1
p ∫ 1

0
f2(x)dx. (43)

Proof. Applying Schwartz inequality, we have

( ∞∑
n=m0

ap
n

)2

=

( ∞∑
n=m0

ap−1
n (s′n)

1
p

∫ 1

0
xsn− 1

2 f(x)dx

)2

=

{∫ 1

0

( ∞∑
n=m0

ap−1
n (s′n)

1
p xsn− 1

2

)
f(x)dx

}2

≤
∫ 1

0

( ∞∑
n=m0

ap−1
n (s′n)

1
p xsn− 1

2

)2

dx

∫ 1

0
f2(x)dx

=

{ ∞∑
n=m0

∞∑
m=m0

ap−1
n (s′n)

1
p ap−1

m (s′m)
1
p

sn + sm

} ∫ 1

0
f2(x)dx.

(44)
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Since f(x) 6= 0, s′n > 0. So, an 6= 0. Hence it is impossible to get equality in (44).
Again by Corollary 1, we have

∞∑
n=m0

∞∑
m=m0

ap−1
n (s′n)

1
p ap−1

m (s′m)
1
p

sn + sm

≤ π

sin π
p

( ∞∑
n=m0

(s′n)1−pap(p−1)
n s′n

) 1
p

( ∞∑
n=m0

(s′n)1−qaq(p−1)
n (s′n)

q
p

) 1
q

=
π

sin π
p

( ∞∑
n=m0

(s′n)2−pap(p−1)
n

) 1
p

( ∞∑
n=m0

ap
n

) 1
q

.

Hence we obtain the inequality (43). This complete the proof of the theorem.

Theorem 8. Let p > 1, 1
p + 1

q = 1, f ∈ L2(0, 1), f(x) 6= 0 and

an =
(s′n)

1
p

(sn)
1
p
− 1

2

∫ 1

0
xsn− 1

2 f(x)dx, n ≥ m0.

If

0 <
∞∑

n=m0

(
s′n
sn

)2−p

ap(p−1)
n < ∞

then ( ∞∑
n=m0

ap
n

)1+ 1
p

< π

( ∞∑
n=m0

(
s′n
sn

)2−p

ap(p−1)
n

) 1
p ∫ 1

0
f2(x)dx. (45)

Proof. Proceeding as in Theorem 7 and using Corollary 2, the proof of the theorem
follows.

Remark 5. For sn = n, (43) becomes (42). Taking p = 2 in Theorem 7 and Theorem
8, we get

∞∑
n=m0

a2
n < π

∫ 1

0
f2(x)dx (46)

which reduces to (41) for sn = n.
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