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Saddle points with respect to a set
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Abstract. An extension of the concept of saddle point, a continuous property of two
functions related to saddle points with respect to a set and a theorem of existence of
saddle points with respect to a set are given. The paper ends with an example which
shows that the proved theorems are consistent.
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1 Introduction

Let A and B be nonempty sets and f : A×B → R be a function. We remember
that a point (a, b) ∈ A×B is said to be a saddle point of f on A×B if

f(x, b) ≤ f(a, b) ≤ f(a, y), for all (x, y) ∈ A×B. (1)

The condition (1) is equivalent to

max
x∈A

min
y∈B

f(x, y) = min
y∈B

max
x∈A

f(x, y). (2)

Let us consider a two-person zero-sum game Gf generated by the function f.
This means that the first player selects a point x from A and the second player
selects a point y from B. As a result of this choise, the second player pays the first
one the amount f (x, y) . Then a point (a, b) ∈ A × B is a solution of the game Gf

if and only if it is a saddle point of f on A×B.
The first saddle point theorem was proved by von Neumann [11]. Von Neumann’s

theorem can be stated as follows: if A and B are finite dimensional simplices and f is
a bilinear function on A×B, then f has a saddle point; i.e (2) holds. M. Shiffman [14]
seems to have been the first to have considered concave-convex functions in a saddle
point theorem. H. Kneser [10], K. Fan [6], and C.Berge [1] (using induction and the
method of separating two disjoint convex sets in Euclidian space by a hyperplane)
proved saddle point theorems for concave-convex functions that are appropriately
semicontinuous in one of the two variables. H. Nikaido [12], on the other hand,
using Brouwer’s fixed point theorem, proved the existence of a saddle point for a
function satisfying the weaker algebraic condition of being quasi-concave-convex, but
the stronger topological condition of being continuous in each variable. M. Sion [16]
proved a very general saddle point theorem for a function which is quasi-concave and
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upper semicontinuous in its first variabile and quasi-convex and lower semicontinuous
in its second variable in a topological vector space.

Most of the effort has been spent on relaxing the assumptions on the concave-
convexity of f and also on the compactness condition for one of the sets A and
B. As examples we can give the papers of H.Tuy [17–19], J.Hartung [8], U.Passy
and E. Z.Prisman [13], G. H. Greco and C.D. Horvath [7], S. Simons [15], J.Yu and
X. Z.Yuan [20], etc.

A little less study was dedicated to the case when the function f is defined on a
proper subset M of A×B (for example P. S.Kenderov and R.E. Lucchetti [9].

This problem arises, for instance, in connection with the following two-player
game. The first player wants to choose a strategy a ∈ A such that his payoff f(x, y)
is maximum. This choice depends on the choice y ∈ B of the second player. Once
the leading player chooses some strategies x ∈ A, the ”move” of the second player
is to choose some y in the set of all the feasible strategies y ∈ Mx

2
⊆ B. Then the

value
v = max

x∈A
min

y∈Mx

2

f(x, y)

is the maximum payoff that can be guaranteed for the first player.
Analogously, for the second player, the value

v = min
y∈B

max
x∈M

y

1

f(x, y)

is the minimum loss that can be guaranteed for the second player.
Do v and v exist ? If so, is v = v equivalent to (1)? Therefore, in this paper we

study this problem by means of the notion of saddle point with respect to a set.

In Section 2 we give the definition of saddle point with respect to a set and we
show that this notion is effectively a generalization of the notion of saddle point. In
Section 3 some properties of the function f and f defined by (4) and (5) are given.
The existence of saddle point of bi-(1Rm , 1Rn) strictly concave-convex functions is
studied in Section 4. The paper ends with an example which shows that the proved
theorems are consistent.

2 Saddle points with respect to a set

Let A and B be nonempty sets and M be a nonempty subset of A×B. We put

M1 = prAM = {x ∈ A | ∃y ∈ B such that (x, y) ∈M},

M2 = prBM = {y ∈ B | ∃x ∈ A such that (x, y) ∈M}.

For each x ∈M1 we denote by

Mx
2 = {y ∈M2 | (x, y) ∈M} ⊆ B

and for each y ∈M2 we denote by

My
1

= {x ∈M1 | (x, y) ∈M} ⊆ A.



72 DOREL I.DUCA, LIANA LUPŞA

Throughout the paper, M1, M2, M
x
2
My

1
, where x ∈M1 and y ∈M2, will always

have this meaning.

Definition. Let A and B be nonempty sets, M be a nonempty subset of A×B and

f : M → R be a function. A point (a, b) ∈ M is called a saddle point of f with

respect to M if

f(x, b) ≤ f(a, b) ≤ f(a, y), (3)

for all x ∈M b
1

and all y ∈Ma
2
.

Example 1. Let

M = {(x, y) ∈ [0, 1] × [0, 1] : x ≤ y2} ⊆ R × R,

and f : M → R be defined by f (x, y) = −x2 + y4, for all (x, y) ∈ M . For (a, b) =
(0, 0) ∈ M, we have f (x, 0) = −x2 ≤ 0 = f (0, 0) ≤ y4 = f (0, y) , for all x ∈ M0

1
=

{0}, and y ∈ M0
2

= [0, 1]. It follows that (a, b) = (0, 0) is a saddle point of f with
respect to M.⋄

Example 2. Let A = [1, 3], B = [1, 2], M = {(x, 2)|x ∈ [1, 3]}
⋃
{(2, y)|y ∈ [1, 2]}

and f : M → R, f(x, y) = x · y, for all (x, y) ∈ M . Because for the point
(a, b) = (2, 1) ∈ M we have f(x, 1) = x ≤ 2 = f(2, 1) ≤ 2y = f(2, y), for all
x ∈ M b

1
= {2}, and y ∈ Ma

2
= [1, 2], this point is a saddle point of f with respect

to M.⋄

If M = A×B, then M1 = A, M2 = B and, for each x ∈ M1 and each y ∈M2,
we have Mx = A and My = B. It follows that if f : A×B → R is a function, then
condition (3) is equivalent to condition (1). Hence the notion of saddle point with
respect to a set is a generalization of the notion of saddle point.

Remark 1. If f : A × B → R is a function and (a, b) ∈ A × B is a saddle point
of f, then (a, b) is also a saddle point of f with respect to M, for each subset M of
A×B which has the property that (a, b) ∈M.

Usually, the converse is not true, as it can be seen below:

Example 3. Let A = [1, 3], B = [1, 2], M = {(x, 2) |x ∈ [1, 3]}
⋃
{(2, y) | y ∈ [1, 2]}

and f : A × B → R, f(x, y) = x · y, for all (x, y) ∈ A × B. Then, the point
(a, b) = (2, 1) ∈ M is a saddle point of f with respect to M (see Example 1), but
(a, b) = (2, 1) ∈ A × B is not a saddle point of f (in the classical sense) because
f(3, 2) = 6 6≤ 2 = f(2, 1).⋄

3 Some properties of the functions f and f

If f : M → R is a continuous function and M is a compact nonempty subset of
Rm × Rn, we consider the functions f : M1 → R and f : M2 → R defined by

f(x) = min{f(x, y)|y ∈Mx
2 }, for all x ∈M1, (4)

f(y) = max{f(x, y)|x ∈My
1
}, for all y ∈M2. (5)

The following assertion holds.
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Theorem 1. If M ⊆ Rm × Rn is a nonempty set, f : M → R is a function and
(a, b) ∈M is a saddle point of f with respect to M, then

f(a) = f(b) = f(a, b). (6)

Proof. From f(x, b) ≤ f(a, b), for all x ∈ M b
1
, we conclude that f(a, b) =

max{f(x, b) |x ∈ M b
1
} = f(b), and from f(a, b) ≤ f(a, y), for all y ∈ Ma

2
, we

deduce that f(a, b) = min{f(a, y) | y ∈Ma
2
} = f(a). Hence (6) is true. �

In the case when A ⊆ Rm and B ⊆ Rn are nonempty compact sets,

M = A×B ⊆ Rm × Rn

and f : M → R is a continuous function, then the functions f and f are also
continuous on M1 = A, respectively, on M2 = B. If M is not a cartesian product,
this property is not true, as seen in the following example.

Example 4. Let M = ({0} × [0, 1])
⋃

([0, 3] × {1}) and f : M → R be the
function given by f(x, y) = ln (11 − x + y2), for all (x, y) ∈ M . We have M1 =
[0, 3], M2 = [0, 1],

Mx
2 =

{
[0, 1], if x = 0
{1}, if x ∈]0, 3]

, My
1

=

{
{0}, if y ∈ [0, 1[
[1, 3], if y = 1

.

The function f : M1 → R, given by

f(x) =

{
ln 11, if x = 0
ln (12 − x), if x ∈]0, 3]

is not continuous. Moreover, max{f(x)|x ∈M1} does not exist. But the function f
has a saddle point with respect to M ; this point is (0, 0).⋄

Remark 2. Let A ⊆ Rm and B ⊆ Rn be nonempty sets, M a nonempty subset
of A×B, f : M → R be a function and (a, b) ∈ M. The following statements are
true:

i) If a ∈M1 is a maximum point of f and M b
1

= {a}, then (a, b) is a saddle
point of f with respect to M.

ii) If b ∈ M2 is a minimum point of f and Ma
2

= {b}, then (a, b) is a saddle
point of f with respect to M.

Theorem 2. Let M ⊆ Rm × Rn be a nonempty compact set, a ∈ M1, b ∈ M2

and f : M → R be a continuous function. If

i) Ma
2

= M2,

ii) b is a minimum point of the function f(a, ·) : M2 → R,

iii) there exists a real number δ > 0 such that

M1

⋂
B(a, δ) ⊆M b

1 ,
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then the function f : M1 → R defined by

f(x) = min{f(x, y)|y ∈Mx
2 }, for all x ∈M1,

is continuous at a.

Proof. We begin the proof by noticing that, for each x ∈ M1, y ∈ M2, the sets Mx
2

and My
1

are compact. In order to show that f is continuous at a, let ε > 0. Then,
by the continuity of f on the compact M, there exists a positive real number δε
such that

|f(x, y) − f(u, v)| <
ε

2
,

for each (x, y), (u, v) ∈M with

||(x, y) − (u, v)|| < δε.

Let δ̃ = min{δε, δ} and x ∈M1

⋂
B(a, δ̃). Then, for each y ∈Mx

2
, we have y ∈Ma

2
,

because Mx
2
⊆M2 = Ma

2
. Also, for each y ∈Mx

2
, we have

|f(x, y) − f(a, y)| <
ε

2
, (7)

because
||(x, y) − (a, y)|| < δ̃.

It follows that

f(x, y) > f(a, y) −
ε

2
≥ min{f(a, v)|v ∈Ma

2 } −
ε

2
= f(a) −

ε

2
,

for each y ∈Mx
2
. Since Mx

2
is compact and f is continuous, we have that

f(x) = min{f(x, y)|y ∈Mx
2 } ≥ f(a) −

ε

2
> f(a) − ε,

i.e.

f(x) − f(a) > −ε, for each x ∈M1

⋂
B(a, δ̃). (8)

On the other hand, from

M1

⋂
B(a, δ̃) ⊆M b

1 ,

we deduce that x ∈ M1

⋂
B(a, δ̃) implies x ∈ M b

1
, i.e. b ∈ Mx

2
. Then, by (7), it

follows that

|f(x, b) − f(a, b)| <
ε

2
,

for each x ∈M1

⋂
B(a, δ̃). Hence

f(x, b) < f(a, b) +
ε

2
,

for each x ∈M1

⋂
B(a, δ̃).
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It follows that, for each x ∈M1

⋂
B(a, δ̃), we have

f(x) = min{f(x, y)|y ∈Mx
2 } ≤ f(x, b) < f(a, b) +

ε

2
=

= min{f(a, y)|y ∈Ma
2 } +

ε

2
= f(a) +

ε

2
,

by hypothesis ii). Consequently,

f(x) − f(a) < ε, for all x ∈M1

⋂
B(a, δ̃). (9)

By (8) and (9), the theorem follows. �

By analogy we have:

Theorem 3. Let M ⊆ Rm ×Rn be a nonempty compact set, b ∈M2, a ∈M1 and

f : M → R be a continuous function. If

i) M b
1

= M1,

ii) a ∈M1 is a maximum point of the function f(·, b) : M1 → R,

iii) there exists a real number δ > 0 such that

M2

⋂
B(b, δ) ⊆ Ma

2 ,

then the function f : M2 → R defined by

f(y) = max{f(x, y)|x ∈My
1
}, for all y ∈M2,

is continuous at b.

Remark 3. Let A ⊆ Rm and B ⊆ Rn be nonempty sets, M be a nonempty
subset of A×B, f : M → R be a function and (a, b) ∈M. If M = A×B, then the
conditions i) and iii) are self satisfied; therefore, in this case we obtain the classical
theorem with respect to the continuity of the functions f and f .

4 Saddle points of bi-(1Rm, 1Rn) strictly concave-convex functions

First we recall the notions of bi-(ϕ,ψ) convex set (see [3]) and bi-(1Rm , 1Rn)
concave-convex function (see [4] and [5]).

Definition. Let ϕ : Rm → Rm and ψ : Rn → Rn be two maps. A subset M
of Rm × Rn is said to be bi-(ϕ,ψ) convex either if M = ∅ or, if for every (x, y),
(x, v), (u, y) of M and every t ∈ [0, 1] we have

(ϕ(x), (1 − t)ψ(y) + tψ(v)) ∈M (10)

and

((1 − t)ϕ(x) + tϕ(u), ψ(y)) ∈M. (11)
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We remark that if M ⊆ Rm × Rn is convex (in the classical sense), then M is
bi-(1Rm , 1Rn) convex. The converse is not necessarily true (see [4]).

Example 5. The set M = {(x, y) ∈ [0, 1] × [0, 1] : x ≤ y2} ⊆ R × R, is bi-(1R, 1R)
convex, but not convex. Indeed, let (x, y), (x, v), (u, v) ∈ M , and t ∈ [0, 1]. Then
0 ≤ x ≤ y2 ≤ 1, 0 ≤ x ≤ v2 ≤ 1, 0 ≤ u ≤ v2 ≤ 1. It follows that (x, (1 − t)y + tv) ∈
[0, 1] × [0, 1], (1 − t)x+ tu, y) ∈ [0, 1] × [0, 1] , and

((1− t)y + tv)2 = (1− t)2y2 + 2t(1 − t)yv + t2v2 ≥ (1 − t)2x+ 2t(1 − t)x+ t2x = x,

(1 − t)x + tu ≤ (1 − t)v2 + tv2 = v2. Hence (1R(x), (1 − t)1R(y) + t1R(v)) =
(x, (1−t)y+tv) ∈M and ((1 − t) 1R (x) + t1R (u) , 1R (y)) = ((1 − t)x+ tu, y) ∈M .
On the other hand, (1 − 1/2) (0, 0) + (1/2) (1, 1) = (1/2, 1/2) /∈ M . Consequently,
the set M is bi-(1R, 1R) convex but not convex.⋄

Definition. Let M ⊆ Rm × Rn be a bi-(1Rm , 1Rn) convex set. A function f :
M → R is said to be bi-(1Rm , 1Rn) concave-convex (strictly concave-convex) if for

every x ∈ M1 the function f(x, ·) : Mx → R is convex (strictly convex) and for

every y ∈M2 the function f(·, y) : My → R is concave (strictly concave).

Example 6. Let M = {(x, y) ∈ [0, 1]× [0, 1] : x ≤ y2} ⊆ R×R, and f : M → R be
defined by f (x, y) = −x2 + y4, for all (x, y) ∈ M . The set M is bi-(1R, 1R) convex
(see Example 5). One can easily show that f is bi-(1R, 1R) strictly concave-convex
(hence bi-(1R, 1R) concave-convex).⋄

More properties of them can be found in Refs. [3–5].

Theorem 4. Let M be a compact nonempty subset of Rm × Rn, (a, b) ∈ M and

f : M → R be a continuous function. If

i) the set M is bi-(1Rm, 1Rn) convex,

ii) the function f is bi-(1Rm , 1Rn) strictly concave-convex,

iii) a is a maximum point of the function f : M1 → R defined by

f(x) = min{f(x, y)|y ∈Mx
2 }, for all x ∈M1,

iv) b is a minimum point of the function f(a, ·) : Ma → R,
v) Ma

2
= M2,

vi) there is a real number δ > 0 such that

B(b, δ)
⋂
M2 ⊆Mx

2 , for all x ∈M b
1 ,

then (a, b) is a saddle-point of f with respect to M.

Proof. From hypothesis iv), we have

f(a, b) ≤ f(a, y), for all y ∈Ma
2 .

Let us show that
f(a, b) ≥ f(x, b), for all x ∈M b

1 . (12)



SADDLE POINTS WITH RESPECT TO A SET 77

Assume, by contradiction, that there exists a point x̃ ∈M b
1

such that

f(a, b) < f(x̃, b).

Then, by the continuity of the function f(x̃, ·) : M x̃
2

→ R, there exists an open
neighborhood V of the point b such that

f(a, b) < f(x̃, y), for all y ∈ V
⋂
M x̃

2 .

Without loss of generality, we can suppose that

V ⊆ B(b; δ). (13)

Since x̃ ∈M b
1
, vi) and (13) imply

V
⋂
M2 ⊆ B(b; δ)

⋂
M2 ⊆M x̃

2 . (14)

From ii) and iv), we deduce that

f(a, b) < f(a, y), for all y ∈Ma
2 \ {b},

and hence

f(a, b) < f(a, y), for all y ∈Ma
2 \ V. (15)

On the other hand, from iii) and iv) we have

f(a, b) = min{f(a, y)|y ∈Ma
2 } = f(a) ≥ f(x̃) = min{f(x̃, y)|y ∈M x̃

2 },

and hence there is a point ỹ ∈M x̃
2

such that

f(a, b) ≥ f(x̃, ỹ).

Consequently, ỹ 6∈ V and hence ỹ ∈M x̃
2
\ V.

Then, from v), we obtain that

ỹ ∈M x̃
2 \ V ⊆Ma

2 \ V.

Since Ma
2
\ V is nonempty and compact and the function f(a, ·) : Ma

2
→ R is

continuous, then there exists min {f(a, y)|y ∈Ma
2
\ V } and, by (15),

min {f(a, y)|y ∈Ma
2 \ V } > f(a, b).

Let

ε = min{f(a, y)|y ∈Ma
2 \ V } − f(a, b).

Then, by the continuity of f and the compactness of M, there exists a real number
µ > 0 such that

|f(x, y) − f(u, v)| < ε, (16)
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for all (x, y), (u, v) ∈M with

||(x, y) − (u, v)|| < µ.

Let

t = min

{
3

4
,

δ

2||x̃− a||
,

µ

2||x̃− a||

}
,

and
x∗ = (1 − t)a+ tx̃. (17)

Obviously 0 < t < 1. We will show that

f(x∗, y) > f(a, b), for all y ∈Mx∗

2 . (18)

Let y ∈Mx∗

2
. We distinguish two cases.

Case 1) If y ∈ V, by (14), we have

y ∈ V
⋂
M x̃

2 ,

i.e. (x̃, y) ∈M. Then
f(x̃, y) > f(a, b).

Also, from v) we have (a, y) ∈M. In view of i) and (17), we get (x∗, y) ∈M.
Since f is bi-(1Rm , 1Rn) strictly concave-convex, we have

f(x∗, y) = f((1 − t)a+ tx̃, y) > (1 − t)f(a, y) + tf(x̃, y) ≥

≥ (1 − t)f(a, b) + tf(a, b) = f(a, b),

because
f(a, y) ≥ min {f(a, v)|v ∈Ma

2 } = f(a) = f(a, b).

Case 2) If y ∈Mx∗

2
\ V, from

||(x∗, y) − (a, y)|| = ||x∗ − a|| < µ

and (16), we have
|f(x∗, y) − f(a, y)| < ε.

Then
f(x∗, y) = f(x∗, y) − f(a, y) + f(a, y) > −ε+ f(a, y) =

= −min{f(a, v)|v ∈Ma
2 \ V } + f(a, b).+ f (a, y) ≥ f(a, b).

Consequently, (18) is true.
By (18), it follows that

f(x∗) = min{f(x∗, y)|y ∈Mx∗

2 } > f(a, b) = f(a)

which contradicts hypothesis iii). Then (12) is true and hence (a, b) is a saddle-
point of f with respect to M . �
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Example 7. For

M = {(x, y) ∈ [0, 1] × [0, 1] : x ≤ y2} ⊆ R × R,

(a, b) = (0, 0) ∈M, and f : M → R defined by

f (x, y) = −x2 + y4, for all (x, y) ∈M,

the hypotheses of Theorem 4 are satisfied.
Indeed, the set M is compact nonempty and f is continuous. Moreover,

i) The set M is bi-(1R, 1R) convex (see Example 5), hence i) holds.
ii) The function f is bi-(1R, 1R) strictly concave-convex (see Example 6), hence

ii) is true.
iii) For each x ∈M1 = [0, 1] , we have

f (x) = min{−x2 + y4|y ∈Mx
2 } = −x2 + x2 = 0,

hence a = 0 is a maximum point of f on M1.

iv) For each y ∈M0
2

= [0, 1] , we have

f (0, y) = y2 ≥ 0 = f (0, 0) ,

hence iv) is true.

v) Since M0
2

= M2 = [0, 1] , the hypothesis v) is satisfied.
vi) For each x ∈M0

1
= {0}, and δ > 0 we have

B (0, δ) ∩M2 ⊆Mx
2 = M0

2 = [0, 1] ,

because M2 = [0, 1] , hence vi) holds.

Then, in view of Theorem 4, the point (a, b) = (0, 0) is a saddle point of f with
respect to M (see Example 1).⋄
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litehnica” University of Timişoara, 2003, 48(62), No. 2, 67–72.
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