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Saddle points with respect to a set
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Abstract. An extension of the concept of saddle point, a continuous property of two
functions related to saddle points with respect to a set and a theorem of existence of
saddle points with respect to a set are given. The paper ends with an example which
shows that the proved theorems are consistent.
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1 Introduction

Let A and B be nonempty sets and f : A x B — R be a function. We remember
that a point (a,b) € A x B is said to be a saddle point of f on A x B if

f(z,0) < f(a,b) < f(a,y), forall(z,y) € Ax B. (1)
The condition (1) is equivalent to

max min f(z,y) = &iggleagf(:v,y)- (2)

Let us consider a two-person zero-sum game Gy generated by the function f.
This means that the first player selects a point x from A and the second player
selects a point y from B. As a result of this choise, the second player pays the first
one the amount f (z,y). Then a point (a,b) € A x B is a solution of the game G
if and only if it is a saddle point of f on A x B.

The first saddle point theorem was proved by von Neumann [11]. Von Neumann’s
theorem can be stated as follows: if A and B are finite dimensional simplices and f is
a bilinear function on Ax B, then f has a saddle point; i.e (2) holds. M. Shiffman [14]
seems to have been the first to have considered concave-convex functions in a saddle
point theorem. H.Kneser [10], K. Fan [6], and C.Berge [1] (using induction and the
method of separating two disjoint convex sets in Euclidian space by a hyperplane)
proved saddle point theorems for concave-convex functions that are appropriately
semicontinuous in one of the two variables. H.Nikaido [12], on the other hand,
using Brouwer’s fixed point theorem, proved the existence of a saddle point for a
function satisfying the weaker algebraic condition of being quasi-concave-convex, but
the stronger topological condition of being continuous in each variable. M. Sion [16]
proved a very general saddle point theorem for a function which is quasi-concave and
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upper semicontinuous in its first variabile and quasi-convex and lower semicontinuous
in its second variable in a topological vector space.

Most of the effort has been spent on relaxing the assumptions on the concave-
convexity of f and also on the compactness condition for one of the sets A and
B. As examples we can give the papers of H. Tuy [17-19], J. Hartung [8], U. Passy
and E.Z.Prisman [13], G. H. Greco and C.D. Horvath [7], S. Simons [15], J. Yu and
X.Z.Yuan [20], etc.

A little less study was dedicated to the case when the function f is defined on a
proper subset M of A x B (for example P.S. Kenderov and R. E. Lucchetti [9].

This problem arises, for instance, in connection with the following two-player
game. The first player wants to choose a strategy a € A such that his payoff f(z,y)
is maximum. This choice depends on the choice y € B of the second player. Once
the leading player chooses some strategies x € A, the "move” of the second player
is to choose some y in the set of all the feasible strategies y € M5 C B. Then the
value
v = max min f(z,y)
is the maximum payoff that can be guaranteed for the first player.

Analogously, for the second player, the value

U= mip max f(z,y)
is the minimum loss that can be guaranteed for the second player.

Do v and U exist ? If so, is v = T equivalent to (1)? Therefore, in this paper we
study this problem by means of the notion of saddle point with respect to a set.

In Section 2 we give the definition of saddle point with respect to a set and we
show that this notion is effectively a generalization of the notion of saddle point. In
Section 3 some properties of the function f and f defined by (4) and (5) are given.
The existence of saddle point of bi-(1gm, Ign) strictly concave-convex functions is
studied in Section 4. The paper ends with an example which shows that the proved
theorems are consistent.

2 Saddle points with respect to a set

Let A and B be nonempty sets and M be a nonempty subset of A x B. We put
M, = praM = {x € A| 3y € B such that (z,y) € M},

My = prgM = {y € B| dz € A such that (z,y) € M}.
For each x € M; we denote by

My = {ye My|(z,y) e M} C B
and for each y € My we denote by
MY = {z € M|(x,y) € M} C

N
B
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Throughout the paper, My, My, MZ M}, where x € M; and y € Mo, will always
have this meaning.
Definition. Let A and B be nonempty sets, M be a nonempty subset of A x B and
f: M — R be a function. A point (a,b) € M is called a saddle point of f with
respect to M if

fz,b) < fla,b) < fla,y), (3)
for all x € M{’ and ally € M.
Example 1. Let

M = {(z,y) € [0,1] x [0,1] : = <y’} CRxR,

and f : M — R be defined by f (z,y) = —2% +¢*, for all (z,y) € M. For (a,b) =
(0,0) € M, we have f (z,0) = —22 < 0= f(0,0) < y?* = f(0,y), for all z € M} =
{0}, and y € MQ = [0, 1]. It follows that (a,b) = (0,0) is a saddle point of f with
respect to M.,

Example 2. Let A = [173]7 B = [172]7 M = {($72)|$ € [173]}U{(27y)|y € [172]}
and f : M — R, f(z,y) = = -y, for all (x,y) € M. Because for the point
(a,b) = (2,1) € M we have f(z,1) = =z < 2 = f(2,1) < 2y = f(2,y), for all
r € M} = {2}, and y € M§ = [1,2], this point is a saddle point of f with respect
to M.,

If M =Ax B, then M; = A, Ms = B and, for each x € M7 and each y € Ms,
we have M, = A and M, = B. It follows that if f: Ax B — R is a function, then
condition (3) is equivalent to condition (1). Hence the notion of saddle point with
respect to a set is a generalization of the notion of saddle point.

Remark 1. If f : A x B — R is a function and (a,b) € A x B is a saddle point
of f, then (a,b) is also a saddle point of f with respect to M, for each subset M of
A x B which has the property that (a,b) € M.
Usually, the converse is not true, as it can be seen below:
Example 3. Tet A= [1,3], B =[1,2), M = {(,2) | € [1,3)} U{(2 ) |y < [1,2))
and f: Ax B — R, f(z,y) = x -y, for all (z,y) € A x B. Then, the point
(a,b) = (2,1) € M is a saddle point of f with respect to M (see Example 1), but
(a,b) = (2,1) € A x B is not a saddle point of f (in the classical sense) because

f3,2)=6£2=f(21).

3 Some properties of the functions f and f

If f: M — R is a continuous function and M is a compact nonempty subset of
R™ x R", we consider the functions f: M; — R and f: My — R defined by

f(x) = min{f(z,y)|ly € My}, for all z € M, (4)

fly) = max{f(z,y)|z € MY}, for all y € Ms. (5)

The following assertion holds.
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Theorem 1. If M C R™ x R™ is a nonempty set, f : M — R is a function and
(a,b) € M is a saddle point of f with respect to M, then

fla) = f(b) = f(a,b). (6)
Proof. From f(z,b) < f(a,b), for all x € M}, we conclude that f(a,b) =
max{f(x,b) |z € M} = f(b), and from f(a,b) < f(a,y), for all y € Mg, we
deduce that f(a,b) = min{f(a,y)|y € M3} = f(a). Hence (6) is true. O

In the case when A C R™ and B C R"™ are nonempty compact sets,
M=AxB CR"xR"

and f : M — R is a continuous function, then the functions f and f are also
continuous on M; = A, respectively, on My = B. If M is not a cartesian product,
this property is not true, as seen in the following example.

Example 4. Let M = ({0} x [0, 1]) U ([0, 3] x {1}) and f : M — R be the
function given by f(z,y) = In(11 — z + %2), for all (x,3) € M. We have M; =
[0,3], My = [0, 1],

. [0,1], ifz=0 [ {0}, ifyelo, 1]
M?"{{u, if z €]0,3] Nﬁ"{[L3L ify=1

The function f: M; — R, given by

In 11, ifz=0
flx) = { In(12 —z), ifz €]0,3]

is not continuous. Moreover, max{f(z)|x € M} does not exist. But the function f
has a saddle point with respect to M; this point is (0,0)..

Remark 2. Let A CR™ and B C R" be nonempty sets, M a nonempty subset
of Ax B, f: M — R be a function and (a,b) € M. The following statements are
true:

i) If a € My is a maximum point of f and M? = {a}, then (a,b) is a saddle
point of f with respect to M. B

ii) If b € My is a minimum point of f and M$ = {b}, then (a,b) is a saddle
point of f with respect to M.

Theorem 2. Let M C R™ x R"™ be a nonempty compact set, a € My, b € Mo
and f: M — R be a continuous function. If

i) M§ = Mo,

it) b is a minimum point of the function f(a,-): My — R,

ii1) there exists a real number 6 > 0 such that

MlmB(CL,(S) - Mfa
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then the function f: My — R defined by
f(@) = min{f(z,y)ly € M3}, for allx € M,

15 continuous at a.

Proof. We begin the proof by noticing that, for each z € M;, y € M, the sets M5
and M/ are compact. In order to show that f is continuous at a, let € > 0. Then,
by the continuity of f on the compact M, there exists a positive real number 6,
such that

€
’f(xay) - f(u,v)] < 57
for each (x,y), (u,v) € M with

I(z,y) = (w, )| < 0.

Let & = min{d.,d0} and z € M; () B(a,d). Then, for each y € My, we have y € M,
because M3 C My = MS. Also, for each y € M5, we have

Fay) = Flay) < 5, ()

because B
It follows that
€

fle.y) > fla,y) = 5 = min{f(a,v)fv € M5} -

€
= a) — -,
fa)~
for each y € M3. Since M3 is compact and f is continuous, we have that

f(x) =min{f(z,y)ly € My} > fa) — 5 > [f(a) —¢,

| ™

l.e.

f(z) — f(a) > —¢, for each x € M; (| B(a,9). (8)

On the other hand, from
Ml ﬂB(aag) - Mf)

we deduce that x € M; () B(a, 5) implies x € M?, i.e. b € M§. Then, by (7), it
follows that -

’f(xab) - f(a7 b)‘ < 57
for each z € M, () B(a, ). Hence

f(@,b) < fla,b) + =,

for each 2 € M; () B(a, 4).
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It follows that, for each = € M; () B(a,d), we have
. . £
f(2) = min{f(z,y)ly € M7} < f(2,0) < fla,0) + 5 =

= win{f(a,y)ly € M§} +5 = fla) + 5,

by hypothesis ii). Consequently,
f(z) = fla) <e, for alla:EMlﬂB(a,g). 9)

By (8) and (9), the theorem follows. O

By analogy we have:

Theorem 3. Let M C R™ x R™ be a nonempty compact set, b € Mo, a € My and
f: M — R be a continuous function. If

i) My = M;,

i) a € My is a mazimum point of the function f(-,b) : M; — R,

iii) there exists a real number 6 > 0 such that

My () B(b,6) € Mg,
then the function f : My — R defined by

f(y) = max{f(z,y)|lz € M{'}, for all ye My,

18 continuous at b.

Remark 3. Let A C R™ and B C R" be nonempty sets, M be a nonempty
subset of Ax B, f: M — R be a function and (a,b) € M. If M = A x B, then the
conditions i) and iii) are self satisfied; therefore, in this case we obtain the classical
theorem with respect to the continuity of the functions f and f.

4 Saddle points of bi-(1gm=, lg~) strictly concave-convex functions

First we recall the notions of bi-(p,1) convex set (see [3]) and bi-(1gm, 1grn)
concave-convex function (see [4] and [5]).

Definition. Let ¢ : R™ — R™ and ¢ : R® — R" be two maps. A subset M
of R™ x R™ is said to be bi-(p,) convex either if M =0 or, if for every (z,vy),
(x,v), (u,y) of M and every t € [0, 1] we have

(p(z), (L —=t)(y) +t(v)) € M (10)

and
(1= t)p(@) + tp(u),¥(y)) € M. (11)
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We remark that if M C R™ x R™ is convex (in the classical sense), then M is
bi-(1gm, 1gn) convex. The converse is not necessarily true (see [4]).

Example 5. The set M = {(z,y) € [0,1] x [0,1] : # < y*} C R x R, is bi-(Ig, 1g)
convex, but not convex. Indeed, let (z,y), (x,v), (u,v) € M, and ¢ € [0,1]. Then
0<z<y?’<1,0<x<0v?<1, 0<u<v?<1. It follows that (x, (1 —t)y +tv) €
[0,1] x [0,1], (1 —t)x + tu,y) € [0,1] x [0,1] , and

(A =ty +tv)> = 1 —t)%y* +2t(1 — t)yv + t20? > (1 — )%z +2t(1 — t)z + t’z =

(1 -tz +tu < (1 —t)w? + tw? = v2. Hence (1g(z), (1 — t)1r(y) + tlg(v)) =
(z, (1-t)y+tv) € M and ((1 —¢) Ir (z) + tlr (u) , 1r (y)) = (1 —t) z + tu,y) € M.
On the other hand, (1 —1/2)(0,0) + (1/2) (1,1) = (1/2,1/2) ¢ M. Consequently,
the set M is bi-(1g, 1r) convex but not convex.,

Definition. Let M C R™ x R™ be a bi-(1gm,1rn) convex set. A function f :
M — R is said to be bi-(1gm, 1grn) concave-convex (strictly concave-convex) if for
every © € My the function f(x,-) : M, — R is convex (strictly convex) and for
every y € My the function f(-,y): M, — R is concave (strictly concave).
Example 6. Let M = {(z,y) € [0,1] x [0,1] : 2 <y?’} CRxR,and f: M — R be
defined by f (z,y) = —2% + y*, for all (x,y) € M. The set M is bi-(1g, 1g) convex
(see Example 5). One can easily show that f is bi-(1g, 1g) strictly concave-convex
(hence bi-(1g, 1g) concave-convex).,

More properties of them can be found in Refs. [3-5].

Theorem 4. Let M be a compact nonempty subset of R™ x R™, (a,b) € M and
f: M — R be a continuous function. If

i) the set M is bi-(1gm, 1gn) convez,

it) the function f is bi-(1gm,1gn) strictly concave-convez,

i) a is a maximum point of the function f : M1 — R defined by

f(z) = min{f(z,y)ly € M3}, for all z € My,
i) b is a minimum point of the function f(a,-): M, — R,

v) M$ = My,
vi) there is a real number 6 > 0 such that

B(b,6)( | M2 € M, for all x e M,

then (a,b) is a saddle-point of f with respect to M.

Proof. From hypothesis iv), we have
fla,b) < fla,y), forallye Mj.

Let us show that
f(a,b) > f(z,b), forall z € M?. (12)
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Assume, by contradiction, that there exists a point # € M such that

fla,b) < f(z,b).

Then, by the continuity of the function f(Z,:) : M3 — R, there exists an open
neighborhood V of the point b such that

fla,b) < f(Z,y), forally € VﬂMé’E
Without loss of generality, we can suppose that
V C B(b;6). (13)
Since # € M?, vi) and (13) imply
V(M € B(b;6)( | My € M3 (14)
From 1) and iv), we deduce that

f(a,b) < f(a,y), forallye Mg\ {b},

and hence
f(a,b) < fa,y), forall ye Mg\V. (15)

On the other hand, from iii) and iv) we have
f(a,b) = min{f(a,y)ly € M5} = f(a) > f(Z) = min{f(Z,y)|y € M3},
and hence there is a point 7 € Mé’z’ such that

f(a,b) = f(z,9).

Consequently, § ¢ V and hence § € M3 \ V.
Then, from v), we obtain that

jEMI\V CMS\V.
Since M§ \ V' is nonempty and compact and the function f(a,-): M§ — R is
continuous, then there exists min{f(a,y)|y € Mg\ V} and, by (15),

min{f(a,y)ly € M5\ V} > f(a,b).

Let
e = min{f(a,y)ly € Mg\ V} — f(a,b).
Then, by the continuity of f and the compactness of M, there exists a real number
© > 0 such that

‘f(xmy) - f(u,v)\ <&, (16)
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for all (x,y), (u,v) € M with

H(‘Tay) - (U,’U)H < u.

Let
. {3 ) i }
t =min § —, — , — ,
472/ — al|” 2[[7 — a|
and
¥ =(1—-t)a+tz. (17)

Obviously 0 < t < 1. We will show that
f(z*,y) > f(a,b), forallye M . (18)

Let y € Mé’” We distinguish two cases.
Case 1) If y € V, by (14), we have
y eV (M3,
ie. (Z,y) € M. Then
f(@,y) > f(a,b).

Also, from v) we have (a,y) € M. In view of i) and (17), we get (z*,y) € M.
Since f is bi-(1gm, 1gn) strictly concave-convex, we have

f(x*vy) = f((l _t)a_‘_tjvy) > (1 _t)f(a¢y) +tf(j7y) >

> (1 - t)f(a, b) + tf(a7 b) = f(a7 b)7
because

fla,y) 2 min{f(a,v)[v € My} = f(a) = f(a,b).
Case 2) If y € MZ" \ 'V, from

16" 9) — @)l = lla* - al] < g
and (16), we have
|f(z",y) — fla,y)| <e.

Then
f(x*vy) = f(x*vy) - f(avy) +f(a7y) > _E+f(a7y) =

= —min{f(a,v)lv € M§\V} + f(a,b). + f(a,y) > f(a,b).

Consequently, (18) is true.
By (18), it follows that

f(@*) = min{f(*,y)ly € M5} > f(a,) = f(a)

which contradicts hypothesis ii7). Then (12) is true and hence (a,b) is a saddle-
point of f with respect to M. O
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Example 7. For
M ={(zy) €0,1]x [0,1] : = <y°} CRXE,
(a,b) =(0,0) € M, and f: M — R defined by
f(x,y) = —2>+4*, forall (z,y) € M,

the hypotheses of Theorem 4 are satisfied.

Indeed, the set M is compact nonempty and f is continuous. Moreover,

i) The set M is bi-(1r, 1r) convex (see Example 5), hence 7) holds.

1) The function f is bi-(1r, 1r) strictly concave-convex (see Example 6), hence
i1) is true.

ii1) For each = € My = [0, 1], we have

f(x) = min{—22 + ytly € MF} = —2? + 22 =0,

hence a = 0 is a maximum point of f on M;.
iv) For each y € MY = [0, 1], we have

f(07y):y220:f(070)7

hence iv) is true.
v) Since MY = My = [0, 1], the hypothesis v) is satisfied.
vi) For each x € MY = {0}, and § > 0 we have

B(0,6) " My € M§ = MY =10,1],

because My = [0, 1], hence vi) holds.
Then, in view of Theorem 4, the point (a,b) = (0,0) is a saddle point of f with
respect to M (see Example 1).,
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