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Some addition theorems for rectifiable spaces
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Abstract. We establish that if a compact Hausdorff space B with the cardinality less
than 2“! is represented as the union of two non-locally compact rectifiable subspaces
X and Y, then X, Y and B are separable and metrizable.
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1 Introduction

It is well-known that if the cardinality of a compact topological group X does
not exceed 2* and the continuum hypothesis is satisfied, then X is separable and
metrizable (see [8]). Extending this result, we show that if the cardinality of a
compact Hausdorff space X is less than 2“!, then X cannot be represented as the
union of two non-locally compact rectifiable spaces. Recall that every topological
group is a rectifiable space (see the definition below). Some other results in this
direction are also obtained.

We use the terminology and notations from [12]. A remainder of a Tychonoof
space X is the subspace bX \ X of a Hausdorff compactification bX of X.

A space X is of countable type (respectively, of pointwise countable type) if every
compact subspace P (respectively, any point p) of X is contained in a compact
subspace ' C X with a countable base of open neighbourhoods in X. All metrizable
spaces and all locally compact Hausdorff spaces, as well as all Cech-complete spaces,
are of countable type [1,2,12].

A famous classical result on duality between properties of spaces and properties
of their remainders is the following theorem of M. Henriksen and J.Isbell [14]:

Theorem 1. A Tychonoff space X is of countable type if and only if the remainder
in any (in some) Hausdorff compactification of X is Lindeldf.

It follows from this theorem that every remainder of a metrizable space is
Lindelof.
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2 Addition theorems for rectifiable spaces

Recall that a space X is rectifiable if there exists e € X and a homeomorphism
g: X xX — X x X such that g((z,e)) = (x,x), for every x € X, and the restriction
of g to the subspace X, = {(z,y) : y € X} is a homeomorphism of X, onto itself,
for every x € X. Every topological group is rectifiable, and every rectifiable space
is homogeneous (see [9,10]).

Theorem 2. Suppose that B is a compact Hausdorff space such that |B| < 2.
Suppose further that B = X UY, where X and Y are non-locally compact rectifiable
spaces. Then the spaces B, X, and Y are separable and metrizable.

Proof. Clearly, Y and X are non-empty, since they are not locally compact. Hence,
B is non-empty. By Cech-Pospisil Theorem ([3,15], [12], Problem 3.12.11), there
exists a point a € B such that B is first-countable at a. Without loss of generality,
we may assume that a € X. Put Z =B\ X and H = B\ Y. The spaces X and Y
are nowhere locally compact, since they are homogeneous and non-locally compact.
It also follows that Z and H are nowhere locally compact. Hence, X, Y, Z, and H
are dense in B.

Since X is homogeneous and X is first-countable at a, it follows that the space
X is first-countable. Therefore, X is metrizable, since X is rectifiable [13]. Hence,
X is a space of countable type [1], which implies that the remainder Z of X in B is
Lindel6f [14].

By the Dichotomy Theorem for remainders of rectifiable spaces (see [6]), the
remainder H of Y in the Hausdorff compactification B of Y is either pseudocompact,
or Lindel6f. Notice that H is metrizable in any case, since, obviously H C X.

Case 1: H is pseudocompact.

Then H is compact, since H is metrizable. Therefore, H is closed in B. Hence,
Y is open in B, which implies that Y is locally compact, a contradiction. Thus,
Case 1 is impossible.

Case 2: H is Lindelof.

Then H is separable, since H is metrizable. Hence, B is separable, which implies
that the Souslin number of Y is countable, since Y is dense in B. It also follows
that X is separable, since H is dense in X.

Lindel6fness of H also implies that Y is a space of countable type, by the theorem
of Henriksen and Isbell [14]. Therefore, we can fix a non-empty compact subspace F
of Y with a countable base of open neighbourhoods in Y. We have: |F| < |B| < 2¥1.
Applying one more time the Cech-Pospisil Theorem [3,12,15] we conclude that there
exists a point b € F' such that F' is first-countable at b. Since F' has a countable base
of open neighbourhoods in Y, we can now conclude that the space Y is first-countable
at the point b. Therefore, the space Y is first-countable, since it is homogeneous.
Hence, Y is metrizable, since it is rectifiable. Finally, it follows that Y is separable,
since the Souslin number of Y is countable. O
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A family 7 of non-empty open subsets of a space X is said to be a m-base of X at
a point a € X if every open neighbourhood of a in X contains some V' € n (see [7]).

Here is another restriction on a compactum B under which we can obtain even
a stronger conclusion:

Theorem 3. Suppose that B is a compact Hausdorff space of countable tightness
and that B = U{Y,, : n € w = {0,1,2,...}}, where each Y,, is dense in B and is
rectifiable. Then B and each Yy, are separable and metrizable.

Proof. Take any y € Y,,. Then there exists a countable 7w-base & of B at y, since the
tightness of the compactum B is countable (see [18] and [3]). Then n = {V NY,, :
V € &} is a countable m-base of the subspace Y,, at y, since Y, is dense in B.
Since Y, is rectifiable and Y;, has a countable m-base at y, it follows from a result
of A. Gul’ko [13] that the space Y, is metrizable. Therefore, each Y, has a o-
disjoint open base. Since Y,, is dense in B, it follows that B is first-countable and
that o-disjoint open bases in the subspaces Y,, can be extended, in a standard way,
to a point-countable base in B. It remains to use a well-known deep theorem of
A.S. Mischenko that every compact Hausdorff space with a point-countable base is
separable and metrizable (see [12], Problem 3.12.22(f)). O

The next result considerably generalizes Theorem 2.

Theorem 4. Suppose that B is a compact Hausdorff space which doesn’t admit a
continuous mapping onto the Tychonoff cube I“1. Suppose further that B = X UY,
where X and Y are non-locally compact rectifiable spaces. Then B, X, and Y are
separable and metrizable.

Proof. Clearly, Y and X are non-empty. Hence, B is non-empty. Since B cannot
be continuously mapped onto the Tychonoff cube !, it follows from a Theorem
of B.E. Shapirovskij (see [18], [3], Theorems 2.2.20 and 3.1.9) that there exists a
point @ € B such that B has a countable m-base at a. Without loss of generality,
we may assume that a € X. Put Z =B\ X and H = B\ Y. The spaces X and Y
are nowhere locally compact, since they are homogeneous and non-locally compact.
Clearly, the subspaces Z and H are nowhere locally compact as well. Thus, X, Y,
Z,and H are dense in B.

Since X has a countable 7m-base at a and X is rectifiable, it follows that the space
X is metrizable [13]. Hence, X is a space of countable type [1], which implies that
the remainder Z of X in B is Lindel6f [14].

By the Dichotomy Theorem for remainders of rectifiable spaces (see [6]), the re-
mainder H of Y in the compactification B of Y is either pseudocompact, or Lindelof.
Notice that H is metrizable, since H C X.

If H is pseudocompact, then H is compact, since H is metrizable. Therefore,
H is closed in B and Y is open in B, which implies that Y is locally compact, a
contradiction.

Hence, H is Lindel6f. Then H has a countable base, since H is metrizable.
Hence, B has a countable m-base, since H is dense in B, which implies that Y also
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has a countable 7-base, since Y is dense in B. Since the space Y is rectifiable, using
again a theorem of A. Gul’ko in [13], we conclude that Y is metrizable. Clearly, Y
is separable. It also follows that X is separable, since H is dense in X. Therefore,
B is separable and metrizable, as the union of two separable metrizable subspaces
(see [12], Corollary 3.1.20). O

The proof of Theorem 2 obviously contains a proof of the next statement:

Theorem 5. Suppose that B is a compact Hausdorff space and that B = X UY,
where X and Y are non-locally compact spaces. Suppose further that X is metrizable
and Y is rectifiable. Then B, X and Y are separable and metrizable.

3 On k-gentle paratopological groups

A group G with a topology 7 is called a paratopological group if the multiplication
(z,y) — x -y is a continuous mapping of G x G onto G.

Let us call a mapping f of a space X into a space Y k-gentle if for every compact
subset F' of X the image f(F) is also compact.

A group G with a topology will be called k-gentle if the inverse mapping r — x~
is k-gentle.

1

Proposition 1. Suppose that B is a compact Hausdorff space in which any non-
empty Gs-subspace has a point of countable character in this subspace. Suppose
further that B = X UY, where each Z € {X,Y} is a space with the following
properties:

— the space Z is not locally compact;

— if the space Z contains some point of countable character in Z, then the space
Z is metrizable;

—if bZ is a Hausdorff compactification of Z, then the remainder bZ \ Z is either
pseudocompact or Lindelof.

Then B, X, and Y are separable and metrizable.

Proof. Clearly, Y and X are non-empty, since they are not locally compact. Hence,
B is non-empty. Moreover, the sets X and Y are dense in B. Thus, B is a com-
pactification of the subspaces X and Y. There exists a point a € B such that B is
first-countable at a. Without loss of generality, we may assume that a € X. Then
the space X is metrizable.

If b € XNY, for some b, then the space Y is metrizable, as a space with the
countable character at b. In this case the proof is complete.

Assume that X NY = (). Clearly, X is a space of countable type [1], since X is
metrizable. It follows that the remainder Y of X in B is Lindelof [14].

Clearly, the space X is a remainder of the space Y in B. Hence, X is either
pseudocompact or Lindelof.

Case 1: X is pseudocompact.
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Then X is compact, since X is metrizable. Therefore, X is closed in B, a
contradiction. Thus, Case 1 is impossible.

Case 2: X is Lindelof.

Then X is separable, since X is metrizable. Hence, B is separable, which implies
that the Souslin number of Y is countable, since Y is dense in B. Lindel6fness of
X also implies that Y is a space of countable type, by the theorem of Henriksen
and Isbell [14]. Therefore, we can fix a non-empty compact subspace F' of Y with
a countable base of open neighbourhoods in Y. By the assumptions, there exists
a point ¢ € F such that B is first-countable at c¢. It follows that the space Y is
first-countable at c¢. Thus Y is a metrizable space with a countable Souslin number.
Hence, X and Y are separable and metrizable. It follows that B is separable and
metrizable, since B is compact and Hausdorff ([12], Corollary 3.1.20). O

Corollary 6. Suppose that B is a compact Hausdorff space such that |B| < 2“!.
Suppose further that B =X UY, where X and Y are non-locally compact k-gentle
paratopological groups. Then B, X, Y are separable, metrizable spaces, and X, Y
are topological groups.

In view of Proposition 1, this statement follows from the next proposition:

Proposition 2. Let G be a Hausdorff k-gentle paratopological group such that G is
first-countable at some point. Then:

1) the space G is metrizable;

2) G is a topological group;

3) any remainder of G in a Hausdorff compactification bG of G is either pseu-
docompact or Lindeldf.

Proof. Since G is a homogeneous space, the space G is first-countable. Every first-
countable Hausdorff space is a k-space ([12], Theorem 3.3.20). Hence G is a k-
space. It is obvious that if a k-gentle paratopological group is a k-space, then
this paratopological group is a topological group. Hence, 2) holds. Every first-
countable topological group is metrizable (see [8]). Therefore, 1) holds. By the
Dichotomy Theorem for remainders of topological groups (see [4,5]), since G is a
topological group, any remainder of GG in a Hausdorff compactification of G is either
pseudocompact or Lindel6f. Therefore, 3) holds. O

Example 7. Let X; be the space of all rational numbers of the interval I = [0, 1].
Clearly, X7 is homeomorphic to a topological group. The space Y7 = I\ X; is
also homeomorphic to a topological group. Take also the topological group D“!.
Put B=1IxD“, X =Xy xD*“ andY =Y, x DY, Then X and Y are dense
non-metrizable nowhere locally compact topological groups, B is a homogeneous
compact Hausdorff space with the cardinality 2¢!, and B = X UY. The space
B admits a continuous mapping onto I“' and the tightness ¢(B) = R;. Thus the
respective cardinal assumptions in Theorems 2, 3, 4 and Corollary 6 are essential.

We could also modify the definitions of B, X, and Y above so that each of the
spaces B, X, Y would admit a structure of a topological group.
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4 On Mal’cev spaces. Some questions

A Mal’cev operation on a space X is a continuous mapping p : X3 — X such
that p(z,x,z) = z and p(z,y,y) = z, for all x,y,z € X. A space is called a Mal’cev
space if it admits a Mal’cev operation (see [9-11,16,19]).

A homogeneous algebra on a space GG is a pair of binary continuous operations
p,q: G x G — G such that p(z,z) = p(y,y), and p(x, q(z,y)) =y, q(z,p(z,y)) =y
for all z,y € G. If the above conditions are satisfied, then the ternary operation
w(z,z,z) = q(x,p(y, z)) is a Mal’cev operation (see [9,10]).

A biternary algebra on a space G is a pair of ternary continuous operations
a,f: Gx Gx G — G such that a(x,z,y) = vy, a(f(x,y,2),y,2)) = z, and
Bla(x,y,2),y,2)) =z, for all z,y,z € G (see [16]).

In [9,10] (see also [19]) it was proved that for an arbitrary space G the following
conditions are equivalent:

1) @G is a rectifiable space;
2) G is homeomorphic to a homogeneous algebra;

3) There exists a structure of a biternary algebra on G.

A structure of a topological quasigroup on a space G is a triplet of binary con-
tinuous operations p,l,7 : G X G x G — G such that p(x,l(z,y)) = p(r(y,z),x) =
lz,p(x,y)) = l(r(x,y),z) = r(p(y,z),z) = r(z,l(y,z)) =y, for all z,y € G. If
there exists an element e € G such that p(e, ) = p(z,e) = z for any = € G, then we
say that G is a topological loop and e is the identity of G. Any topological quasigroup
admits the structure of a topological loop (see [16]). If e € G and p(e,z) = x for
any = € G, then x +y = p(y,x) and = -y = r(y, x) is a structure of a homogeneous
algebra.

If (G,-) is a topological group with the neutral element e, then the mapping
o(r,y) = (z,271 - y) is a rectification on the space G with the neutral element e,
and the mappings p(z,y) = ™'y and ¢(z, y) = z-y form a structure of homogeneous
algebra on G. Therefore, every topological quasigroup is a rectifiable space.

A space X is called k-perfect if the closure of any open subset of X is a G-set
in X.

Proposition 3. Let X and Y be any pseudocompact k-perfect subspaces of a Ty-
chonoff space Z such that Z = X UY, and X, Y are dense in Z. Suppose further
that X andY are Mal’cev spaces. Then the space Z is also k-perfect.

Proof. Let U be an open subset of the space Z. Weput V=XNU and W =Y NU.
There exist two sequences {V,, : n € w} and {W,, : n € w} of open subsets of the
space Z such that:

—cdxV={V,NX :new} and cdyW =n{W,,NY :n € w};
- Vo1 €V, and Wy C W, for any n € w.

Obviously, clzU = clzV = clzW. We put F + cl,U.
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We affirm that N{V,, : n € w} C F. Assume that H = (N{V,,: n € w}) \ F # 0.
By construction, H is a Gg-subset of Z and H C Y. Fix a point b € H. There
exists a continuous function f : Z — [0,1] such that b € f~1(0) C H. Then
the function g(z) = 1/f(x) is a continuous unbounded function on the space X, a
contradiction. Thus N{V,,:ne€w} CFN{W, :nec€w} CF. IfU, =V, UW,, then
W, :new}=F. O

Proposition 4. Let X and Y be pseudocompact subspaces of a compact Hausdorff
space B such that X and Y are dense in B and Z = X UY . Suppose further that
X and Y are Mal’cev spaces. Then:

1) The space B is a k-perfect Mal’cev space.

2) There exist Mal’cev operations p,n : B3 — B on B such that u(X3) = X
and n(Y3) =Y.

3) If X is rectifiable, then B is also rectifiable, and there exists a structure of
homogeneous algebra {+,-} on B such that X is a subagebra of B.

4) If X is a topological quasigroup, then there exists a structure of a topological
loop on B such that X is a subloop of B.

5) If the space X is a topological group, then on there exists a structure of a
topological group on B such that X is a subgroup of B.

6) B=pX =pY.

Proof. Since X is a pseudocompact Mal’cev space, the Stone-Cech compactification
BX of X is a compact Mal'cev space [17]. Any compact Mal’cev space is k-perfect
[10]. Thus, X and Y are s-perfect spaces, since they are dense subspaces of k-perfect
spaces. By Proposition 3, the space B is k-perfect. Now we need the following known
fact:

Fact 1: If Z is a pseudocompact subspace of a k-perfect compact Hausdorff
space B such that Z is dense in B, then B = 7.

Really, let F} and F5 be two closed subsets of Z and f : Z — R be a continuous
function such that Fy C f~(—2) and Fc f~1(2). There exist two open subsets U and
V of B such that UNZ C f~1(—=3,—~1)and VNZ C f~1(1,3). Then H = clgUNclgV
is a Gg-subset of B and, by construction, H C B\ Z. Since Z is pseudocompact,
we have H = (). Since F; C U and F» C V, we have clgF}| NclgFy = (. Therefore
B =pZ.

Thus, B = X = BY. Statements 1 and 6 are proved. The space X" is pseu-
docompact for any n € w. Hence, by virtue of Glicksberg’s Theorem ([12], Problem
3.12.20(d)), any continuous binary operation on X admits continuous extension on
B. Statements 2, 3 and 4 are established. O

Proposition 5. Let X be a subalgebra of a homogeneous algebra G. If the space
G is regular and Lindeldf, and the space X is of pointwise countable type and is
dense in G, then there exist a separable metrizable homogeneous algebra G’ and a
homomorphism g : G — G’ such that X = g~'(g(X)) and the mapping g is open
and perfect. In particular, it follows that X is a Lindelof p-space.
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Proof. By the assumptions, there is a pair of binary continuous operations p,q :
G x G — G on the space G such that:

= plz, ) = p(y,y), and p(z,q(z,y)) =y, q(z,p(z,y)) =y for all 2,y € G;

— p(z,y) € X and q(z,y) € X for all z,y € X.

We put e = p(z,z). If a € G, then p,(x) = p(a,z) and g,(x) = g(a,x) for any
r € G. We have ¢;! = p, and g,(e) = a. Thus, p, and ¢, are homeomorphisms.
Moreover, po(X) = gqo(X) = X for each a € X.

Let F' be a non-empty compact subspace of X with a countable base of open
neighbourhoods in X. We can assume that e € F. Since X is dense in G, the set
F' also has a countable base of open neighbourhoods in the space G. Therefore, X
and G are p-spaces (see [6], Proposition 2.1).

Since F'is a compact Gg-subset of the Lindelof algebra G, there exist a separable
metrizable homogeneous algebra G’ and a homomorphism g : G — G’ such that
F = g '(g(F)) and g is a perfect mapping [10]. The quotient homomorphism of a
Mal’cev algebra is an open mapping [10]. Thus, the mapping ¢ is open. We can
assume that ¢/ = g(e) and p(z,2) =€’ for any z € G'.

Let b€ g(X) C G Fixae XNg '(b). If H=g '(e/, then H C F C X and
0(H) = g~ (ap(¢') € X. Thus, g='(b) = g~ ' (q(¢') € X. Therefore, g~'(9(X)) =
X. The proof is complete. U

Since a pseudocompact rectifiable space X can be considered as a subalgebra of
the compact homogeneous algebra G = X, Proposition 5 yields

Corollary 8. If G is a pseudocompact rectifiable space of pointwise countable type,
then G is compact.

Theorem 9. Suppose that B is a compact Hausdorff space, B = XUY and XNY =
0, where X and Y are non-locally compact rectifiable spaces. Then X and Y either
are both pseudocompact, or are both Lindelof p-spaces.

Proof. Clearly, X is the remainder of Y in the Hausdorff compactification B of Y
similarly, Y is the remainder of X in the Hausdorff compactification B of X.

By the Dichotomy Theorem for remainders of rectifiable spaces (see [6]), each
of the spaces X and Y is either pseudocompact, or Lindelof. If both of them are
pseudocompact, then we are done.

Assume now that at least one of the subspaces X and Y, say X, is Lindelof.

By the Dichotomy Theorem for remainders in [6], the remainder Y of X in B is
either pseudocompact or Lindelof.

Case 1: Y is pseudocompact.

Lindel6fness of X implies that Y is a space of countable type, by the theorem of
Henriksen and Isbell [14]. Then Corollary 8 implies that Y is compact. Therefore,
Y is closed in B. Hence, X is open in B, which implies that X is locally compact,
a contradiction. Thus, Case 1 is impossible.

Case 2: Y is Lindelof.
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Lindel6fness of X and Y implies that X and Y are spaces of countable type, by
the theorem of Henriksen and Isbell [14]. Therefore, by Proposition 2.1 from [6], X
and Y are Lindelof p-spaces. The proof is complete. O

Observe that Theorem 9 doesn’t generalize to homogeneous Mal’cev spaces. In-
deed, a non-metrizable compactum can be represented as the union of two disjoint
dense copies of Sorgenfrey line (take the ”double arrow” space). It was shown in [17]
that Sorgenfrey line is a Mal’cev space. It is well-known that Sorgenfrey line is not
a p-space (see [5]). It is also clear that Sorgenfrey line is not pseudocompact.

Question 1. Is every rectifiable space of countable type paracompact? Normal?
Question 2. Does every rectifiable space of countable type admit a perfect
mapping onto a metrizable (rectifiable) space?
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