Some addition theorems for rectifiable spaces

Alexander V. Arhangel’skii, Mitrofan M. Choban

Abstract. We establish that if a compact Hausdorff space B with the cardinality less than $2^{<\omega}$ is represented as the union of two non-locally compact rectifiable subspaces X and Y, then X, Y and B are separable and metrizable.

Mathematics subject classification: 54B05.

Keywords and phrases: Rectifiable space, topological group, remainder, compactification, tightness, π-base, first-countability, countable type.

1 Introduction

It is well-known that if the cardinality of a compact topological group X does not exceed $2^{<\omega}$ and the continuum hypothesis is satisfied, then X is separable and metrizable (see [8]). Extending this result, we show that if the cardinality of a compact Hausdorff space X is less than $2^{<\omega}$, then X cannot be represented as the union of two non-locally compact rectifiable spaces. Recall that every topological group is a rectifiable space (see the definition below). Some other results in this direction are also obtained.

We use the terminology and notations from [12]. A remainder of a Tychonoff space X is the subspace $bX \setminus X$ of a Hausdorff compactification bX of X.

A space X is of countable type (respectively, of pointwise countable type) if every compact subspace P (respectively, any point p) of X is contained in a compact subspace $F \subset X$ with a countable base of open neighbourhoods in X. All metrizable spaces and all locally compact Hausdorff spaces, as well as all Čech-complete spaces, are of countable type [1, 2, 12].

A famous classical result on duality between properties of spaces and properties of their remainders is the following theorem of M. Henriksen and J. Isbell [14]:

Theorem 1. A Tychonoff space X is of countable type if and only if the remainder in any (in some) Hausdorff compactification of X is Lindelöf.

It follows from this theorem that every remainder of a metrizable space is Lindelöf.
2 Addition theorems for rectifiable spaces

Recall that a space X is rectifiable if there exists $e \in X$ and a homeomorphism $g : X \times X \to X \times X$ such that $g((x, e)) = (x, x)$, for every $x \in X$, and the restriction of g to the subspace $X_e = \{(x, y) : y \in X\}$ is a homeomorphism of X_e onto itself, for every $x \in X$. Every topological group is rectifiable, and every rectifiable space is homogeneous (see [9, 10]).

Theorem 2. Suppose that B is a compact Hausdorff space such that $|B| < 2^{\omega_1}$. Suppose further that $B = X \cup Y$, where X and Y are non-locally compact rectifiable spaces. Then the spaces B, X, and Y are separable and metrizable.

Proof. Clearly, Y and X are non-empty, since they are not locally compact. Hence, B is non-empty. By Čech-Pospíšil Theorem ([3, 15], [12], Problem 3.12.11), there exists a point $a \in B$ such that B is first-countable at a. Without loss of generality, we may assume that $a \in X$. Put $Z = B \setminus X$ and $H = B \setminus Y$. The spaces X and Y are nowhere locally compact, since they are homogeneous and non-locally compact. It also follows that Z and H are nowhere locally compact. Hence, X, Y, Z, and H are dense in B.

Since X is homogeneous and X is first-countable at a, it follows that the space X is first-countable. Therefore, X is metrizable, since X is rectifiable [13]. Hence, X is a space of countable type [1], which implies that the remainder Z of X in B is Lindelöf [14].

By the Dichotomy Theorem for remainders of rectifiable spaces (see [6]), the remainder H of Y in the Hausdorff compactification B of Y is either pseudocompact, or Lindelöf. Notice that H is metrizable in any case, since, obviously $H \subset X$.

Case 1: H is pseudocompact.

Then H is compact, since H is metrizable. Therefore, H is closed in B. Hence, Y is open in B, which implies that Y is locally compact, a contradiction. Thus, Case 1 is impossible.

Case 2: H is Lindelöf.

Then H is separable, since H is metrizable. Hence, B is separable, which implies that the Souslin number of Y is countable, since Y is dense in B. It also follows that X is separable, since H is dense in X.

Lindelöfness of H also implies that Y is a space of countable type, by the theorem of Henriksen and Isbell [14]. Therefore, we can fix a non-empty compact subspace F of Y with a countable base of open neighbourhoods in Y. We have: $|F| \leq |B| < 2^{\omega_1}$. Applying one more time the Čech-Pospíšil Theorem [3, 12, 15] we conclude that there exists a point $b \in F$ such that F is first-countable at b. Since F has a countable base of open neighbourhoods in Y, we can now conclude that the space Y is first-countable at the point b. Therefore, the space Y is first-countable, since it is homogeneous. Hence, Y is metrizable, since it is rectifiable. Finally, it follows that Y is separable, since the Souslin number of Y is countable. \[\square\]
A family η of non-empty open subsets of a space X is said to be a π-base of X at a point $a \in X$ if every open neighbourhood of a in X contains some $V \in \eta$ (see [7]).

Here is another restriction on a compactum B under which we can obtain even a stronger conclusion:

Theorem 3. Suppose that B is a compact Hausdorff space of countable tightness and that $B = \bigcup\{Y_n : n \in \omega = \{0, 1, 2, \ldots\}\}$, where each Y_n is dense in B and is rectifiable. Then B and each Y_n are separable and metrizable.

Proof. Take any $y \in Y_n$. Then there exists a countable π-base ξ of B at y, since the tightness of the compactum B is countable (see [18] and [3]). Then $\eta = \{V \cap Y_n : V \in \xi\}$ is a countable π-base of the subspace Y_n at y, since Y_n is dense in B. Since Y_n is rectifiable and Y_n has a countable π-base at y, it follows from a result of A. Gul’ko [13] that the space Y_n is metrizable. Therefore, each Y_n has a σ-disjoint open base. Since Y_n is dense in B, it follows that B is first-countable and that σ-disjoint open bases in the subspaces Y_n can be extended, in a standard way, to a point-countable base in B. It remains to use a well-known deep theorem of A.S. Mischenko that every compact Hausdorff space with a point-countable base is separable and metrizable (see [12], Problem 3.12.22(f)).

The next result considerably generalizes Theorem 2.

Theorem 4. Suppose that B is a compact Hausdorff space which doesn’t admit a continuous mapping onto the Tychonoff cube I^{ω_1}. Suppose further that $B = X \cup Y$, where X and Y are non-locally compact rectifiable spaces. Then B, X, and Y are separable and metrizable.

Proof. Clearly, Y and X are non-empty. Hence, B is non-empty. Since B cannot be continuously mapped onto the Tychonoff cube I^{ω_1}, it follows from a Theorem of B.E. Shapirovskij (see [18], [3], Theorems 2.2.20 and 3.1.9) that there exists a point $a \in B$ such that B has a countable π-base at a. Without loss of generality, we may assume that $a \in X$. Put $Z = B \setminus X$ and $H = B \setminus Y$. The spaces X and Y are nowhere locally compact, since they are homogeneous and non-locally compact. Clearly, the subspaces Z and H are nowhere locally compact as well. Thus, X, Y, Z, and H are dense in B.

Since X has a countable π-base at a and X is rectifiable, it follows that the space X is metrizable [13]. Hence, X is a space of countable type [1], which implies that the remainder Z of X in B is Lindelöf [14].

By the Dichotomy Theorem for remainders of rectifiable spaces (see [6]), the remainder H of Y in the compactification B of Y is either pseudocompact, or Lindelöf. Notice that H is metrizable, since $H \subseteq X$.

If H is pseudocompact, then H is compact, since H is metrizable. Therefore, H is closed in B and Y is open in B, which implies that Y is locally compact, a contradiction.

Hence, H is Lindelöf. Then H has a countable base, since H is metrizable. Hence, B has a countable π-base, since H is dense in B, which implies that Y also
has a countable π-base, since Y is dense in B. Since the space Y is rectifiable, using again a theorem of A. Gul’ko in [13], we conclude that Y is metrizable. Clearly, Y is separable. It also follows that X is separable, since H is dense in X. Therefore, B is separable and metrizable, as the union of two separable metrizable subspaces (see [12], Corollary 3.1.20).

The proof of Theorem 2 obviously contains a proof of the next statement:

Theorem 5. Suppose that B is a compact Hausdorff space and that $B = X \cup Y$, where X and Y are non-locally compact spaces. Suppose further that X is metrizable and Y is rectifiable. Then B, X and Y are separable and metrizable.

3 On k-gentle paratopological groups

A group G with a topology T is called a paratopological group if the multiplication $(x, y) \to x \cdot y$ is a continuous mapping of $G \times G$ onto G.

Let us call a mapping f of a space X into a space Y k-gentle if for every compact subset F of X the image $f(F)$ is also compact.

A group G with a topology will be called k-gentle if the inverse mapping $x \to x^{-1}$ is k-gentle.

Proposition 1. Suppose that B is a compact Hausdorff space in which any non-empty G_δ-subspace has a point of countable character in this subspace. Suppose further that $B = X \cup Y$, where each $Z \in \{X, Y\}$ is a space with the following properties:

- the space Z is not locally compact;
- if the space Z contains some point of countable character in Z, then the space Z is metrizable;
- if bZ is a Hausdorff compactification of Z, then the remainder $bZ \setminus Z$ is either pseudocompact or Lindelöf.

Then B, X, and Y are separable and metrizable.

Proof. Clearly, Y and X are non-empty, since they are not locally compact. Hence, B is non-empty. Moreover, the sets X and Y are dense in B. Thus, B is a compactification of the subspaces X and Y. There exists a point $a \in B$ such that B is first-countable at a. Without loss of generality, we may assume that $a \in X$. Then the space X is metrizable.

If $b \in X \cap Y$, for some b, then the space Y is metrizable, as a space with the countable character at b. In this case the proof is complete.

Assume that $X \cap Y = \emptyset$. Clearly, X is a space of countable type [1], since X is metrizable. It follows that the remainder Y of X in B is Lindelöf [14].

Clearly, the space X is a remainder of the space Y in B. Hence, X is either pseudocompact or Lindelöf.

Case 1: X is pseudocompact.
Then X is compact, since X is metrizable. Therefore, X is closed in B, a contradiction. Thus, Case 1 is impossible.

Case 2: X is Lindelöf.

Then X is separable, since X is metrizable. Hence, B is separable, which implies that the Souslin number of Y is countable, since Y is dense in B. Lindelöfness of X also implies that Y is a space of countable type, by the theorem of Henriksen and Isbell [14]. Therefore, we can fix a non-empty compact subspace F of Y with a countable base of open neighbourhoods in Y. By the assumptions, there exists a point $c \in F$ such that B is first-countable at c. It follows that the space Y is first-countable at c. Thus Y is a metrizable space with a countable Souslin number. Hence, X and Y are separable and metrizable. It follows that B is separable and metrizable, since B is compact and Hausdorff ([12], Corollary 3.1.20).

Corollary 6. Suppose that B is a compact Hausdorff space such that $|B| < 2^{\omega_1}$. Suppose further that $B = X \cup Y$, where X and Y are non-locally compact k-gentle paratopological groups. Then B, X, Y are separable, metrizable spaces, and X, Y are topological groups.

In view of Proposition 1, this statement follows from the next proposition:

Proposition 2. Let G be a Hausdorff k-gentle paratopological group such that G is first-countable at some point. Then:

1) the space G is metrizable;

2) G is a topological group;

3) any remainder of G in a Hausdorff compactification bG of G is either pseudocompact or Lindelöf.

Proof. Since G is a homogeneous space, the space G is first-countable. Every first-countable Hausdorff space is a k-space ([12], Theorem 3.3.20). Hence G is a k-space. It is obvious that if a k-gentle paratopological group is a k-space, then this paratopological group is a topological group. Hence, 2) holds. Every first-countable topological group is metrizable (see [8]). Therefore, 1) holds. By the Dichotomy Theorem for remainders of topological groups (see [4, 5]), since G is a topological group, any remainder of G in a Hausdorff compactification of G is either pseudocompact or Lindelöf. Therefore, 3) holds.

Example 7. Let X_1 be the space of all rational numbers of the interval $I = [0, 1]$. Clearly, X_1 is homeomorphic to a topological group. The space $Y_1 = I \setminus X_1$ is also homeomorphic to a topological group. Take also the topological group D^{ω_1}. Put $B = I \times D^{\omega_1}$, $X = X_1 \times D^{\omega_1}$ and $Y = Y_1 \times D^{\omega_1}$. Then X and Y are dense non-metrizable nowhere locally compact topological groups, B is a homogeneous compact Hausdorff space with the cardinality 2^{ω_1}, and $B = X \cup Y$. The space B admits a continuous mapping onto I^{ω_1} and the tightness $t(B) = \aleph_1$. Thus the respective cardinal assumptions in Theorems 2, 3, 4 and Corollary 6 are essential.

We could also modify the definitions of B, X, and Y above so that each of the spaces B, X, Y would admit a structure of a topological group.
4 On Mal’cev spaces. Some questions

A Mal’cev operation on a space X is a continuous mapping $\mu : X^3 \to X$ such that $\mu(x, x, z) = z$ and $\mu(x, y, y) = x$, for all $x, y, z \in X$. A space is called a Mal’cev space if it admits a Mal’cev operation (see [9–11, 16, 19]).

A homogeneous algebra on a space G is a pair of binary continuous operations $p, q : G \times G \to G$ such that $p(x, x) = p(y, y)$, and $p(x, q(x, y)) = y$, $q(x, p(x, y)) = y$ for all $x, y \in G$. If the above conditions are satisfied, then the ternary operation $\mu(x, x, z) = q(x, p(y, z))$ is a Mal’cev operation (see [9, 10]).

A biternary algebra on a space G is a pair of ternary continuous operations $\alpha, \beta : G \times G \times G \to G$ such that $\alpha(x, x, y) = y$, $\alpha(\beta(x, y, z), y, z)) = x$, and $\beta(\alpha(x, y, z), y, z)) = x$, for all $x, y, z \in G$ (see [16]).

In [9, 10] (see also [19]) it was proved that for an arbitrary space G the following conditions are equivalent:

1) G is a rectifiable space;
2) G is homeomorphic to a homogeneous algebra;
3) There exists a structure of a biternary algebra on G.

A structure of a topological quasigroup on a space G is a triplet of binary continuous operations $p, l, r : G \times G \times G \to G$ such that $p(x, l(x, y)) = p(r(y, x), x) = l(x, p(x, y)) = l(r(x, y), x) = r(p(y, x), x) = r(x, l(y, x)) = y$, for all $x, y \in G$. If there exists an element $e \in G$ such that $p(e, x) = p(x, e) = x$ for any $x \in G$, then we say that G is a topological loop and e is the identity of G. Any topological quasigroup admits the structure of a topological loop (see [16]). If $e \in G$ and $p(e, x) = x$ for any $x \in G$, then $x + y = p(y, x)$ and $x \cdot y = r(y, x)$ is a structure of a homogeneous algebra.

If (G, \cdot) is a topological group with the neutral element e, then the mapping $\varphi(x, y) = (x, x^{-1} \cdot y)$ is a rectification on the space G with the neutral element e, and the mappings $p(x, y) = x^{-1} \cdot y$ and $q(x, y) = x \cdot y$ form a structure of homogeneous algebra on G. Therefore, every topological quasigroup is a rectifiable space.

A space X is called κ-perfect if the closure of any open subset of X is a G_δ-set in X.

Proposition 3. Let X and Y be any pseudocompact κ-perfect subspaces of a Tychonoff space Z such that $Z = X \cup Y$, and X, Y are dense in Z. Suppose further that X and Y are Mal’cev spaces. Then the space Z is also κ-perfect.

Proof. Let U be an open subset of the space Z. We put $V = X \cap U$ and $W = Y \cap U$. There exist two sequences $\{V_n : n \in \omega\}$ and $\{W_n : n \in \omega\}$ of open subsets of the space Z such that:

- $cl_X V = \cap \{V_n \cap X : n \in \omega\}$ and $cl_Y W = \cap \{W_n \cap Y : n \in \omega\}$;
- $V_{n+1} \subseteq V_n$ and $W_{n+1} \subseteq W_n$ for any $n \in \omega$.

Obviously, $cl_Z U = cl_Z V = cl_Z W$. We put $F + cl_Z U$.

\[\text{Some Addition Theorems for Rectifiable Spaces} \]
We affirm that \(\cap \{ V_n : n \in \omega \} \subseteq F \). Assume that \(H = (\cap \{ V_n : n \in \omega \}) \setminus F \neq \emptyset \).

By construction, \(H \) is a \(G_\delta \)-subset of \(Z \) and \(H \subseteq Y \). Fix a point \(b \in H \). There exists a continuous function \(f : Z \to [0,1] \) such that \(b \in f^{-1}(0) \subseteq H \). Then the function \(g(x) = 1/f(x) \) is a continuous unbounded function on the space \(X \), a contradiction. Thus \(\cap \{ V_n : n \in \omega \} \subseteq F \cap \{ W_n : n \in \omega \} \subseteq F \). If \(U_n = V_n \cup W_n \), then \(\cap \{ W_n : n \in \omega \} = F \).

Proposition 4. Let \(X \) and \(Y \) be pseudocompact subspaces of a compact Hausdorff space \(B \) such that \(X \) and \(Y \) are dense in \(B \) and \(Z = X \cup Y \). Suppose further that \(X \) and \(Y \) are Mal’cev spaces. Then:

1) The space \(B \) is a \(\kappa \)-perfect Mal’cev space.
2) There exist Mal’cev operations \(\mu, \eta : B^3 \to B \) on \(B \) such that \(\mu(X^3) = X \) and \(\eta(Y^3) = Y \).
3) If \(X \) is rectifiable, then \(B \) is also rectifiable, and there exists a structure of homogeneous algebra \(\{ +, \cdot \} \) on \(B \) such that \(X \) is a subagebra of \(B \).
4) If \(X \) is a topological quasigroup, then there exists a structure of a topological loop on \(B \) such that \(X \) is a subloop of \(B \).
5) If the space \(X \) is a topological group, then there exists a structure of a topological group on \(B \) such that \(X \) is a subgroup of \(B \).
6) \(B = \beta X = \beta Y \).

Proof. Since \(X \) is a pseudocompact Mal’cev space, the Stone-Čech compactification \(\beta X \) of \(X \) is a compact Mal’cev space [17]. Any compact Mal’cev space is \(\kappa \)-perfect [10]. Thus, \(X \) and \(Y \) are \(\kappa \)-perfect spaces, since they are dense subspaces of \(\kappa \)-perfect spaces. By Proposition 3, the space \(B \) is \(\kappa \)-perfect. Now we need the following known fact:

Fact 1: If \(Z \) is a pseudocompact subspace of a \(\kappa \)-perfect compact Hausdorff space \(B \) such that \(Z \) is dense in \(B \), then \(B = \beta Z \).

Really, let \(F_1 \) and \(F_2 \) be two closed subsets of \(Z \) and \(f : Z \to \mathbb{R} \) be a continuous function such that \(F_1 \subseteq f^{-1}(-2) \) and \(F_2 \subseteq f^{-1}(2) \). There exist two open subsets \(U \) and \(V \) of \(B \) such that \(U \cap Z \subseteq f^{-1}(-3,-1) \) and \(V \cap Z \subseteq f^{-1}(1,3) \). Then \(H = cl_B U \cap cl_B V \) is a \(G_\delta \)-subset of \(B \) and, by construction, \(H \subseteq B \setminus Z \). Since \(Z \) is pseudocompact, we have \(H = \emptyset \). Since \(F_1 \subseteq U \) and \(F_2 \subseteq V \), we have \(cl_B F_1 \cap cl_B F_2 = \emptyset \). Therefore \(B = \beta Z \).

Thus, \(B = \beta X = \beta Y \). Statements 1 and 6 are proved. The space \(X^n \) is pseudocompact for any \(n \in \omega \). Hence, by virtue of Glicksberg’s Theorem ([12], Problem 3.12.20(d)), any continuous binary operation on \(X \) admits continuous extension on \(B \). Statements 2, 3 and 4 are established.

Proposition 5. Let \(X \) be a subalgebra of a homogeneous algebra \(G \). If the space \(G \) is regular and Lindelöf, and the space \(X \) is of pointwise countable type and is dense in \(G \), then there exist a separable metrizable homogeneous algebra \(G' \) and a homomorphism \(g : G \to G' \) such that \(X = g^{-1}(g(X)) \) and the mapping \(g \) is open and perfect. In particular, it follows that \(X \) is a Lindelöf p-space.
Proof. By the assumptions, there is a pair of binary continuous operations \(p, q : G \times G \to G \) on the space \(G \) such that:
- \(p(x, x) = p(y, y) \), and \(p(x, q(x, y)) = y, q(x, p(x, y)) = y \) for all \(x, y \in G \);
- \(p(x, y) \in X \) and \(q(x, y) \in X \) for all \(x, y \in X \).

We put \(e = p(x, x) \). If \(a \in G \), then \(p_a(x) = p(a, x) \) and \(q_a(x) = q(a, x) \) for any \(x \in G \). We have \(q_a^{-1} = p_a \) and \(q_a(e) = a \). Thus, \(p_a \) and \(q_a \) are homeomorphisms. Moreover, \(p_a(X) = q_a(X) = X \) for each \(a \in X \).

Let \(F \) be a non-empty compact subspace of \(X \) with a countable base of open neighbourhoods in \(X \). We can assume that \(e \in F \). Since \(X \) is dense in \(G \), the set \(F \) also has a countable base of open neighbourhoods in the space \(G \). Therefore, \(X \) and \(G \) are \(p \)-spaces (see [6], Proposition 2.1).

Since \(F \) is a compact \(G_δ \)-subset of the Lindelöf algebra \(G \), there exist a separable metrizable homogeneous algebra \(G' \) and a homomorphism \(g : G \to G' \) such that \(F = g^{-1}(g(F)) \) and \(g \) is a perfect mapping [10]. The quotient homomorphism of a Mal’cev algebra is an open mapping [10]. Thus, the mapping \(g \) is open. We can assume that \(e' = g(e) \) and \(p(z, z) = e' \) for any \(z \in G' \).

Let \(b \in g(X) \subseteq G' \). Fix \(a \in X \cap g^{-1}(b) \). If \(H = g^{-1}(e') \), then \(H \subseteq F \subseteq X \) and \(g_a(H) = g^{-1}(g_a(e')) \subseteq X \). Thus, \(g^{-1}(b) = g^{-1}(g_a(e')) \subseteq X \). Therefore, \(g^{-1}(g(X)) = X \). The proof is complete. \(\square \)

Since a pseudocompact rectifiable space \(X \) can be considered as a subalgebra of the compact homogeneous algebra \(G = \beta X \), Proposition 5 yields

Corollary 8. If \(G \) is a pseudocompact rectifiable space of pointwise countable type, then \(G \) is compact.

Theorem 9. Suppose that \(B \) is a compact Hausdorff space, \(B = X \cup Y \) and \(X \cap Y = \emptyset \), where \(X \) and \(Y \) are non-locally compact rectifiable spaces. Then \(X \) and \(Y \) either are both pseudocompact, or are both Lindelöf \(p \)-spaces.

Proof. Clearly, \(X \) is the remainder of \(Y \) in the Hausdorff compactification \(B \) of \(Y \); similarly, \(Y \) is the remainder of \(X \) in the Hausdorff compactification \(B \) of \(X \).

By the Dichotomy Theorem for remainders of rectifiable spaces (see [6]), each of the spaces \(X \) and \(Y \) is either pseudocompact, or Lindelöf. If both of them are pseudocompact, then we are done.

Assume now that at least one of the subspaces \(X \) and \(Y \), say \(X \), is Lindelöf.

By the Dichotomy Theorem for remainders in [6], the remainder \(Y \) of \(X \) in \(B \) is either pseudocompact or Lindelöf.

Case 1: \(Y \) is pseudocompact.

Lindelöfness of \(X \) implies that \(Y \) is a space of countable type, by the theorem of Henriksen and Isbell [14]. Then Corollary 8 implies that \(Y \) is compact. Therefore, \(Y \) is closed in \(B \). Hence, \(X \) is open in \(B \), which implies that \(X \) is locally compact, a contradiction. Thus, Case 1 is impossible.

Case 2: \(Y \) is Lindelöf.
Lindelöfness of X and Y implies that X and Y are spaces of countable type, by the theorem of Henriksen and Isbell [14]. Therefore, by Proposition 2.1 from [6], X and Y are Lindelöf p-spaces. The proof is complete.

Observe that Theorem 9 doesn’t generalize to homogeneous Mal’cev spaces. Indeed, a non-metrizable compactum can be represented as the union of two disjoint dense copies of Sorgenfrey line (take the ”double arrow” space). It was shown in [17] that Sorgenfrey line is a Mal’cev space. It is well-known that Sorgenfrey line is not a p-space (see [5]). It is also clear that Sorgenfrey line is not pseudocompact.

Question 1. Is every rectifiable space of countable type paracompact? Normal?

Question 2. Does every rectifiable space of countable type admit a perfect mapping onto a metrizable (rectifiable) space?

References

ALEXANDER V. ARHANGEL’SKII
Moscow, Russia
E-mail: arhangel.alex@gmail.com

MITROFAN M. CHOBAN
Department of Mathematics
Tiraspol State University, Chișinău Moldova
E-mail: mmchoban@gmail.com

Received June 21, 2011