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Some addition theorems for rectifiable spaces
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Abstract. We establish that if a compact Hausdorff space B with the cardinality less
than 2ω1 is represented as the union of two non-locally compact rectifiable subspaces
X and Y , then X, Y and B are separable and metrizable.
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1 Introduction

It is well-known that if the cardinality of a compact topological group X does
not exceed 2ω and the continuum hypothesis is satisfied, then X is separable and
metrizable (see [8]). Extending this result, we show that if the cardinality of a
compact Hausdorff space X is less than 2ω1 , then X cannot be represented as the
union of two non-locally compact rectifiable spaces. Recall that every topological
group is a rectifiable space (see the definition below). Some other results in this
direction are also obtained.

We use the terminology and notations from [12]. A remainder of a Tychonoof
space X is the subspace bX \ X of a Hausdorff compactification bX of X.

A space X is of countable type (respectively, of pointwise countable type) if every
compact subspace P (respectively, any point p) of X is contained in a compact
subspace F ⊂ X with a countable base of open neighbourhoods in X. All metrizable
spaces and all locally compact Hausdorff spaces, as well as all Čech-complete spaces,
are of countable type [1, 2, 12].

A famous classical result on duality between properties of spaces and properties
of their remainders is the following theorem of M.Henriksen and J. Isbell [14]:

Theorem 1. A Tychonoff space X is of countable type if and only if the remainder
in any (in some) Hausdorff compactification of X is Lindelöf.

It follows from this theorem that every remainder of a metrizable space is
Lindelöf.
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2 Addition theorems for rectifiable spaces

Recall that a space X is rectifiable if there exists e ∈ X and a homeomorphism
g : X×X → X×X such that g((x, e)) = (x, x), for every x ∈ X, and the restriction
of g to the subspace Xx = {(x, y) : y ∈ X} is a homeomorphism of Xx onto itself,
for every x ∈ X. Every topological group is rectifiable, and every rectifiable space
is homogeneous (see [9, 10]).

Theorem 2. Suppose that B is a compact Hausdorff space such that |B| < 2ω1 .
Suppose further that B = X ∪Y , where X and Y are non-locally compact rectifiable
spaces. Then the spaces B, X, and Y are separable and metrizable.

Proof. Clearly, Y and X are non-empty, since they are not locally compact. Hence,
B is non-empty. By Čech-Pospǐsil Theorem ([3, 15], [12], Problem 3.12.11), there
exists a point a ∈ B such that B is first-countable at a. Without loss of generality,
we may assume that a ∈ X. Put Z = B \ X and H = B \ Y . The spaces X and Y
are nowhere locally compact, since they are homogeneous and non-locally compact.
It also follows that Z and H are nowhere locally compact. Hence, X, Y , Z, and H
are dense in B.

Since X is homogeneous and X is first-countable at a, it follows that the space
X is first-countable. Therefore, X is metrizable, since X is rectifiable [13]. Hence,
X is a space of countable type [1], which implies that the remainder Z of X in B is
Lindelöf [14].

By the Dichotomy Theorem for remainders of rectifiable spaces (see [6]), the
remainder H of Y in the Hausdorff compactification B of Y is either pseudocompact,
or Lindelöf. Notice that H is metrizable in any case, since, obviously H ⊂ X.

Case 1: H is pseudocompact.

Then H is compact, since H is metrizable. Therefore, H is closed in B. Hence,
Y is open in B, which implies that Y is locally compact, a contradiction. Thus,
Case 1 is impossible.

Case 2: H is Lindelöf.

Then H is separable, since H is metrizable. Hence, B is separable, which implies
that the Souslin number of Y is countable, since Y is dense in B. It also follows
that X is separable, since H is dense in X.

Lindelöfness of H also implies that Y is a space of countable type, by the theorem
of Henriksen and Isbell [14]. Therefore, we can fix a non-empty compact subspace F
of Y with a countable base of open neighbourhoods in Y . We have: |F | ≤ |B| < 2ω1 .
Applying one more time the Čech-Pospǐsil Theorem [3,12,15] we conclude that there
exists a point b ∈ F such that F is first-countable at b. Since F has a countable base
of open neighbourhoods in Y , we can now conclude that the space Y is first-countable
at the point b. Therefore, the space Y is first-countable, since it is homogeneous.
Hence, Y is metrizable, since it is rectifiable. Finally, it follows that Y is separable,
since the Souslin number of Y is countable.
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A family η of non-empty open subsets of a space X is said to be a π-base of X at
a point a ∈ X if every open neighbourhood of a in X contains some V ∈ η (see [7]).

Here is another restriction on a compactum B under which we can obtain even
a stronger conclusion:

Theorem 3. Suppose that B is a compact Hausdorff space of countable tightness
and that B = ∪{Yn : n ∈ ω = {0, 1, 2, ...}}, where each Yn is dense in B and is
rectifiable. Then B and each Yn are separable and metrizable.

Proof. Take any y ∈ Yn. Then there exists a countable π-base ξ of B at y, since the
tightness of the compactum B is countable (see [18] and [3]). Then η = {V ∩ Yn :
V ∈ ξ} is a countable π-base of the subspace Yn at y, since Yn is dense in B.
Since Yn is rectifiable and Yn has a countable π-base at y, it follows from a result
of A. Gul’ko [13] that the space Yn is metrizable. Therefore, each Yn has a σ-
disjoint open base. Since Yn is dense in B, it follows that B is first-countable and
that σ-disjoint open bases in the subspaces Yn can be extended, in a standard way,
to a point-countable base in B. It remains to use a well-known deep theorem of
A.S. Mischenko that every compact Hausdorff space with a point-countable base is
separable and metrizable (see [12], Problem 3.12.22(f)).

The next result considerably generalizes Theorem 2.

Theorem 4. Suppose that B is a compact Hausdorff space which doesn’t admit a
continuous mapping onto the Tychonoff cube Iω1. Suppose further that B = X ∪ Y ,
where X and Y are non-locally compact rectifiable spaces. Then B, X, and Y are
separable and metrizable.

Proof. Clearly, Y and X are non-empty. Hence, B is non-empty. Since B cannot
be continuously mapped onto the Tychonoff cube Iω1 , it follows from a Theorem
of B. E. Shapirovskij (see [18], [3], Theorems 2.2.20 and 3.1.9) that there exists a
point a ∈ B such that B has a countable π-base at a. Without loss of generality,
we may assume that a ∈ X. Put Z = B \ X and H = B \ Y . The spaces X and Y
are nowhere locally compact, since they are homogeneous and non-locally compact.
Clearly, the subspaces Z and H are nowhere locally compact as well. Thus, X, Y ,
Z, and H are dense in B.

Since X has a countable π-base at a and X is rectifiable, it follows that the space
X is metrizable [13]. Hence, X is a space of countable type [1], which implies that
the remainder Z of X in B is Lindelöf [14].

By the Dichotomy Theorem for remainders of rectifiable spaces (see [6]), the re-
mainder H of Y in the compactification B of Y is either pseudocompact, or Lindelöf.
Notice that H is metrizable, since H ⊂ X.

If H is pseudocompact, then H is compact, since H is metrizable. Therefore,
H is closed in B and Y is open in B, which implies that Y is locally compact, a
contradiction.

Hence, H is Lindelöf. Then H has a countable base, since H is metrizable.
Hence, B has a countable π-base, since H is dense in B, which implies that Y also
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has a countable π-base, since Y is dense in B. Since the space Y is rectifiable, using
again a theorem of A. Gul’ko in [13], we conclude that Y is metrizable. Clearly, Y
is separable. It also follows that X is separable, since H is dense in X. Therefore,
B is separable and metrizable, as the union of two separable metrizable subspaces
(see [12], Corollary 3.1.20).

The proof of Theorem 2 obviously contains a proof of the next statement:

Theorem 5. Suppose that B is a compact Hausdorff space and that B = X ∪ Y ,
where X and Y are non-locally compact spaces. Suppose further that X is metrizable
and Y is rectifiable. Then B, X and Y are separable and metrizable.

3 On k-gentle paratopological groups

A group G with a topology T is called a paratopological group if the multiplication
(x, y) → x · y is a continuous mapping of G × G onto G.

Let us call a mapping f of a space X into a space Y k-gentle if for every compact
subset F of X the image f(F ) is also compact.

A group G with a topology will be called k-gentle if the inverse mapping x → x−1

is k-gentle.

Proposition 1. Suppose that B is a compact Hausdorff space in which any non-
empty Gδ-subspace has a point of countable character in this subspace. Suppose
further that B = X ∪ Y , where each Z ∈ {X,Y } is a space with the following
properties:

– the space Z is not locally compact;

– if the space Z contains some point of countable character in Z, then the space
Z is metrizable;

– if bZ is a Hausdorff compactification of Z, then the remainder bZ \Z is either
pseudocompact or Lindelöf.

Then B, X, and Y are separable and metrizable.

Proof. Clearly, Y and X are non-empty, since they are not locally compact. Hence,
B is non-empty. Moreover, the sets X and Y are dense in B. Thus, B is a com-
pactification of the subspaces X and Y . There exists a point a ∈ B such that B is
first-countable at a. Without loss of generality, we may assume that a ∈ X. Then
the space X is metrizable.

If b ∈ X ∩ Y , for some b, then the space Y is metrizable, as a space with the
countable character at b. In this case the proof is complete.

Assume that X ∩ Y = ∅. Clearly, X is a space of countable type [1], since X is
metrizable. It follows that the remainder Y of X in B is Lindelöf [14].

Clearly, the space X is a remainder of the space Y in B. Hence, X is either
pseudocompact or Lindelöf.

Case 1: X is pseudocompact.
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Then X is compact, since X is metrizable. Therefore, X is closed in B, a
contradiction. Thus, Case 1 is impossible.

Case 2: X is Lindelöf.
Then X is separable, since X is metrizable. Hence, B is separable, which implies

that the Souslin number of Y is countable, since Y is dense in B. Lindelöfness of
X also implies that Y is a space of countable type, by the theorem of Henriksen
and Isbell [14]. Therefore, we can fix a non-empty compact subspace F of Y with
a countable base of open neighbourhoods in Y . By the assumptions, there exists
a point c ∈ F such that B is first-countable at c. It follows that the space Y is
first-countable at c. Thus Y is a metrizable space with a countable Souslin number.
Hence, X and Y are separable and metrizable. It follows that B is separable and
metrizable, since B is compact and Hausdorff ([12], Corollary 3.1.20).

Corollary 6. Suppose that B is a compact Hausdorff space such that |B| < 2ω1 .
Suppose further that B = X ∪ Y , where X and Y are non-locally compact k-gentle
paratopological groups. Then B, X, Y are separable, metrizable spaces, and X, Y
are topological groups.

In view of Proposition 1, this statement follows from the next proposition:

Proposition 2. Let G be a Hausdorff k-gentle paratopological group such that G is
first-countable at some point. Then:

1) the space G is metrizable;
2) G is a topological group;
3) any remainder of G in a Hausdorff compactification bG of G is either pseu-

docompact or Lindelöf.

Proof. Since G is a homogeneous space, the space G is first-countable. Every first-
countable Hausdorff space is a k-space ([12], Theorem 3.3.20). Hence G is a k-
space. It is obvious that if a k-gentle paratopological group is a k-space, then
this paratopological group is a topological group. Hence, 2) holds. Every first-
countable topological group is metrizable (see [8]). Therefore, 1) holds. By the
Dichotomy Theorem for remainders of topological groups (see [4, 5]), since G is a
topological group, any remainder of G in a Hausdorff compactification of G is either
pseudocompact or Lindelöf. Therefore, 3) holds.

Example 7. Let X1 be the space of all rational numbers of the interval I = [0, 1].
Clearly, X1 is homeomorphic to a topological group. The space Y1 = I \ X1 is
also homeomorphic to a topological group. Take also the topological group Dω1 .
Put B = I × Dω1, X = X1 × Dω1 and Y = Y1 × Dω1. Then X and Y are dense
non-metrizable nowhere locally compact topological groups, B is a homogeneous
compact Hausdorff space with the cardinality 2ω1 , and B = X ∪ Y . The space
B admits a continuous mapping onto Iω1 and the tightness t(B) = ℵ1. Thus the
respective cardinal assumptions in Theorems 2, 3, 4 and Corollary 6 are essential.

We could also modify the definitions of B, X, and Y above so that each of the
spaces B, X, Y would admit a structure of a topological group.
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4 On Mal’cev spaces. Some questions

A Mal’cev operation on a space X is a continuous mapping µ : X3 → X such
that µ(x, x, z) = z and µ(x, y, y) = x, for all x, y, z ∈ X. A space is called a Mal’cev
space if it admits a Mal’cev operation (see [9–11,16,19]).

A homogeneous algebra on a space G is a pair of binary continuous operations
p, q : G × G → G such that p(x, x) = p(y, y), and p(x, q(x, y)) = y, q(x, p(x, y)) = y
for all x, y ∈ G. If the above conditions are satisfied, then the ternary operation
µ(x, x, z) = q(x, p(y, z)) is a Mal’cev operation (see [9, 10]).

A biternary algebra on a space G is a pair of ternary continuous operations
α, β : G × G × G → G such that α(x, x, y) = y, α(β(x, y, z), y, z)) = x, and
β(α(x, y, z), y, z)) = x, for all x, y, z ∈ G (see [16]).

In [9,10] (see also [19]) it was proved that for an arbitrary space G the following
conditions are equivalent:

1) G is a rectifiable space;

2) G is homeomorphic to a homogeneous algebra;

3) There exists a structure of a biternary algebra on G.

A structure of a topological quasigroup on a space G is a triplet of binary con-
tinuous operations p, l, r : G × G × G → G such that p(x, l(x, y)) = p(r(y, x), x) =
l(x, p(x, y)) = l(r(x, y), x) = r(p(y, x), x) = r(x, l(y, x)) = y, for all x, y ∈ G. If
there exists an element e ∈ G such that p(e, x) = p(x, e) = x for any x ∈ G, then we
say that G is a topological loop and e is the identity of G. Any topological quasigroup
admits the structure of a topological loop (see [16]). If e ∈ G and p(e, x) = x for
any x ∈ G, then x + y = p(y, x) and x · y = r(y, x) is a structure of a homogeneous
algebra.

If (G, ·) is a topological group with the neutral element e, then the mapping
ϕ(x, y) = (x, x−1 · y) is a rectification on the space G with the neutral element e,
and the mappings p(x, y) = x−1·y and q(x, y) = x·y form a structure of homogeneous
algebra on G. Therefore, every topological quasigroup is a rectifiable space.

A space X is called κ-perfect if the closure of any open subset of X is a Gδ-set
in X.

Proposition 3. Let X and Y be any pseudocompact κ-perfect subspaces of a Ty-
chonoff space Z such that Z = X ∪ Y , and X, Y are dense in Z. Suppose further
that X and Y are Mal’cev spaces. Then the space Z is also κ-perfect.

Proof. Let U be an open subset of the space Z. We put V = X∩U and W = Y ∩U .
There exist two sequences {Vn : n ∈ ω} and {Wn : n ∈ ω} of open subsets of the
space Z such that:

– clXV = ∩{Vn ∩ X : n ∈ ω} and clY W = ∩{Wn ∩ Y : n ∈ ω};

– Vn+1 ⊆ Vn and Wn+1 ⊆ Wn for any n ∈ ω.

Obviously, clZU = clZV = clZW . We put F + clzU .
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We affirm that ∩{Vn : n ∈ ω} ⊆ F . Assume that H = (∩{Vn : n ∈ ω}) \ F 6= ∅.
By construction, H is a Gδ-subset of Z and H ⊆ Y . Fix a point b ∈ H. There
exists a continuous function f : Z −→ [0, 1] such that b ∈ f−1(0) ⊆ H. Then
the function g(x) = 1/f(x) is a continuous unbounded function on the space X, a
contradiction. Thus ∩{Vn : n ∈ ω} ⊆ F ∩{Wn : n ∈ ω} ⊆ F . If Un = Vn ∪Wn, then
∩{Wn : n ∈ ω} = F .

Proposition 4. Let X and Y be pseudocompact subspaces of a compact Hausdorff
space B such that X and Y are dense in B and Z = X ∪ Y . Suppose further that
X and Y are Mal’cev spaces. Then:

1) The space B is a κ-perfect Mal’cev space.

2) There exist Mal’cev operations µ, η : B3 −→ B on B such that µ(X3) = X
and η(Y 3) = Y .

3) If X is rectifiable, then B is also rectifiable, and there exists a structure of
homogeneous algebra {+, ·} on B such that X is a subagebra of B.

4) If X is a topological quasigroup, then there exists a structure of a topological
loop on B such that X is a subloop of B.

5) If the space X is a topological group, then on there exists a structure of a
topological group on B such that X is a subgroup of B.

6) B = βX = βY .

Proof. Since X is a pseudocompact Mal’cev space, the Stone-Čech compactification
βX of X is a compact Mal’cev space [17]. Any compact Mal’cev space is κ-perfect
[10]. Thus, X and Y are κ-perfect spaces, since they are dense subspaces of κ-perfect
spaces. By Proposition 3, the space B is κ-perfect. Now we need the following known
fact:

Fact 1: If Z is a pseudocompact subspace of a κ-perfect compact Hausdorff
space B such that Z is dense in B, then B = βZ.

Really, let F1 and F2 be two closed subsets of Z and f : Z −→ R be a continuous
function such that F1 ⊆ f−1(−2) and F⊆f−1(2). There exist two open subsets U and
V of B such that U∩Z ⊆ f−1(−3,−1) and V ∩Z ⊆ f−1(1, 3). Then H = clBU∩clBV
is a Gδ-subset of B and, by construction, H ⊆ B \ Z. Since Z is pseudocompact,
we have H = ∅. Since F1 ⊆ U and F2 ⊆ V , we have clBF1 ∩ clBF2 = ∅. Therefore
B = βZ.

Thus, B = βX = βY . Statements 1 and 6 are proved. The space Xn is pseu-
docompact for any n ∈ ω. Hence, by virtue of Glicksberg’s Theorem ([12], Problem
3.12.20(d)), any continuous binary operation on X admits continuous extension on
B. Statements 2, 3 and 4 are established.

Proposition 5. Let X be a subalgebra of a homogeneous algebra G. If the space
G is regular and Lindelöf, and the space X is of pointwise countable type and is
dense in G, then there exist a separable metrizable homogeneous algebra G′ and a
homomorphism g : G −→ G′ such that X = g−1(g(X)) and the mapping g is open
and perfect. In particular, it follows that X is a Lindelöf p-space.
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Proof. By the assumptions, there is a pair of binary continuous operations p, q :
G × G → G on the space G such that:

– p(x, x) = p(y, y), and p(x, q(x, y)) = y, q(x, p(x, y)) = y for all x, y ∈ G;

– p(x, y) ∈ X and q(x, y) ∈ X for all x, y ∈ X.

We put e = p(x, x). If a ∈ G, then pa(x) = p(a, x) and qa(x) = q(a, x) for any
x ∈ G. We have q−1

a = pa and qa(e) = a. Thus, pa and qa are homeomorphisms.
Moreover, pa(X) = qa(X) = X for each a ∈ X.

Let F be a non-empty compact subspace of X with a countable base of open
neighbourhoods in X. We can assume that e ∈ F . Since X is dense in G, the set
F also has a countable base of open neighbourhoods in the space G. Therefore, X
and G are p-spaces (see [6], Proposition 2.1).

Since F is a compact Gδ-subset of the Lindelöf algebra G, there exist a separable
metrizable homogeneous algebra G′ and a homomorphism g : G −→ G′ such that
F = g−1(g(F )) and g is a perfect mapping [10]. The quotient homomorphism of a
Mal’cev algebra is an open mapping [10]. Thus, the mapping g is open. We can
assume that e′ = g(e) and p(z, z) = e′ for any z ∈ G′.

Let b ∈ g(X) ⊆ G′. Fix a ∈ X ∩ g−1(b). If H = g−1(e′, then H ⊆ F ⊆ X and
qa(H) = g−1(qb(e

′) ⊆ X. Thus, g−1(b) = g−1(qb(e
′) ⊆ X. Therefore, g−1(g(X)) =

X. The proof is complete.

Since a pseudocompact rectifiable space X can be considered as a subalgebra of
the compact homogeneous algebra G = βX, Proposition 5 yields

Corollary 8. If G is a pseudocompact rectifiable space of pointwise countable type,
then G is compact.

Theorem 9. Suppose that B is a compact Hausdorff space, B = X∪Y and X∩Y =
∅, where X and Y are non-locally compact rectifiable spaces. Then X and Y either
are both pseudocompact, or are both Lindelöf p-spaces.

Proof. Clearly, X is the remainder of Y in the Hausdorff compactification B of Y ;
similarly, Y is the remainder of X in the Hausdorff compactification B of X.

By the Dichotomy Theorem for remainders of rectifiable spaces (see [6]), each
of the spaces X and Y is either pseudocompact, or Lindelöf. If both of them are
pseudocompact, then we are done.

Assume now that at least one of the subspaces X and Y , say X, is Lindelöf.

By the Dichotomy Theorem for remainders in [6], the remainder Y of X in B is
either pseudocompact or Lindelöf.

Case 1: Y is pseudocompact.

Lindelöfness of X implies that Y is a space of countable type, by the theorem of
Henriksen and Isbell [14]. Then Corollary 8 implies that Y is compact. Therefore,
Y is closed in B. Hence, X is open in B, which implies that X is locally compact,
a contradiction. Thus, Case 1 is impossible.

Case 2: Y is Lindelöf.
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Lindelöfness of X and Y implies that X and Y are spaces of countable type, by
the theorem of Henriksen and Isbell [14]. Therefore, by Proposition 2.1 from [6], X
and Y are Lindelöf p-spaces. The proof is complete.

Observe that Theorem 9 doesn’t generalize to homogeneous Mal’cev spaces. In-
deed, a non-metrizable compactum can be represented as the union of two disjoint
dense copies of Sorgenfrey line (take the ”double arrow” space). It was shown in [17]
that Sorgenfrey line is a Mal’cev space. It is well-known that Sorgenfrey line is not
a p-space (see [5]). It is also clear that Sorgenfrey line is not pseudocompact.

Question 1. Is every rectifiable space of countable type paracompact? Normal?

Question 2. Does every rectifiable space of countable type admit a perfect
mapping onto a metrizable (rectifiable) space?
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