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On some operations in the lattice of submodules

determined by preradicals

A. I.Kashu

Abstract. In the lattice L(RM) of all submodules of a module RM four operations
are defined using the standard preradicals: α-product, ω-product, α-coproduct and
ω-coproduct. Some properties of these operations, as well as some connections with
the lattice operations of L(RM) are indicated. For characteristic submodules these
operations were studied in the work [5].
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1 Definitions and preliminary facts

Let R be an associative ring with unity and R-Mod be the category of unitary
left R-modules. For an arbitrary module RM ∈ R-Mod we denote by L(RM) the
lattice of all submodules of RM . A submodule N ∈ L(RM) is called characteristic
(fully invariant) in M if f(N) ⊆ N for every R-endomorphism f : RM → RM .
The lattice of all characteristic submodules of RM will be denoted by L

ch(RM).

A preradical r of R-Mod by definition is a subfunctor of identity functor of
R-Mod (i.e. r(M) ⊆ M and f

(

r(M)
)

⊆ r(M ′) for every module M ∈ R-Mod and
every R-morphism f : M → M ′). Obviously, r(M) is a characteristic submodule
of RM . Moreover, the submodule N ∈ L(RM) is characteristic in RM if and only
if there exists a preradical r of R-Mod such that N = r(M).

If r
(

r(M)
)

= r(M) for every M ∈ R-Mod, then r is called idempotent prera-
dical; if r

(

M / RM)
)

= 0 for every M ∈ R-Mod, then r is called a radical.

We denote by R-pr the family of all preradicals of the category R-Mod. Two
operations ,,∧ ” and ,,∨ ” are defined in R-pr by the following rules:

(
∧

α∈A

rα

)

(X) =
⋂

α∈A

rα(X),
(

∨

α∈A

rα

)

(X) =
∑

α∈A

rα(X)

for every X ∈ R-Mod and every family of preradicals {rα |α ∈ A} ⊆ R-pr. Then
R-pr (∧ ,∨) possesses all properties of a complete lattice with the exception that it is
not necessarily a set (in general case R-pr is a class), so it is called the ”big lattice”
of preradicals of R-Mod. In this lattice a special role is played by the following two
types of preradicals. For every pair N ⊆ M , where N ∈ L(RM), we define the
functions αM

N and ωM
N by the rules:

c© A. I.Kashu, 2011

5



6 A. I.KASHU

αM
N (X) =

∑

f : M → X

f(N), ωM
N (X) =

⋂

f : X → M

f−1(N),

for every X ∈ R-Mod. The following facts are well known ([1, 2]).

Proposition 1.1. 1) αM
N and ωM

N are preradicals of R-Mod;

2) αM
N (M) is the least characteristic submodule of RM containing N ;

3) ωM
N (M) is the largest characteristic submodule of RM contained in N . �

Proposition 1.2. If N ∈ L
ch(RM), then αM

N (M) = N and ωM
N (M) = N .

Moreover, for a preradical r ∈ R-pr we have:

r(M) = N ⇔ αM
N ≤ r ≤ ωM

N . �

So for a submodule N ∈ L
ch(RM) the preradical αM

N is the least among
preradicals r ∈ R-pr with the property r(M) = N . Dually, ωM

N is the largest
among preradicals r ∈ R-pr with r(M) = N .

Now we mention two particular cases:

a) the idempotent preradical rM , defined by module RM

rM(X) =
∑

f : M →X

Im f – the trace of M in X (i.e. rM = αM
M);

b) the radical rM defined by RM

rM(X) =
⋂

f : M → X

Ker f – the reject of M in X (i.e. rM = ωM
0 ).

The following two operations in R-pr are very important in the theory of preradicals:

1) the product of preradicals r, s ∈ R-pr:

(r · s)(X) = r
(

s(X)
)

;

2) the coproduct of preradicals r, s ∈ R-pr:

(r : s)(X)
/

r(X) = s
(

X
/

r(X)
)

for every X ∈ R-Mod.

2 ααα-product of submodules

Using preradicals of the form αM
N the following operation is introduced in the

lattice L(RM) of all submodules of an arbitrary module M ∈ R-Mod.

Definition 2.1. Let M ∈ R-Mod and K,N ∈ L(RM). The following submodule
of M :

K · N = αM
K (N) =

∑

f : M → N

f(K)

will be called the α-product in M of submodules K and N .

This operation was considered in [3] for the investigation of prime modules. The
continuation of these studies can be found in [4]. For characteristic submodules
K,N ∈ L

ch(RM) this operation coincides with the α-product defined in [5] by the
rule: K · N = αM

K αM
N (M).

Some simple properties of α-product are indicated in the following statement.
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Proposition 2.1. 1) K · N ⊆ N and K · N is a characteristic submodule in N ;

2) If N ∈ L
ch(RM), then K · N ∈ L

ch(RM) for every K ∈ L(RM);

3) If K ∈ L
ch(RM), then K · N ⊆ K, therefore K · N ⊆ K ∩ N ;

4) If K = 0, then 0 · N = 0 for every N ∈ L(RM); if N = 0, then
K · 0 = 0 for every K ∈ L(RM);

5) If N = M , then for every K ∈ L(RM) the submodule K ·M =
∑

f : M → M

f(K)

is the least characteristic submodule of M containing K;

6) If K = M , then for every N ∈ L(RM) we have M ·N =
∑

f : M →N

f(M) =

= rM(N). �

Proposition 2.2. The operation of α-product is monotone in both variables:

K1 ⊆ K2 ⇒ K1 · N ⊆ K2 · N ∀N ∈ L(RM);

N1 ⊆ N2 ⇒ K · N1 ⊆ K · N2 ∀K ∈ L(RM). �

The following two results explore the associativity of α-product and are indicated
in [3] (Lemma 2.1). For convenience we give also the sketch of proofs.

Proposition 2.3. The following relation is true:

(K · N) · L ⊆ K · (N · L)

for every K, N, L ∈ L(RM).

Proof. Every pair of morphisms f : M → N, g : M → L determines a morphism
h = gf : M → L and since by definition N ·L =

∑

g : M → L

g(N) we have g
(

f(m)
)

∈

N · L. So we can consider that h ∈ HomR(M, N · L). For every a ∈ K we have
f(a) ∈ K · N and g

(

f(a)
)

∈ (K · N) · L. Therefore we obtain g
(

f(a)
)

= h(a) ∈
K · (N · L) =

∑

h : M → N·L

h(K), proving the statement.

Proposition 2.4. If M is a projective module, then the operation of α-product in
L(RM) is associative:

(K · N) · L = K · (N · L)

for every K, N, L ∈ L(RM).

Proof. We consider the module U =
�

∑

g : M → L

Ng, Ng = N , with canonical projections

pg : U → Ug. We can define the mapping:

h : U → N · L, h(x) =
∑

g : M → L

g
(

pg(x)
)

∈ N · L =
∑

g : M →L

g(N), x ∈ U.

Then h is an epimorphism, since every element of N ·L by definition has the form
t

∑

i=1
gi(ngi). By projectivity of RM for every f : M → N ·L there exists a morphism



8 A. I.KASHU

f : M → U such that f = hf . For every a ∈ K we have f(a) ∈ K · (N · L)
and f(a) = hf(a) =

∑

g : M → L

g
(

pg f(a)
)

. Since pg f ∈ HomR(M,N), we obtain

pg f(a) ∈ K · N and then by definition
∑

g : M → L

g
(

pg f(a)
)

∈ (K · N) · L, therefore

f(a) ∈ (K · N) · L. This proves that K · (N · L) ⊆ (K · N) · L, and the inverse
inclusion follows from Proposition 2.3.

In continuation we will study some relations between the operation of α-product
and the lattice operations of L(RM). For that we need the following fact on the
operation ,,∨ ” (join) in the lattice R-pr.

Lemma 2.5. For every submodules N,K ∈ L(RM) the following relation is true:

αM
N+K = αM

N ∨ αM
K .

Proof. For every X ∈ R-Mod by definitions it follows:

(αM
N ∨ αM

K ) (X) = αM
N (X) + αM

K (X) =

=
(

∑

f : M → X

f(N)
)

+
(

∑

f : M →X

f(K)
)

=
∑

f : M →X

f(N + K) = αM
N+K(X).

Proposition 2.6. For every module M ∈ R-Mod the operation of α-product is left
distributive with respect to the sum of submodules:

(K1 + K2) · N = (K1 · N) + (K2 · N)

for every K1, K2, N ∈ L(RM).

Proof. Using Lemma 2.5 and definitions, we obtain:

(K1 + K2) · N = αM
K1+K2

(N) =
(

αM
K1

∨ αM
K2

)

(N) =

= αM
K1

(N) + αM
K2

(N) = (K1 · N) + (K2 · N).

Proposition 2.7. For every submodules K, N1, N2 ∈ L(RM) the following rela-
tion is true: K · (N1 + N2) ⊇ (K ·N1)+ (K ·N2). If N1 ∩N2 = 0, then we have:
K · (N1 ⊕ N2) = (K · N1) ⊕ (K · N2).

Proof. The first relation follows from the monotony of α-product (Proposition 2.2).
In the second relation it is sufficient to verify the inclusion (⊆). Let i1, i2 (p1, p2)
be the canonical injections (projections) of a direct sum N1⊕ N2. Every morphism
f : M → N1 ⊕ N2 can by uniquely represented as i1g + i2h, where g = p1f :
M → N1, h = p2f : M → N2. For every a ∈ K we have f(a) ∈ K · (N1 ⊕ N2).
But at the same time

f(a) = p1f(a) + p2f(a) = g(a) + h(a) ∈ (K · N1) ⊕ (K · N2),

proving the needed inclusion.
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We conclude this section with the remark on the particular case when RM = RR,
i.e. L(RR) is the lattice of left ideals of the ring R. For every I, J ∈ L(RR) we have:

I · J = αR
I (J) =

∑

f : R→ J

f(I) =
∑

j∈J

I · j = IJ,

so the α-product of left ideals coincides with the ordinary product of left ideals in R.

3 ωωω-product of submodules

In a similar mode as in the previous case we will now define another operation
in the lattice L(RM) with the help of preradicals of the forme ωM

N (Section 1).

Definition 3.1. Let M ∈ R-Mod and K, N ∈ L(RM). The following submodule
of M :

K ⊙ N = ωM
K (N) =

⋂

f :N →M

f−1(K)

will be called the ω-product in M of submodules K and N , i.e. K ⊙ N =
{n ∈ N | f(n) ∈ K for every f : N → M}.

In the case when K, N ∈ L
ch(RM) this operation coincides with the ω-product

of characteristic submodules, defined in [5] by the rule: K ⊙ N = ωM
K ωM

N (M).
Now we formulate some elementary properties of ω-product in L(RM).

Proposition 3.1. 1) K ⊙ N ⊆ N and K ⊙ N is a characteristic submodule in N ;

2) If N ∈ L
ch(RM), then K ⊙ N ∈ L

ch(RM) for every K ∈ L(RM);

3) K ⊙ N ⊆ K, therefore K ⊙ N ⊆ K ∩ N ;

4) 0 ⊙ N = 0, K ⊙ 0 = 0;

5) K ⊙ M = ωM
K (M) =

⋂

f :M →M

f−1(K) is the largest characteristic submodule

of M contained in K; therefore if K ∈ L
ch(RM), then K ⊙ M = K;

6) M ⊙ N = ωM
M (N) =

⋂

f :N →M

f−1(M) = N . �

Proposition 3.2. The operation of ω-product is monotone in both variables:

K1 ⊆ K2 ⇒ K1 ⊙ N ⊆ K2 ⊙ N ∀N ∈ L(RM);

N1 ⊆ N2 ⇒ K ⊙ N1 ⊆ K ⊙ N2 ∀K ∈ L(RM). �

We remark that if K ∈ L
ch(RM), then K · N ⊆ K ⊙ N for every N ∈ L(RM),

since αM
K ≤ ωM

K and αM
K (N) ⊆ ωM

K (N), so we have:

K · N ⊆ K ⊙ N ⊆ K ∩ N.

Proposition 3.3. For every submodules K, N, L ∈ L(RM) the following relation
is true:

(K ⊙ N) ⊙ L ⊇ K ⊙ (N ⊙ L).
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Proof. Let l ∈ K ⊙ (N ⊙ L). By definition this means that:

1) l ∈ (N ⊙ L), i.e. g(l) ∈ N for every g : L → M ;

2) h(l) ∈ K for every h : N ⊙ L → M .

We must verify that

l ∈ (K ⊙ N) ⊙ L = {x ∈ L | f
(

g(x)
)

∈ K ∀ f : N → M, ∀ g : L → M}.

For every pair of morphisms g : L → M and f : N → M we can define the
morphism h : N ⊙ L → M by the rule:

h(m) = f
(

g(m)
)

∀m ∈ N ⊙ L,

using the fact that g(m) ∈ N by the definition of N ⊙ L.

From l ∈ (K ⊙ N)⊙ L it follows h(l) ∈ K, therefore h(l) = f
(

g(l)
)

∈ K for
every f : N → M and g : L → M , but this means that l ∈ (K ⊙ N) ⊙ L.

For the study of relation between ω-product and intersection in L(RM) the
following remark is useful.

Lemma 3.4. For every submodules N, K ∈ L(RM) the following relation is true:

ωM
N∩K = ωM

N ∧ ωM
K .

Proof. By definitions, for every module X ∈ R-Mod we have:

(ωM
N ∧ ωM

K ) (X) = ωM
N (X)

⋂

ωM
K (X) =

=
{

x ∈ X | f(x) ∈ N ∀ f : X → M
}

⋂
{

x ∈ X | f(x) ∈ K ∀ f : X → M
}

=

=
{

x ∈ X | f(x) ∈ N
⋂

K ∀ f : X → M
}

= ωM
N∩K(X).

Proposition 3.5. For every module M ∈ R-Mod the operation of ω-product is left
distributive with respect to the intersection of submodules:

(K1
⋂

K2) ⊙ N = (K1 ⊙ N)
⋂

(K2 ⊙ N).

Proof. Applying Lemma 3.4 we obtain:

(K1
⋂

K2) ⊙ N = ωM
K1

⋂

K2
(N) = (ωM

K1
∧ ωM

K2
) (N) =

= ωM
K1

(N)
⋂

ωM
K2

(N) = (K1 ⊙ N)
⋂

(K2 ⊙ N).

In the particular case when RM = RR we have the specification of ω-product
in the lattice L(RR) of left ideals of the ring R. For every left ideals J, I ∈ L(RR)
we obtain:

J ⊙ I = ωR
J (I) =

⋂

f : I →R

f−1(J) = {i ∈ I | f(i) ∈ J ∀ f : RI → RR} ⊆ J
⋂

I.
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4 ααα-coproduct of submodules

The following two operations which will be introduced in continuation are in some
sense dual to the previous operations (α-product and ω-product) and are obtained
by replacing the product of preradicals with its coproduct (Section 1).

Definition 4.1. Let M ∈ R-Mod and N, K ∈ L(RM). The following submodule
of M :

(N : K) = π−1
N

(

αM
K (M

/

N)
)

= {m ∈ M | m + N ∈
∑

f : M →M/N

f(K)}

will be called the α-coproduct in M of submodules N and K, where
πN : M → M

/

N is the natural morphism. In other form:

(N : K)
/

N = αM
K (M

/

N).

Some properties of α-coproduct are collected in

Proposition 4.1. Let M ∈ R-Mod and N, K ∈ L(RM). Then:

1) (N : K) ⊇ N + K;

2) (N : K)
/

N is a characteristic submodule in M
/

N ; if N ∈ L
ch(RM), then

(N : K) ∈ L
ch(RM);

3) If N +K = M (in particular, if N = M or K = M), then (N : K) = M ;

4) If N = 0, then for every K ∈ L(RM) the submodule (0 : K) is the least
characteristic submodule of M containing K; therefore if K ∈ L

ch(RM),
then (0 : K) = K;

5) If K = 0, then (N : 0) = N for every N ∈ L(RM). �

Proposition 4.2. The operation of α-coproduct is monotone in both variables:

N1 ⊆ N2 ⇒ (N1 : K) ⊆ (N2 : K) ∀K ∈ L(RM);

K1 ⊆ K2 ⇒ (N : K1) ⊆ (N : K2) ∀N ∈ L(RM). �

Proposition 4.3. If the module M ∈ R-Mod is projective, then for every submo-
dules N, K, L ∈ L(RM) the following relation is true:

(

(N : K) : L
)

⊆
(

N : (K : L)
)

.

Proof. Let m ∈
(

(N : K) : L
)

. Then by definition we have m + (N : K) ∈
αM

L

(

M
/

(N : K)
)

, i.e. m + (N : K) =
∑

gi:M →M/(N :K)

gi(li), where li ∈ L.

Since RM is projective, for every morphism gi : M → M
/

(N : K) there
exists a morphism fi : M → M

/

N such that ϕfi = gi, where ϕ : M
/

N →
M

/

(N : K) is the epimorphism determined by the inclusion N ⊆ (N : K)
(

i.e. ϕ(m + N) = m + (N : K)
)

. Therefore:
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m + (N : K) =
∑

gi : M →M/(N :K)

gi(li) =

=
∑

fi:M →M/N

(ϕfi) (li) = ϕ
(

∑

fi :M →N

fi(li)
)

∈ M
/

(N : K).

Considering the inverse image in M
/

N we have:

(m + N) −
∑

fi : M →M/N

fi(li) ∈ Ker ϕ = (N : K)
/

N = αM
K (M

/

N),

and so (m+N) −
∑

fi : M →M/N

fi(li) =
∑

fj : M →M/N

fj(kj), where kj ∈ K. Therefore:

m + N =
∑

fi : M →M/N

fi(li) +
∑

fj : M →M/N

fj(kj) ∈ αM
(K:L)(M

/

N),

since li ∈ L ⊆ (K : L) and kj ∈ K ⊆ (K : L). By definition this means that
m ∈

(

N : (K : L)
)

.

Proposition 4.4. For every submodules N, K1, K2 ∈ L(RM) the following relation
is true:

(

N : (K1 + K2)
)

= (N : K1) + (N : K2),

i.e. the α-coproduct is right distributive with respect to the sum of submodules.

Proof. By Lemma 2.5 we have αM
K1+K2

= αM
K1

∨ αM
K2

, therefore:

(

N : (K1 + K2)
) /

N = αM
K1+K2

(M
/

N) = αM
K1

(M
/

N) + αM
K2

(M
/

N) =

=
[

(N : K1)
/

N
]

+
[

(N : K2)
/

N
]

=
[

(N : K1) + (N : K2)
] /

N,

which implies the statement.

Now we concretize the operation of α-coproduct for the lattice of left ideals
L(RR) of the ring R.

Proposition 4.5. For every left ideals N, K ∈ L(RR) the following relation is
true:

(N : K) = KR + N.

Proof. By definition (N : K) = π−1
N

(

αR
K(R

/

N)
)

, where πN : R → R
/

N is the
natural morphism. Since HomR(R,R

/

N) ∼= R
/

N , we have

αR
K(R

/

N) =
∑

f :R→R/N

f(K) =
∑

r∈R
K(r + N) = K

(
∑

r∈R
(r + N)

)

=

= K(R
/

N) = (KR + N) /N,

therefore (N : K) = KR + N .



ON SOME OPERATIONS IN THE LATTICE OF SUBMODULES . . . 13

If K is an ideal, then (N : K) = N + K for every N ∈ L(RR). So in
the lattice L

ch(RR) of two-sided ideals of R the α-coproduct coincides with the
ordinary sum of ideals.

In particular from Proposition 4.5 it follows also that

(N : K)L = (KR + N)L = KRL + NL = KL + NL =

= (K + N)L = (N + K)L = (K : N)L
for every N, K, L ∈ L(RR).

5 ωωω-coproduct of submodules

In this section we consider an operation in L(RM) similar to the α-coproduct
replacing αM

N by ωM
N .

Definition 5.1. Let M ∈ R-Mod and N, K ∈ L(RM). The following submodule
of M :

(N g
: K) = π−1

N

(

ωM
K (M

/

N)
)

= {m ∈ M | m + N ∈
⋂

f : M/N →M

f−1(K)} =

= {m ∈ M | f(m + N) ∈ K ∀ f : M
/

N → M}

will be called the ω-coproduct in M of submodules N and K, where
πN : M → M

/

N is the natural morphism. Therefore:

(N g
: K)

/

N = ωM
K (M

/

N) =
⋂

f : M/N →M

f−1(K).

The ω-coproduct (N g: K) can be expressed in other form ([3]), using the fact
that there exists a bijection between the morphisms g : M → M with the condition
g(N) = 0, and all morphisms f : M

/

N → M . Taking this into account, we can
present the ω-coproduct as follows:

(N g
: K) =

{

m ∈ M | g(m) ∈ K ∀ g : M → M, g(N) = 0
}

.

If N, K ∈ L
ch(RM) then this operation coincides with the ω-coproduct of charac-

teristic submodules defined in [5] by the rule:

(N g: K) = (ωM
N : ωM

K ) (M).

This operation (in other notations and other order of terms ) was used in [3] for the
study of coprime modules. The continuation of these studies is in [6], where coprime
preradicals and coprime modules are investigated. As in the previous cases we start
with some elementary properties of this operation.

Proposition 5.1. 1) (N g: K) ⊇ N and (N g: K)
/

N is a characteristic
submodule of M

/

N ;

2) If N = M , then (M g: K) = M for every K ∈ L(RM);
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3) If K = M , then (N g: M) = M for every N ∈ L(RM);

4) If N = 0, then (0 g: K) is the largest characteristic submodule contained
in K for every K ∈ L(RM); so if K ∈ L

ch(RM), then (0 g: K) = K;

5) If K = 0, then (N g: 0) = π−1
N

(

⋂

f :M/N →M

Kerf
)

for every N ∈ L(RM),

where πN : M → M
/

N is the natural morphism;

6) If N ∈ L
ch(RM), then (N g: K) ∈ L

ch(RM) for every K ∈ L(RM);

7) If N, K ∈ L
ch(RM), then (N g

: K) ⊇ K, therefore (N g
: K) ⊇ N + K. �

Proposition 5.2. The operation of ω-coproduct is monotone in both variables:

N1 ⊆ N2 ⇒ (N1
g: K) ⊆ (N2

g: K) ∀K ∈ L(RM);

K1 ⊆ K2 ⇒ (N g: K1) ⊆ (N g: K2) ∀N ∈ L(RM). �

Two results on associativity of this operation are mentioned in [3] (Lemma 4.1).
We remind these statements with short proofs.

Proposition 5.3. For every M ∈ R-Mod the relation

(

(N g
: K) g

: L
)

⊆
(

N g
: (K g

: L)
)

is true, where N, K, L ∈ L(RM).

Proof. By definition we have:

m ∈
(

(N g
: K) g

: L
)

⇔ g(m) ∈ L ∀ g : M → M, g(N g
: K) = 0;

m ∈
(

N g: (K g: L)
)

⇔ f(m) ∈ (K g: L) ∀ f : M → M, f(N) = 0 ⇔

⇔ hf(m) ∈ L ∀h : M → M, h(K) = 0 and ∀ f : M → M, f(N) = 0.

If m ∈
(

(N g
: K) g

: L
)

and we have a pair of morphisms f, h : M → M
such that f(N) = 0 and h(K) = 0, then by definition f(N g

: K) ⊆ K and so
hf(N g: K) = 0. By assumption, hf(m) ∈ L for every such pair of morphisms, and
by definition this means that m ∈

(

N g: (K g: L)
)

.

Proposition 5.4. If RM is injective and artinian, then the operation of ω-coproduct
in L(RM) is associative:

(

(N g: K) g: L
)

=
(

N g: (K g: L)
)

,

for every N, K, L ∈ L(RM).

Proof. Since RM is artinian there exists a finite number of endomorphisms

f1, . . . , fn : M → M with fj(N) = 0 such that (N g
: K) =

n
⋂

j=1
f−1

j (N). We define

the morphism t : M
/

(N g
: K) →

n
∏

1
(M

/

K) by the rule: t
(

m + (N g
: K)

)

=

=
(

f1(m) + K, . . . , fn(m) + K
)

and observe that t is a monomorphism.
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Let m ∈
(

N g: (K g: L)
)

, i.e. hf(m) ∈ L for every f, h : M → M with

f(N) = 0 and h(K) = 0. Let g : M → M be an arbitrary morphism with

g(N g: K) = 0. Then g can be expressed in the form g = g′ · π
(N e

: K)
, where

π(N e
: K) : M → M

/

(N g
: K) is natural and g′ ∈ HomR

(

M
/

(N g
: K),M

)

.

Since M is injective and t is mono, there exists a morphism q :
n
∏

1
(M

/

K) → M

such that g′ = qt.

Now we consider the morphisms uj = ijπK : M →
n
∏

1
(M

/

K) (j = 1, . . . , n),

where πK : M → M
/

K is natural, and ij : M
/

K →
n
∏

1
(M

/

K) are the canonical

injections. Then:
g(m) = q t π(N e

: K)(m) = q t
(

m + (N g
: K)

)

= q(f1(m) + K, . . . , fn(m) + K) =

= q
(

πKf1(m), . . . , πKfn(m)
)

= q
(

i1πKf1(m) + . . . + inπKfn(m)
)

=

= q
(

u1f1(m), . . . , unfn(m)
)

= q u1 f1(m) + . . . + q un fn(m),

where the morphism hj = q uj : M → M has the property hj(K) = 0, and
the morphisms fj are given with fj(N) = 0. From the assumption that m ∈
(

N g: (K g: L)
)

we obtain q uj fj(m) ∈ L for every j = 1, . . . , n, so g(m) ∈
L for every g : M → M with g(N g: K) = 0. By definition this means that
m ∈

(

(N g
: K) g

: L
)

, proving the inclusion (⊇), the inverse inclusion is true by
Proposition 5.3.

Now we will prove the right distributivity of ω-product in L(RM) with respect
to the intersection of submodules.

Proposition 5.5. For every submodules N, K1, K2 ∈ L(RM) the following relation
is true:

(

N g: (K1 ∩ K2)
)

= (N g: K1) ∩ (N g: K2).

Proof. By Lemma 3.4 we have ωM
K1∩ K2

= ωM
K1

∧ ωM
K2

, therefore:

(

N g
: (K1 ∩ K2)

) /

N = ωM
K1∩ K2

(M
/

N) = ωM
K1

(M
/

N) ∩ ωM
K2

(M
/

N) =

=
[

(N g
: K1)

/

N
]

∩
[

(N g
: K2)

/

N
]

=
[

(N g
: K1) ∩ (N g

: K2)
] /

N,

which implies the statement.

Remark. The distributivity relations from Propositions 2.6, 3.5, 4.4 and 5.5 can be
generalized to infinite distributivity, i.e. the following relations are true:

(

∑

α∈A

Kα

)

· N =
∑

α∈A

(Kα · N),
(

⋂

α∈A

Kα

)

⊙ N =
⋂

α∈A

(Kα ⊙ N),

(

N :
(

∑

α∈A

Kα

)

)

=
∑

α∈A

(N : Kα),

(

N g
:

(

⋂

α∈A

Kα

)

)

=
⋂

α∈A

(N g
: Kα).
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Finally, we will specify the form of ω-coproduct in the lattice L(RR) of left ideals
of R. Let N, K ∈ L(RR). By definition we have:

(N g: K) =
{

a ∈ R | g(a) ∈ K ∀ g : RR → RR with g(N) = 0
}

.

If for g : RR → RR we denote ag = g(1R), then g(a) = a · ag for every a ∈ R

and Ker g = {a ∈ R | a · ag = 0} = (0 : ag)l (left annihilator of ag). The condition

g(N) = 0 means that N · ag = 0, i.e. ag ∈ (0 : N)r (right annihilator of N).

If a ∈ (N g
: K), then g(a) ∈ K, i.e. a · ag ∈ K or a ∈ (K : ag)l for every

g : RR → RR with ag ∈ (0 : N)r. So we obtain that a ∈
(

K : (0 : N)r
)

l
.

Therefore:
(N g

: K) =
(

K : (0 : N)r
)

l
.
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