On some operations in the lattice of submodules determined by preradicals

A. I. Kashu

Abstract

In the lattice $\boldsymbol{L}\left({ }_{R} M\right)$ of all submodules of a module ${ }_{R} M$ four operations are defined using the standard preradicals: α-product, ω-product, α-coproduct and ω-coproduct. Some properties of these operations, as well as some connections with the lattice operations of $\boldsymbol{L}\left({ }_{R} M\right)$ are indicated. For characteristic submodules these operations were studied in the work [5].

Mathematics subject classification: 16D90, 16S90, 06B23.
Keywords and phrases: Preradical, lattice, submodule, product (coproduct) of preradicals.

1 Definitions and preliminary facts

Let R be an associative ring with unity and R-Mod be the category of unitary left R-modules. For an arbitrary module ${ }_{R} M \in R$-Mod we denote by $\boldsymbol{L}\left({ }_{R} M\right)$ the lattice of all submodules of ${ }_{R} M$. A submodule $N \in \boldsymbol{L}\left({ }_{R} M\right)$ is called characteristic (fully invariant) in M if $f(N) \subseteq N$ for every R-endomorphism $f:{ }_{R} M \rightarrow{ }_{R} M$. The lattice of all characteristic submodules of ${ }_{R} M$ will be denoted by $\boldsymbol{L}^{c h}\left({ }_{R} M\right)$.

A preradical r of R-Mod by definition is a subfunctor of identity functor of R-Mod (i.e. $r(M) \subseteq M$ and $f(r(M)) \subseteq r\left(M^{\prime}\right)$ for every module $M \in R$-Mod and every R-morphism $f: M \rightarrow M^{\prime}$). Obviously, $r(M)$ is a characteristic submodule of ${ }_{R} M$. Moreover, the submodule $N \in \boldsymbol{L}\left({ }_{R} M\right)$ is characteristic in ${ }_{R} M$ if and only if there exists a preradical r of R-Mod such that $N=r(M)$.

If $r(r(M))=r(M)$ for every $M \in R$-Mod, then r is called idempotent preradical; if $\left.r\left(M /{ }_{R} M\right)\right)=0$ for every $M \in R$-Mod, then r is called a radical.

We denote by R-pr the family of all preradicals of the category R-Mod. Two operations,$\wedge "$ and,\vee " are defined in R-pr by the following rules:

$$
\left(\bigwedge_{\alpha \in \mathfrak{A}} r_{\alpha}\right)(X)=\bigcap_{\alpha \in \mathfrak{A}} r_{\alpha}(X), \quad\left(\bigvee_{\alpha \in \mathfrak{A}} r_{\alpha}\right)(X)=\sum_{\alpha \in \mathfrak{A}} r_{\alpha}(X)
$$

for every $X \in R$-Mod and every family of preradicals $\left\{r_{\alpha} \mid \alpha \in \mathfrak{A}\right\} \subseteq R$-pr. Then R-pr (\wedge, \vee) possesses all properties of a complete lattice with the exception that it is not necessarily a set (in general case R-pr is a class), so it is called the "big lattice" of preradicals of R-Mod. In this lattice a special role is played by the following two types of preradicals. For every pair $N \subseteq M$, where $N \in \boldsymbol{L}\left({ }_{R} M\right)$, we define the functions α_{N}^{M} and ω_{N}^{M} by the rules:

[^0]$$
\alpha_{N}^{M}(X)=\sum_{f: M \rightarrow X} f(N), \quad \omega_{N}^{M}(X)=\bigcap_{f: X \rightarrow M} f^{-1}(N),
$$
for every $X \in R$-Mod. The following facts are well known $([1,2])$.
Proposition 1.1. 1) α_{N}^{M} and ω_{N}^{M} are preradicals of R-Mod;
2) $\alpha_{N}^{M}(M)$ is the least characteristic submodule of ${ }_{R} M$ containing N;
3) $\omega_{N}^{M}(M)$ is the largest characteristic submodule of ${ }_{R} M$ contained in N.

Proposition 1.2. If $N \in \boldsymbol{L}^{c h}\left({ }_{R} M\right)$, then $\alpha_{N}^{M}(M)=N$ and $\omega_{N}^{M}(M)=N$. Moreover, for a preradical $r \in R-p r$ we have:

$$
r(M)=N \Leftrightarrow \alpha_{N}^{M} \leq r \leq \omega_{N}^{M} .
$$

So for a submodule $N \in \boldsymbol{L}^{c h}\left({ }_{R} M\right)$ the preradical α_{N}^{M} is the least among preradicals $r \in R$-pr with the property $r(M)=N$. Dually, ω_{N}^{M} is the largest among preradicals $r \in R$-pr with $r(M)=N$.

Now we mention two particular cases:
a) the idempotent preradical r^{M}, defined by module ${ }_{R} M$

$$
\left.r^{M}(X)=\sum_{f: M \rightarrow X} \operatorname{Im} f-\text { the trace of } M \text { in } X \text { (i.e. } r^{M}=\alpha_{M}^{M}\right) ;
$$

b) the radical r_{M} defined by ${ }_{R} M$

$$
\left.r_{M}(X)=\bigcap_{f: M \rightarrow X} \operatorname{Ker} f-\text { the reject of } M \text { in } X \text { (i.e. } r_{M}=\omega_{0}^{M}\right) .
$$

The following two operations in R-pr are very important in the theory of preradicals:

1) the product of preradicals $r, s \in R$-pr:

$$
(r \cdot s)(X)=r(s(X))
$$

2) the coproduct of preradicals $r, s \in R$-pr:

$$
(r: s)(X) / r(X)=s(X / r(X))
$$

for every $X \in R$-Mod.

2α-product of submodules

Using preradicals of the form α_{N}^{M} the following operation is introduced in the lattice $\boldsymbol{L}\left({ }_{R} M\right)$ of all submodules of an arbitrary module $M \in R$-Mod.
Definition 2.1. Let $M \in R$-Mod and $K, N \in \boldsymbol{L}\left({ }_{R} M\right)$. The following submodule of M :

$$
K \cdot N=\alpha_{K}^{M}(N)=\sum_{f: M \rightarrow N} f(K)
$$

will be called the α-product in M of submodules K and N.
This operation was considered in [3] for the investigation of prime modules. The continuation of these studies can be found in [4]. For characteristic submodules $K, N \in \boldsymbol{L}^{c h}\left({ }_{R} M\right)$ this operation coincides with the α-product defined in [5] by the rule: $K \cdot N=\alpha_{K}^{M} \alpha_{N}^{M}(M)$.

Some simple properties of α-product are indicated in the following statement.

Proposition 2.1. 1) $K \cdot N \subseteq N$ and $K \cdot N$ is a characteristic submodule in N;
2) If $N \in \boldsymbol{L}^{c h}\left({ }_{R} M\right)$, then $K \cdot N \in \boldsymbol{L}^{c h}\left({ }_{R} M\right)$ for every $K \in \boldsymbol{L}\left({ }_{R} M\right)$;
3) If $K \in \boldsymbol{L}^{c h}\left({ }_{R} M\right)$, then $K \cdot N \subseteq K$, therefore $K \cdot N \subseteq K \cap N$;
4) If $K=0$, then $0 \cdot N=0$ for every $N \in L\left({ }_{R} M\right)$; if $N=0$, then $K \cdot 0=0$ for every $K \in \boldsymbol{L}\left({ }_{R} M\right)$;
5) If $N=M$, then for every $K \in \boldsymbol{L}\left({ }_{R} M\right)$ the submodule $K \cdot M=\sum_{f: M \rightarrow M} f(K)$ is the least characteristic submodule of M containing K;
6) If $K=M$, then for every $N \in \boldsymbol{L}\left({ }_{R} M\right)$ we have $M \cdot N=\sum_{f: M \rightarrow N} f(M)=$ $=r^{M}(N)$.

Proposition 2.2. The operation of α-product is monotone in both variables:

$$
\begin{array}{lll}
K_{1} \subseteq K_{2} \Rightarrow K_{1} \cdot N \subseteq K_{2} \cdot N & \forall N \in \boldsymbol{L}\left({ }_{R} M\right) ; \\
N_{1} \subseteq N_{2} \Rightarrow K \cdot N_{1} \subseteq K \cdot N_{2} & \forall K \in \boldsymbol{L}\left({ }_{R} M\right) .
\end{array}
$$

The following two results explore the associativity of α-product and are indicated in [3] (Lemma 2.1). For convenience we give also the sketch of proofs.
Proposition 2.3. The following relation is true:

$$
(K \cdot N) \cdot L \subseteq K \cdot(N \cdot L)
$$

for every $K, N, L \in \boldsymbol{L}\left({ }_{R} M\right)$.
Proof. Every pair of morphisms $f: M \rightarrow N, g: M \rightarrow L$ determines a morphism $h=g f: M \rightarrow L$ and since by definition $N \cdot L=\sum_{g: M \rightarrow L} g(N)$ we have $g(f(m)) \in$ $N \cdot L$. So we can consider that $h \in \operatorname{Hom}_{R}(M, N \cdot L)$. For every $a \in K$ we have $f(a) \in K \cdot N$ and $g(f(a)) \in(K \cdot N) \cdot L$. Therefore we obtain $g(f(a))=h(a) \in$ $K \cdot(N \cdot L)=\sum_{h: M \rightarrow N \cdot L} h(K)$, proving the statement.

Proposition 2.4. If M is a projective module, then the operation of α-product in $\boldsymbol{L}\left({ }_{R} M\right)$ is associative:

$$
(K \cdot N) \cdot L=K \cdot(N \cdot L)
$$

for every $K, N, L \in \boldsymbol{L}\left({ }_{R} M\right)$.
Proof. We consider the module $U=\dot{\sum}_{g: M \rightarrow L} N_{g}, N_{g}=N$, with canonical projections $p_{g}: U \rightarrow U_{g}$. We can define the mapping:

$$
h: U \rightarrow N \cdot L, \quad h(x)=\sum_{g: M \rightarrow L} g\left(p_{g}(x)\right) \in N \cdot L=\sum_{g: M \rightarrow L} g(N), x \in U .
$$

Then h is an epimorphism, since every element of $N \cdot L$ by definition has the form $\sum_{i=1}^{t} g_{i}\left(n_{g_{i}}\right)$. By projectivity of ${ }_{R} M$ for every $f: M \rightarrow N \cdot L$ there exists a morphism
$\bar{f}: M \rightarrow U$ such that $f=h \bar{f}$. For every $a \in \underline{K}$ we have $f(a) \in K \cdot(N \cdot L)$ and $f(a)=h \bar{f}(a)=\sum_{g: M \rightarrow L} g\left(p_{g} \bar{f}(a)\right)$. Since $p_{g} \bar{f} \in \operatorname{Hom}_{R}(M, N)$, we obtain $p_{g} \bar{f}(a) \in K \cdot N$ and then by definition $\sum_{g: M \rightarrow L} g\left(p_{g} \bar{f}(a)\right) \in(K \cdot N) \cdot L$, therefore $f(a) \in(K \cdot N) \cdot L$. This proves that $K \cdot(N \cdot L) \subseteq(K \cdot N) \cdot L$, and the inverse inclusion follows from Proposition 2.3.

In continuation we will study some relations between the operation of α-product and the lattice operations of $\boldsymbol{L}\left({ }_{R} M\right)$. For that we need the following fact on the operation,,$V "$ (join) in the lattice R-pr.

Lemma 2.5. For every submodules $N, K \in \boldsymbol{L}\left({ }_{R} M\right)$ the following relation is true:

$$
\alpha_{N+K}^{M}=\alpha_{N}^{M} \quad \vee \alpha_{K}^{M}
$$

Proof. For every $X \in R$-Mod by definitions it follows:

$$
\begin{gathered}
\left(\alpha_{N}^{M} \vee \alpha_{K}^{M}\right)(X)=\alpha_{N}^{M}(X)+\alpha_{K}^{M}(X)= \\
=\left(\sum_{f: M \rightarrow X} f(N)\right)+\left(\sum_{f: M \rightarrow X} f(K)\right)=\sum_{f: M \rightarrow X} f(N+K)=\alpha_{N+K}^{M}(X)
\end{gathered}
$$

Proposition 2.6. For every module $M \in R$-Mod the operation of α-product is left distributive with respect to the sum of submodules:

$$
\left(K_{1}+K_{2}\right) \cdot N=\left(K_{1} \cdot N\right)+\left(K_{2} \cdot N\right)
$$

for every $K_{1}, K_{2}, N \in \boldsymbol{L}\left({ }_{R} M\right)$.
Proof. Using Lemma 2.5 and definitions, we obtain:

$$
\begin{aligned}
\left(K_{1}\right. & \left.+K_{2}\right) \cdot N=\alpha_{K_{1}+K_{2}}^{M}(N)=\left(\alpha_{K_{1}}^{M} \vee \alpha_{K_{2}}^{M}\right)(N)= \\
& =\alpha_{K_{1}}^{M}(N)+\alpha_{K_{2}}^{M}(N)=\left(K_{1} \cdot N\right)+\left(K_{2} \cdot N\right)
\end{aligned}
$$

Proposition 2.7. For every submodules $K, N_{1}, N_{2} \in \boldsymbol{L}\left({ }_{R} M\right)$ the following relation is true: $K \cdot\left(N_{1}+N_{2}\right) \supseteq\left(K \cdot N_{1}\right)+\left(K \cdot N_{2}\right)$. If $N_{1} \cap N_{2}=0$, then we have: $K \cdot\left(N_{1} \oplus N_{2}\right)=\left(K \cdot N_{1}\right) \oplus\left(K \cdot N_{2}\right)$.

Proof. The first relation follows from the monotony of α-product (Proposition 2.2). In the second relation it is sufficient to verify the inclusion (\subseteq). Let $i_{1}, i_{2}\left(p_{1}, p_{2}\right)$ be the canonical injections (projections) of a direct sum $N_{1} \oplus N_{2}$. Every morphism $f: M \rightarrow N_{1} \oplus N_{2}$ can by uniquely represented as $i_{1} g+i_{2} h$, where $g=p_{1} f:$ $M \rightarrow N_{1}, h=p_{2} f: M \rightarrow N_{2}$. For every $a \in K$ we have $f(a) \in K \cdot\left(N_{1} \oplus N_{2}\right)$. But at the same time

$$
f(a)=p_{1} f(a)+p_{2} f(a)=g(a)+h(a) \in\left(K \cdot N_{1}\right) \oplus\left(K \cdot N_{2}\right)
$$

proving the needed inclusion.

We conclude this section with the remark on the particular case when ${ }_{R} M={ }_{R} R$, i.e. $\boldsymbol{L}\left({ }_{R} R\right)$ is the lattice of left ideals of the ring R. For every $I, J \in \boldsymbol{L}\left({ }_{R} R\right)$ we have:

$$
I \cdot J=\alpha_{I}^{R}(J)=\sum_{f: R \rightarrow J} f(I)=\sum_{j \in J} I \cdot j=I J,
$$

so the α-product of left ideals coincides with the ordinary product of left ideals in R.

3ω-product of submodules

In a similar mode as in the previous case we will now define another operation in the lattice $\boldsymbol{L}\left({ }_{R} M\right)$ with the help of preradicals of the forme ω_{N}^{M} (Section 1).
Definition 3.1. Let $M \in R$-Mod and $K, N \in \boldsymbol{L}\left({ }_{R} M\right)$. The following submodule of M :

$$
K \odot N=\omega_{K}^{M}(N)=\bigcap_{f: N \rightarrow M} f^{-1}(K)
$$

will be called the ω-product in M of submodules K and N, i.e. $K \odot N=$ $\{n \in N \mid f(n) \in K$ for every $f: N \rightarrow M\}$.

In the case when $K, N \in \boldsymbol{L}^{c h}\left({ }_{R} M\right)$ this operation coincides with the ω-product of characteristic submodules, defined in [5] by the rule: $K \odot N=\omega_{K}^{M} \omega_{N}^{M}(M)$.

Now we formulate some elementary properties of ω-product in $\boldsymbol{L}\left({ }_{R} M\right)$.
Proposition 3.1. 1) $K \odot N \subseteq N$ and $K \odot N$ is a characteristic submodule in N;
2) If $N \in \boldsymbol{L}^{c h}\left({ }_{R} M\right)$, then $K \odot N \in \boldsymbol{L}^{c h}\left({ }_{R} M\right)$ for every $K \in \boldsymbol{L}\left({ }_{R} M\right)$;
3) $K \odot N \subseteq K$, therefore $K \odot N \subseteq K \cap N$;
4) $0 \odot N=0, \quad K \odot 0=0$;
5) $K \odot M=\omega_{K}^{M}(M)=\bigcap_{f: M \rightarrow M} f^{-1}(K)$ is the largest characteristic submodule of M contained in K; therefore if $K \in \boldsymbol{L}^{c h}\left({ }_{R} M\right)$, then $K \odot M=K$;
6) $M \odot N=\omega_{M}^{M}(N)=\bigcap_{f: N \rightarrow M} f^{-1}(M)=N$.

Proposition 3.2. The operation of ω-product is monotone in both variables:

$$
\begin{array}{lll}
K_{1} \subseteq K_{2} & \Rightarrow K_{1} \odot N \subseteq K_{2} \odot N & \forall N \in \boldsymbol{L}\left({ }_{R} M\right) ; \\
N_{1} \subseteq N_{2} \Rightarrow K \odot N_{1} \subseteq K \odot N_{2} & \forall K \in \boldsymbol{L}\left({ }_{R} M\right) .
\end{array}
$$

We remark that if $K \in \boldsymbol{L}^{c h}\left({ }_{R} M\right)$, then $K \cdot N \subseteq K \odot N$ for every $N \in \boldsymbol{L}\left({ }_{R} M\right)$, since $\alpha_{K}^{M} \leq \omega_{K}^{M}$ and $\alpha_{K}^{M}(N) \subseteq \omega_{K}^{M}(N)$, so we have:

$$
K \cdot N \subseteq K \odot N \subseteq K \cap N
$$

Proposition 3.3. For every submodules $K, N, L \in \boldsymbol{L}\left({ }_{R} M\right)$ the following relation is true:

$$
(K \odot N) \odot L \supseteq K \odot(N \odot L) .
$$

Proof. Let $l \in K \odot(N \odot L)$. By definition this means that:

1) $l \in(N \odot L)$, i.e. $g(l) \in N$ for every $g: L \rightarrow M$;
2) $h(l) \in K$ for every $h: N \odot L \rightarrow M$.

We must verify that

$$
l \in(K \odot N) \odot L=\{x \in L \mid f(g(x)) \in K \quad \forall f: N \rightarrow M, \quad \forall g: L \rightarrow M\}
$$

For every pair of morphisms $g: L \rightarrow M$ and $f: N \rightarrow M$ we can define the morphism $h: N \odot L \rightarrow M$ by the rule:

$$
h(m)=f(g(m)) \quad \forall m \in N \odot L,
$$

using the fact that $g(m) \in N$ by the definition of $N \odot L$.
From $l \in(K \odot N) \odot L$ it follows $h(l) \in K$, therefore $h(l)=f(g(l)) \in K$ for every $f: N \rightarrow M$ and $g: L \rightarrow M$, but this means that $l \in(K \odot N) \odot L$.

For the study of relation between ω-product and intersection in $\boldsymbol{L}\left({ }_{R} M\right)$ the following remark is useful.

Lemma 3.4. For every submodules $N, K \in \boldsymbol{L}\left({ }_{R} M\right)$ the following relation is true:

$$
\omega_{N \cap K}^{M}=\omega_{N}^{M} \wedge \omega_{K}^{M} .
$$

Proof. By definitions, for every module $X \in R$-Mod we have:

$$
\begin{gathered}
\left(\omega_{N}^{M} \wedge \omega_{K}^{M}\right)(X)=\omega_{N}^{M}(X) \bigcap \omega_{K}^{M}(X)= \\
=\{x \in X \mid f(x) \in N \forall f: X \rightarrow M\} \bigcap\{x \in X \mid f(x) \in K \quad \forall f: X \rightarrow M\}= \\
=\{x \in X \mid f(x) \in N \bigcap K \forall f: X \rightarrow M\}=\omega_{N \cap K}^{M}(X) .
\end{gathered}
$$

Proposition 3.5. For every module $M \in R$-Mod the operation of ω-product is left distributive with respect to the intersection of submodules:

$$
\left(K_{1} \cap K_{2}\right) \odot N=\left(K_{1} \odot N\right) \bigcap\left(K_{2} \odot N\right)
$$

Proof. Applying Lemma 3.4 we obtain:

$$
\begin{gathered}
\left(K_{1} \cap K_{2}\right) \odot N=\omega_{K_{1} \cap K_{2}}^{M}(N)=\left(\omega_{K_{1}}^{M} \wedge \omega_{K_{2}}^{M}\right)(N)= \\
\quad=\omega_{K_{1}}^{M}(N) \cap \omega_{K_{2}}^{M}(N)=\left(K_{1} \odot N\right) \cap\left(K_{2} \odot N\right) .
\end{gathered}
$$

In the particular case when ${ }_{R} M={ }_{R} R$ we have the specification of ω-product in the lattice $\boldsymbol{L}\left({ }_{R} R\right)$ of left ideals of the ring R. For every left ideals $J, I \in \boldsymbol{L}\left({ }_{R} R\right)$ we obtain:

$$
J \odot I=\omega_{J}^{R}(I)=\bigcap_{f: I \rightarrow R} f^{-1}(J)=\left\{i \in I \mid f(i) \in J \forall f:{ }_{R} I \rightarrow{ }_{R} R\right\} \subseteq J \bigcap I .
$$

4α-coproduct of submodules

The following two operations which will be introduced in continuation are in some sense dual to the previous operations (α-product and ω-product) and are obtained by replacing the product of preradicals with its coproduct (Section 1).

Definition 4.1. Let $M \in R$-Mod and $N, K \in \boldsymbol{L}\left({ }_{R} M\right)$. The following submodule of M :

$$
(N: K)=\pi_{N}^{-1}\left(\alpha_{K}^{M}(M / N)\right)=\left\{m \in M \mid m+N \in \sum_{f: M \rightarrow M / N} f(K)\right\}
$$

will be called the α-coproduct in M of submodules N and K, where $\pi_{N}: M \rightarrow M / N$ is the natural morphism. In other form:

$$
(N: K) / N=\alpha_{K}^{M}(M / N) .
$$

Some properties of α-coproduct are collected in
Proposition 4.1. Let $M \in R$-Mod and $N, K \in \boldsymbol{L}\left({ }_{R} M\right)$. Then:

1) $(N: K) \supseteq N+K$;
2) $(N: K) / N$ is a characteristic submodule in M / N; if $N \in \boldsymbol{L}^{c h}\left({ }_{R} M\right)$, then $(N: K) \in \boldsymbol{L}^{c h}\left({ }_{R} M\right) ;$
3) If $N+K=M$ (in particular, if $N=M$ or $K=M$), then $(N: K)=M$;
4) If $N=0$, then for every $K \in \boldsymbol{L}\left({ }_{R} M\right)$ the submodule ($0: K$) is the least characteristic submodule of M containing K; therefore if $K \in \boldsymbol{L}^{c h}\left({ }_{R} M\right)$, then $(0: K)=K$;
5) If $K=0$, then $(N: 0)=N$ for every $N \in \boldsymbol{L}\left({ }_{R} M\right)$.

Proposition 4.2. The operation of α-coproduct is monotone in both variables:

$$
\begin{array}{lll}
N_{1} \subseteq N_{2} \Rightarrow\left(N_{1}: K\right) \subseteq\left(N_{2}: K\right) & \forall K \in \boldsymbol{L}\left({ }_{R} M\right) ; \\
K_{1} \subseteq K_{2} \Rightarrow\left(N: K_{1}\right) \subseteq\left(N: K_{2}\right) & \forall N \in \boldsymbol{L}\left({ }_{R} M\right) .
\end{array}
$$

Proposition 4.3. If the module $M \in R$-Mod is projective, then for every submodules $N, K, L \in L\left({ }_{R} M\right)$ the following relation is true:

$$
((N: K): L) \subseteq(N:(K: L)) .
$$

Proof. Let $m \in((N: K): L)$. Then by definition we have $m+(N: K) \in$ $\alpha_{L}^{M}(M /(N: K))$, i.e. $m+(N: K)=\sum_{g_{i}: M \rightarrow M /(N: K)} g_{i}\left(l_{i}\right)$, where $l_{i} \in L$. Since ${ }_{R} M$ is projective, for every morphism $g_{i}: M \rightarrow M /(N: K)$ there exists a morphism $f_{i}: M \rightarrow M / N$ such that $\varphi f_{i}=g_{i}$, where $\varphi: M / N \rightarrow$ $M /(N: K)$ is the epimorphism determined by the inclusion $N \subseteq(N: K)$ (i.e. $\varphi(m+N)=m+(N: K))$. Therefore:

$$
\begin{aligned}
& m+(N: K)=\sum_{g_{i}: M \rightarrow M /(N: K)} g_{i}\left(l_{i}\right)= \\
&=\sum_{f_{i}: M \rightarrow M / N}\left(\varphi f_{i}\right)\left(l_{i}\right)=\varphi\left(\sum_{f_{i}: M \rightarrow N} f_{i}\left(l_{i}\right)\right) \in M /(N: K) .
\end{aligned}
$$

Considering the inverse image in M / N we have:

$$
(m+N)-\sum_{f_{i}: M \rightarrow M / N} f_{i}\left(l_{i}\right) \in \operatorname{Ker} \varphi=(N: K) / N=\alpha_{K}^{M}(M / N)
$$

and so $(m+N)-\sum_{f_{i}: M \rightarrow M / N} f_{i}\left(l_{i}\right)=\sum_{f_{j}: M \rightarrow M / N} f_{j}\left(k_{j}\right)$, where $k_{j} \in K$. Therefore:

$$
m+N=\sum_{f_{i}: M \rightarrow M / N} f_{i}\left(l_{i}\right)+\sum_{f_{j}: M \rightarrow M / N} f_{j}\left(k_{j}\right) \in \alpha_{(K: L)}^{M}(M / N),
$$

since $l_{i} \in L \subseteq(K: L)$ and $k_{j} \in K \subseteq(K: L)$. By definition this means that $m \in(N:(K: L))$.

Proposition 4.4. For every submodules $N, K_{1}, K_{2} \in \boldsymbol{L}\left({ }_{R} M\right)$ the following relation is true:

$$
\left(N:\left(K_{1}+K_{2}\right)\right)=\left(N: K_{1}\right)+\left(N: K_{2}\right),
$$

i.e. the α-coproduct is right distributive with respect to the sum of submodules.

Proof. By Lemma 2.5 we have $\alpha_{K_{1}+K_{2}}^{M}=\alpha_{K_{1}}^{M} \vee \alpha_{K_{2}}^{M}$, therefore:

$$
\begin{aligned}
(N & \left.:\left(K_{1}+K_{2}\right)\right) / N=\alpha_{K_{1}+K_{2}}^{M}(M / N)=\alpha_{K_{1}}^{M}(M / N)+\alpha_{K_{2}}^{M}(M / N)= \\
& =\left[\left(N: K_{1}\right) / N\right]+\left[\left(N: K_{2}\right) / N\right]=\left[\left(N: K_{1}\right)+\left(N: K_{2}\right)\right] / N,
\end{aligned}
$$

which implies the statement.
Now we concretize the operation of α-coproduct for the lattice of left ideals $L\left({ }_{R} R\right)$ of the ring R.

Proposition 4.5. For every left ideals $N, K \in L\left({ }_{R} R\right)$ the following relation is true:

$$
(N: K)=K R+N .
$$

Proof. By definition $(N: K)=\pi_{N}^{-1}\left(\alpha_{K}^{R}(R / N)\right)$, where $\pi_{N}: R \rightarrow R / N$ is the natural morphism. Since $\operatorname{Hom}_{R}(R, R / N) \cong R / N$, we have

$$
\begin{gathered}
\alpha_{K}^{R}(R / N)=\sum_{f: R \rightarrow R / N} f(K)=\sum_{r \in R} K(r+N)=K\left(\sum_{r \in R}(r+N)\right)= \\
=K(R / N)=(K R+N) / N
\end{gathered}
$$

therefore $(N: K)=K R+N$.

If K is an ideal, then $(N: K)=N+K$ for every $N \in \boldsymbol{L}\left({ }_{R} R\right)$. So in the lattice $\boldsymbol{L}^{c h}\left({ }_{R} R\right)$ of two-sided ideals of R the α-coproduct coincides with the ordinary sum of ideals.

In particular from Proposition 4.5 it follows also that

$$
\begin{gathered}
(N: K) L=(K R+N) L=K R L+N L=K L+N L= \\
=(K+N) L=(N+K) L=(K: N) L
\end{gathered}
$$

for every $N, K, L \in \boldsymbol{L}\left({ }_{R} R\right)$.

5ω-coproduct of submodules

In this section we consider an operation in $\boldsymbol{L}\left({ }_{R} M\right)$ similar to the α-coproduct replacing α_{N}^{M} by ω_{N}^{M}.

Definition 5.1. Let $M \in R$-Mod and $N, K \in \boldsymbol{L}\left({ }_{R} M\right)$. The following submodule of M :

$$
\begin{gathered}
(N \odot K)=\pi_{N}^{-1}\left(\omega_{K}^{M}(M / N)\right)=\left\{m \in M \mid m+N \in \bigcap_{f: M / N \rightarrow M} f^{-1}(K)\right\}= \\
=\{m \in M \mid f(m+N) \in K \quad \forall f: M / N \rightarrow M\}
\end{gathered}
$$

will be called the ω-coproduct in M of submodules N and K, where $\pi_{N}: M \rightarrow M / N$ is the natural morphism. Therefore:

$$
(N \odot K) / N=\omega_{K}^{M}(M / N)=\bigcap_{f: M / N \rightarrow M} f^{-1}(K)
$$

The ω-coproduct $(N \odot K)$ can be expressed in other form $([3])$, using the fact that there exists a bijection between the morphisms $g: M \rightarrow M$ with the condition $g(N)=0$, and all morphisms $f: M / N \rightarrow M$. Taking this into account, we can present the ω-coproduct as follows:

$$
(N \subset K)=\{m \in M \mid g(m) \in K \quad \forall g: M \rightarrow M, \quad g(N)=0\}
$$

If $N, K \in \boldsymbol{L}^{c h}\left({ }_{R} M\right)$ then this operation coincides with the ω-coproduct of characteristic submodules defined in [5] by the rule:

$$
(N \odot K)=\left(\omega_{N}^{M}: \omega_{K}^{M}\right)(M)
$$

This operation (in other notations and other order of terms) was used in [3] for the study of coprime modules. The continuation of these studies is in [6], where coprime preradicals and coprime modules are investigated. As in the previous cases we start with some elementary properties of this operation.

Proposition 5.1.1) $(N \subset K) \supseteq N$ and $(N \odot K) / N$ is a characteristic submodule of M / N;
2) If $N=M$, then $(M \odot K)=M$ for every $K \in \boldsymbol{L}\left({ }_{R} M\right)$;
3) If $K=M$, then $(N \odot M)=M$ for every $N \in \boldsymbol{L}\left({ }_{R} M\right)$;
4) If $N=0$, then $(0 \odot K)$ is the largest characteristic submodule contained in K for every $K \in \boldsymbol{L}\left({ }_{R} M\right)$; so if $K \in \boldsymbol{L}^{c h}\left({ }_{R} M\right)$, then $(0 \odot K)=K$;
5) If $K=0$, then $(N \odot 0)=\pi_{N}^{-1}\left(\bigcap_{f: M / N \rightarrow M}\right.$ Kerf $)$ for every $N \in \boldsymbol{L}\left({ }_{R} M\right)$, where $\pi_{N}: M \rightarrow M / N$ is the natural morphism;
6) If $N \in \boldsymbol{L}^{c h}\left({ }_{R} M\right)$, then $(N \odot K) \in \boldsymbol{L}^{c h}\left({ }_{R} M\right)$ for every $K \in \boldsymbol{L}\left({ }_{R} M\right)$;
7) If $N, K \in \boldsymbol{L}^{c h}\left({ }_{R} M\right)$, then $(N \odot K) \supseteq K$, therefore $(N \odot K) \supseteq N+K$.

Proposition 5.2. The operation of ω-coproduct is monotone in both variables:

$$
\begin{array}{lll}
N_{1} \subseteq N_{2} \Rightarrow\left(N_{1} \odot K\right) \subseteq\left(N_{2} \odot K\right) & \forall K \in \boldsymbol{L}\left({ }_{R} M\right) ; \\
K_{1} \subseteq K_{2} \Rightarrow\left(N \odot K_{1}\right) \subseteq\left(N \odot K_{2}\right) & \forall N \in \boldsymbol{L}\left(_{R} M\right) .
\end{array}
$$

Two results on associativity of this operation are mentioned in [3] (Lemma 4.1). We remind these statements with short proofs.

Proposition 5.3. For every $M \in R$-Mod the relation

$$
((N \odot K) \odot L) \subseteq(N \odot(K \odot L))
$$

is true, where $N, K, L \in \boldsymbol{L}\left({ }_{R} M\right)$.
Proof. By definition we have:
$m \in((N \odot K) \odot L) \Leftrightarrow g(m) \in L \quad \forall g: M \rightarrow M, \quad g(N \odot K)=0 ;$
$m \in(N \odot(K \odot L)) \Leftrightarrow f(m) \in(K \odot L) \quad \forall f: M \rightarrow M, \quad f(N)=0 \Leftrightarrow$ $\Leftrightarrow h f(m) \in L \quad \forall h: M \rightarrow M, \quad h(K)=0$ and $\forall f: M \rightarrow M, \quad f(N)=0$.
If $m \in((N \odot K) \odot L)$ and we have a pair of morphisms $f, h: M \rightarrow M$ such that $f(N)=0$ and $h(K)=0$, then by definition $f(N \odot K) \subseteq K$ and so $h f(N \odot K)=0$. By assumption, $h f(m) \in L$ for every such pair of morphisms, and by definition this means that $m \in(N \odot(K \odot L))$.

Proposition 5.4. If ${ }_{R} M$ is injective and artinian, then the operation of ω-coproduct in $\boldsymbol{L}\left({ }_{R} M\right)$ is associative:

$$
((N \odot K) \odot L)=(N \odot(K \odot L)),
$$

for every $N, K, L \in L\left({ }_{R} M\right)$.
Proof. Since ${ }_{R} M$ is artinian there exists a finite number of endomorphisms $f_{1}, \ldots, f_{n}: M \rightarrow M$ with $f_{j}(N)=0$ such that $(N \odot K)=\bigcap_{j=1}^{n} f_{j}^{-1}(N)$. We define the morphism $t: M /(N \odot K) \rightarrow \prod_{1}^{n}(M / K)$ by the rule: $t(m+(N \odot K))=$ $=\left(f_{1}(m)+K, \ldots, f_{n}(m)+K\right)$ and observe that t is a monomorphism.

Let $m \in(N \odot(K \odot L))$, i.e. $h f(m) \in L$ for every $f, h: M \rightarrow M$ with $f(N)=0$ and $h(K)=0$. Let $g: M \rightarrow M$ be an arbitrary morphism with $g(N \odot K)=0$. Then g can be expressed in the form $g=g^{\prime} \cdot \pi_{(N \odot K)}$, where $\pi_{(N \odot K)}: M \rightarrow M /(N \odot K)$ is natural and $g^{\prime} \in \operatorname{Hom}_{R}(M /(N \odot K), M)$. Since M is injective and t is mono, there exists a morphism $q: \prod_{1}^{n}(M / K) \rightarrow M$ such that $g^{\prime}=q t$.

Now we consider the morphisms $u_{j}=i_{j} \pi_{K}: M \rightarrow \prod_{1}^{n}(M / K)(j=1, \ldots, n)$, where $\pi_{K}: M \rightarrow M / K$ is natural, and $i_{j}: M / K \rightarrow \prod_{1}^{n}(M / K)$ are the canonical injections. Then:

$$
\begin{gathered}
g(m)=q t \pi_{(N \odot K)}(m)=q t(m+(N \odot K))=q\left(f_{1}(m)+K, \ldots, f_{n}(m)+K\right)= \\
=q\left(\pi_{K} f_{1}(m), \ldots, \pi_{K} f_{n}(m)\right)=q\left(i_{1} \pi_{K} f_{1}(m)+\ldots+i_{n} \pi_{K} f_{n}(m)\right)= \\
=q\left(u_{1} f_{1}(m), \ldots, u_{n} f_{n}(m)\right)=q u_{1} f_{1}(m)+\ldots+q u_{n} f_{n}(m),
\end{gathered}
$$

where the morphism $h_{j}=q u_{j}: M \rightarrow M$ has the property $h_{j}(K)=0$, and the morphisms f_{j} are given with $f_{j}(N)=0$. From the assumption that $m \in$ $(N \odot(K \odot L))$ we obtain $q u_{j} f_{j}(m) \in L$ for every $j=1, \ldots, n$, so $g(m) \in$ L for every $g: M \rightarrow M$ with $g(N \odot K)=0$. By definition this means that $m \in((N \odot K) \odot L)$, proving the inclusion (\supseteq), the inverse inclusion is true by Proposition 5.3.

Now we will prove the right distributivity of ω-product in $\boldsymbol{L}\left({ }_{R} M\right)$ with respect to the intersection of submodules.

Proposition 5.5. For every submodules $N, K_{1}, K_{2} \in \boldsymbol{L}\left({ }_{R} M\right)$ the following relation is true:

$$
\left(N \odot\left(K_{1} \cap K_{2}\right)\right)=\left(N \odot K_{1}\right) \cap\left(N \odot K_{2}\right) .
$$

Proof. By Lemma 3.4 we have $\omega_{K_{1} \cap K_{2}}^{M}=\omega_{K_{1}}^{M} \wedge \omega_{K_{2}}^{M}$, therefore:

$$
\begin{aligned}
& \left(N \odot\left(K_{1} \cap K_{2}\right)\right) / N=\omega_{K_{1} \cap K_{2}}^{M}(M / N)=\omega_{K_{1}}^{M}(M / N) \cap \omega_{K_{2}}^{M}(M / N)= \\
& =\left[\left(N \odot K_{1}\right) / N\right] \cap\left[\left(N \odot K_{2}\right) / N\right]=\left[\left(N \odot K_{1}\right) \cap\left(N \odot K_{2}\right)\right] / N,
\end{aligned}
$$

which implies the statement.
Remark. The distributivity relations from Propositions 2.6, 3.5, 4.4 and 5.5 can be generalized to infinite distributivity, i.e. the following relations are true:

$$
\begin{gathered}
\left(\sum_{\alpha \in \mathfrak{A}} K_{\alpha}\right) \cdot N=\sum_{\alpha \in \mathfrak{A}}\left(K_{\alpha} \cdot N\right), \quad\left(\bigcap_{\alpha \in \mathfrak{A}} K_{\alpha}\right) \odot N=\bigcap_{\alpha \in \mathfrak{A}}\left(K_{\alpha} \odot N\right), \\
\left(N:\left(\sum_{\alpha \in \mathfrak{A}} K_{\alpha}\right)\right)=\sum_{\alpha \in \mathfrak{A}}\left(N: K_{\alpha}\right), \quad\left(N \odot\left(\bigcap_{\alpha \in \mathfrak{A}} K_{\alpha}\right)\right)=\bigcap_{\alpha \in \mathfrak{A}}\left(N \odot K_{\alpha}\right) .
\end{gathered}
$$

Finally, we will specify the form of ω-coproduct in the lattice $\boldsymbol{L}\left({ }_{R} R\right)$ of left ideals of R. Let $N, K \in \boldsymbol{L}\left({ }_{R} R\right)$. By definition we have:

$$
(N \odot K)=\left\{a \in R \mid g(a) \in K \quad \forall g:{ }_{R} R \rightarrow{ }_{R} R \text { with } g(N)=0\right\} .
$$

If for $g:{ }_{R} R \rightarrow{ }_{R} R$ we denote $a_{g}=g\left(1_{R}\right)$, then $g(a)=a \cdot a_{g}$ for every $a \in R$ and $\operatorname{Kerg} g=\left\{a \in R \mid a \cdot a_{g}=0\right\}=\left(0: a_{g}\right)_{l}$ (left annihilator of a_{g}). The condition $g(N)=0$ means that $N \cdot a_{g}=0$, i.e. $a_{g} \in(0: N)_{r}($ right annihilator of $N)$.

If $a \in(N \odot K)$, then $g(a) \in K$, i.e. $a \cdot a_{g} \in K$ or $a \in\left(K: a_{g}\right)_{l}$ for every $g:{ }_{R} R \rightarrow{ }_{R} R$ with $a_{g} \in(0: N)_{r}$. So we obtain that $a \in\left(K:(0: N)_{r}\right)_{l}$. Therefore:

$$
(N \odot K)=\left(K:(0: N)_{r}\right)_{l} .
$$

References

[1] Bican L., Kepka T., Nemec P. Rings, modules and preradicals. Marcel Dekker, New York, 1982.
[2] Raggi F., Montes J. R., Rincon H., Fernandes-Alonso R., Signoret C. The lattice structure of preradicals. Commun. in Algebra, 2002, 30 (3), 1533-1544.
[3] Bican L., Jambor P., Kepka T., Nemec P. Prime and coprime modules. Fundamenta Mathematicae, 1980, 107(1), 33-45.
[4] Raggi F., Rios J., Rincon H., Fernandes-Alonso R., Signoret C. Prime and irreducible preradicals. J. of Algebra and its Applications, 2005, 4, No. 4, 451-466.
[5] Kashu A. I. Preradicals and characteristic submodules: connections and operations. Algebra and Discrete Mathematics, 2010, 9, No. 2, 59-75.
[6] Raggi F., Montes J. R., Wisbauer R. Coprime preradicals and modules. J. of Pure and Applied Algebra, 2005, 200, 51-69.
A. I. Kashu

Received March 20, 2011
Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
5 Academiei str. Chişinău, MD-2028
Moldova
E-mail: kashuai@math.md

[^0]: (C) A.I.Kashu, 2011

