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Abstract. The present Note is a survey of the authors’ papers [11,12,14,16–18], con-
cerning the introduction and study of the notion of the abstract Čech cohomology, as
well as its applications. Here we have investigated: projective systems, injective sys-
tems, covering of a directed partially ordered set, abstract Čech cohomology, abstract
Čech homology, Čech cohomology space, simplicial projective systems, de Rham co-
homology space of projective systems, J-resolution of a projective system and acyclic
resolution.
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1 Introduction

The Čech cohomology is a cohomology theory based on the intersection proper-
ties of open covers of a topological space. It is named for the mathematician Eduard
Čech who in 1932 introduced it [2]. Let X be a topological space, and let U be an
open cover of X. Define a simplicial complex N(U) called the nerve of the covering,
as follows: the vertices of N(U) are all elements of U , each pair U1, U2 ∈ U such
that U1 ∩ U2 6= ∅ determines one edge, in general, there is one q-simplex for each
(q + 1)-element subset {U0, ..., Uq} for which U0 ∩ ... ∩ Uq 6= ∅. Geometrically, the
nerve N(U) is essentially a ”dual complex” (in the sense of a dual graph, or Poincaré
duality) for the covering U . The idea of Čech cohomology is that, if we choose a
cover U consisting of sufficiently small, connected open sets, the resulting simplicial
complex should be a good combinatorial model for the space X. For such a cover,
the Čech cohomology of X is defined to be the simplicial cohomology of the nerve.
This idea can be formalized by the notion of a good cover, for which every open set
and every finite intersection of open sets is contractible. However, a more general
approach is to take the direct limit of the cohomology groups of the nerve over the
system of all possible open covers of X, ordered by refinement. For a more precise
description see [20], Chap. 6, Sec. 7. Let X be a topological space, and let F be a
presheaf of abelian groups on X. Let U be an open cover of X. A q-simplex σ of U
is an ordered collection of q + 1 sets chosen from U such that the intersection of all
these sets is non-empty. This intersection is called the support of σ and is denoted
|σ|. Now let σ = (U0, ..., Uq) be such a q-simplex. The j-th partial boundary of σ
is defined to be the (q − 1)-simplex obtained by removing the j-th set from σ, that
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is: ∂jσ := (Ui)i∈{0,...,q},i6=j. The boundary of σ is defined as the alternating sum of

the partial boundaries: ∂σ :=
q∑
j=0

(−1)j+1∂jσ. A q-cochain of U with coefficients in

F is a map which associates to each q-simplex σ an element of F(|σ|) and we de-
note the set of all q-cochains of U with coefficients in F by Cq(U ,F). Cq(U ,F) is an
abelian group by pointwise addition. The cochain groups can be made into a cochain
complex (C .(U ,F), δ) by defining a coboundary operator (also called codifferential)

δq : Cq(U ,F)→ Cq+1(U,F ) : ω → δqω, (δqω)(σ) :=

q+1∑

j=0

(−1)jres
|∂jσ|

|σ| ω(∂jσ),

(where res
|∂jσ|

|σ| is the restriction morphism from F(|∂jσ|) to F(|σ|)), and showing

that δ2 = 0 (i.e., δq+1 ◦ δq = 0). A q-cochain is called a q-cocycle if it is in the kernel
of δq and Zq(U ,F) := ker(δq) is the set of all q-cocycles. Thus a q-cochain ω is a

cocycle if for any (q +1)-simplex σ the cocycle condition
q+1∑
j=0

(−1)jres
|∂jσ|

|σ| ω(∂jσ) = 0

holds. For example, ω is a 1-cocycle if ∀A,B,C ∈ U , ω(B ∩ C)|A∩B∩C − ω(A ∩
C)|A∩B∩C + ω(A ∩B)|A∩B∩C = 0, where, for U ′ ⊂ U ′′, ω(U ′′)|U ′ denotes resU

′′

U ′ .
A q-cochain is called a q-coboundary if it is in the image of δq−1 and Bq(U ,F)

is the set of all q-coboundaries. For example, a 1-cochain ω is a 1-coboundary if
there exists a 0-cochain ̟ such that ∀A,B ∈ U , ω(A ∩ B) = δ0(̟)(A ∩ B) =
̟(A)|A∩B −̟(B)|A∩B .

The Čech cohomology of U with values in F is defined to be the cohomology of
the cochain complex (C .(U ,F), δ). Thus the q-th Čech cohomology is given by

Ȟq(U ,F) := Hq((C .(U ,F), δ)) = Zq(U ,F)/Bq(U ,F).

The Čech cohomology of X is defined by considering refinements of open covers.
If V is a refinement of U then there is a map in cohomology Ȟ∗(U ,F)→ Ȟ∗(V,F).
The open covers of X form a directed set under refinement, so the above map leads
to a direct system of abelian groups. The Čech cohomology of X with values in F
is defined as the direct limit Ȟ∗(X,F) =lim−→

U

Ȟ∗(U ,F) of this system. Actually, the

original Čech cohomology of X with coefficients in a fixed abelian group A, denoted
Ȟ∗(X;A), is defined as Ȟ∗(X,FA) where FA is the constant sheaf on X determined
by A.

An excellent presentation of Čech cohomology was made by Kostake Teleman
in [21] (Chp. II, Sect. 18). Probably it was one of the reasons why his book
was translated in German and Russian, shortly after appearing in Romanian (see
[Zbl 018953902], [Zbl 018953904]). In particular, K. Teleman proved that if X is
homotopy equivalent to a CW-complex, then the Čech cohomology Ȟ∗(X;A) is
naturally isomorphic to the singular cohomology H∗(X;A). (For an arbitrary space
X this fact is false: if X is the closed topologist’s sine curve, then Ȟ0(X; Z) = Z,
whereas H0(X; Z) = Z ⊕ Z). Also, K. Teleman proved that if S is a locally finite
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simplicial polyhedron, then the singular cohomology H∗(S; Z) and Čech cohomology
Ȟ∗(S; Z) are isomorphic with the cohomology Ȟ∗(Σ, Z), associated to the cover Σ
of S with stellar neighborhoods.

If X is a differentiable manifold and the cover U of X is a good ”cover” (i.e., all
the sets U ∈ U are contractible to a point, and all finite intersections of sets in U
are either empty or contractible to a point), then Ȟ∗(X; R) is isomorphic to the de
Rham cohomology.

If X is compact Hausdorff, then Čech cohomology (with coefficients in a discrete
group) is isomorphic to Alexander-Spanier cohomology.

In the articles [5] and [6], René Deheuvels develops a theory of homology of or-
dered sets which is a generalization of the Čech homology and cohomology. This
author starts with an Abelian category C, with products and enough injectives,
and with an ordered set E . He considers E , as a category in the usual way, having
the objects all elements of E and a morphism a1 → a2 being a relation a1 < a2.
He denotes by C(E) the category of covariant functors from the category E to the
category C. Let C . be the category of cochain complexes in the category C and let
the functor C .(E ,−) : C(E) → C . be defined by: Cn(E , A) =

∏
a0>...>an,ai∈E

A(a0),

d : Cn(E , A) → Cn+1(E , A), where if f = (fa0>...>an) ∈ Cn(E , A), d(f)a0>...>an+1 =

ηa1a0 (fa1>...>an+1)+
n+1∑
i=1

fa0>...>âi>...>an+1, ηa1a0 being the morphism A(a1)→ A(a0) cor-

responding to the relation a1 < a0. The author proves that this functor is a resolving
functor, i.e., for every n there is a canonical isomorphism RnΓE ≃ Hn(C .(E ,−)),
where ΓE is the inverse limit functor ΓE :=lim←−

E

. The construction and this result have

obvious duals. Let M be a ”schéma simplicial” and let E be the set of simplices
of M ordered by inclusion. If A is a constant functor then the author proves that
RnΓE(A) is isomorphic to the usual simplicial cohomology of M with coefficients
in A. To define a generalized Čech cohomology and homology theory, Deheuvels
introduced the notion of ”order” of the ordered set E in the ordered set E ′. This is
a function ρ in E with values in the set of subsets of E ′ such that if a2 ≤ a1 then
ρ(a2) ⊇ ρ(a1) and if a′2 < a′1, a

′
2 ∈ ρ(a), then a′1 ∈ ρ(a). Given an ”order” ρ of E

in E ′, the author defines a functor ρ−1 : C(E ′)→ C(E∗), where E∗ is the dual of E ,
by ρ−1(A′)(a) = Γρ(a)(A

′). Modulo technicalities the generalized Čech cohomology
in the sense of Deheuvels is now the hyperderived of the composed functor LE∗ρ

−1

with LE =lim−→
E

. The dual construction yields a generalized Čech homology theory.

Let X be a topological space, let E be the dual of the set of non-empty open sets of
X ordered by inclusion, and let D be the ordered set of all open coverings R of X. It
is supposed that if O ⊆ O′ and O′ ∈ R then O ∈ R. The category C(E) is then the
category of presheaves on X. The ”order” ρ of D in E is defined by ρ(R) = R. The
corresponding generalized Čech cohomology in the Deheuvels sense is then shown
to coincide with the usual Čech cohomology, at least when C has exact inductive
limits. If X is a compact metric space and C is the category of abelian groups the
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author shows that the generalized Čech homology coincides with Steenrod homology
theory.

We can see from this summary of the work [6] of René Deheuvels that this theory
is indeed a very consistent generalization of the homology and cohomology Čech the-
ories. But at the same time, it is clear that Deheuvels’s theory is very sophisticated
and difficult to apply and to find other examples. In addition, even the construction
of this theory is very little similar to the construction of the Čech theory. This is the
reason for which in 1974 the first and the third author proposed a theory of abstract

Čech cohomology in [11] and [12], and not a generalization of the Čech theory as
constructed Deheuvels, but simply following the Čech’s construction. It is more eas-
ily applicable in other important situations. In the third chapter of the book [12],
entitled ”Simplicial complexes. Abstract Čech cohomology”, this theory is devel-
oped in detail as follows: §3 Cohomology groups associated with a projective system
or Čech abstract cohomology groups, §4 The exact cohomology sequence associated
with a pair of projective systems, §5 Canonical projective systems, §6 Resolutions of
a projective system, §7. Homology groups associated with an injective system. And
in Chap. VII, the Čech homology and cohomology for a topological space are ob-
tained as a ”concretization” of the abstract Čech homology and cohomology. Then,
in the thesis of the second author [15] and in his papers [14,16,17], as well as in the
paper [18] of the third author, a number of examples and applications are given.

The present article is a synthesis paper including the results of the three authors
about the abstract Čech homology and cohomology.

Finally, the authors wish to emphasize that they are impressed by recent research
concerning multy-ary relations homology, studied by Academician Petru Soltan in
[19] and [1]. They believe that this subject can be expanded by using abstract Čech
(co)homology, as well as the theory of abstract Čech (co)homology can find one new,
interesting and important application in the above mentioned field investigated by
Academician Petru Soltan.

2 The authors’ construction of the abstract Čech cohomology

Let P = (Hi, α
i
j)i,j∈I be a projective system of abelian groups. For our purpose

we suppose that the partially ordered set (I,≤) of the indices over which the pro-
jective system P (or an inductive system I) is given fulfills the following conditions:

(1) For every pair i, j ∈ I there exists infimum inf(i, j), which is denoted by i∧ j;
(2) For every subset J of I there exists sup J , the supremum with respect to the

relation ≤;
(3) There exists a minimal element θ ∈ I, i.e., θ ≤ i for every i ∈ I, (but this

condition is not essential).

Definition 1. A subset J of I is called a covering of (I,≤) if for every i ∈ I there
exists Ji ⊂ J such that i ≤ sup Ji.

In the set of coverings of (I,≤) a partial ordering can be introduced, namely, if
J, J ′ are coverings of (I,≤), then J ′ ≺ J if for every i′ ∈ J ′ there exists an i ∈ J
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such that i′ ≤ i.
In order to define the cohomology groups of a projective system P = (Hi, α

i
j)i,j∈I ,

also we assume the condition
(4) The set of coverings of (I,≤) is directed with respect to the relation ≺, i.e.,

if J, J ′ are two arbitrary coverings of (I,≤), then there exists a covering J ′′ of (I,≤)
such that J ′′ ≺ J and J ′′ ≺ J ′.

In these conditions ((1)-(4)) on the ordered set (I,≤), for a covering J of (I,≤)
we can consider the cochain complex

C∗(J,P) : ...→ Cq(J , P )
dq

−→ Cq+1(J,P)→ ...,

where Cq(J,P) :=
∏

i0,...,iq∈J ;i0∧...∧iq 6=θ

Hi0∧....∧iq , and the boundary homomorphism dq

is defined by

(dqt)i0...iq+1 =

q+1∑

p=0

(−1)pα
i0∧...∧̂ip∧...∧iq+1

i0∧....∧iq+1
t
i0∧...∧̂ip∧...∧iq+1

for t ∈ Cq(J,P).
The cohomology groups of this cochain complex are denoted by {(Hq(J, P )}q .

If J ′ is another covering of (I,≤) such that J ′ ≺ J , one obtains, for every
q ≥ 0, a well defined homomorphism αqJ ′≺J : Hq(J,P) → Hq(J ′,P) such that
{Hq(J, P ), αqJ ′,J}J,J ′∈A(I,≤)

is an inductive system over the set (AI ,≺) of all cover-
ings of (I,≤).

In the imposed conditions there exists lim−→
J∈A(I,≤)

Hq(J,P), and this group, denoted

by Ȟq(P) or Ȟq((I,≤),P), is called the q-th cohomology group of the projective

system P.
If (I,≤) is an ordered set satisfying the conditions (1)-(4), denote by (I,≤)

←−
(Ab)

the category of projective systems of abelian groups indexed over (I,≤) and of
morphisms of projective systems.

Proposition 1. ([12], Cor. 3.3, p. 100). For every integer q ≥ 0 we can define a
covariant functor

Ȟq((I,≤),−) :(I,≤)
←−

(Ab) −→ Ab,

which assigns to every projective system P indexed over (I,≤) the q-th abstract Čech
cohomology group Ȟq(P).

Proposition 2. ([12], Prop. 4.1, p. 101). For any exact sequence 0 → P ′
ϕ
−→

P
ψ
−→ P ′′ → 0 in the category (I,≤)

←−
(Ab) we get the following exact sequence of

abstract Čech cohomology

0→ Ȟ0((I,≤),P ′)
ϕ∗0

−→ Ȟ0((I,≤),P)
ψ∗0

−→ H0((I,≤),P ′′)→ Ȟ1((I,≤),P ′)....
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Let P = (Hi, αij) be an object in the category (I,≤)
←−

(Ab). An element ti ∈ Hi

is called a section of P over the index i. A system of sections {ti}i∈J⊂I is called
coherent if αi∧j,iti = αi∧j,jtj, for any i, j ∈ I.

Definition 2. A projective system P = (Hi, αij) is called complete if for any coher-
ent system of sections {ti}i∈J , there exists a section tk ∈ Hk, k = supJ , such that
αiktk = ti, for all i ∈ J .

The projective system P = (Hi, αij) is called essential if the following property
is satisfied: for k ∈ I and tk ∈ Hk, there exists J ⊂ I such that k = supJ and
αiktk = 0 for every i ∈ J implies tk=0.

The projective system P = (Hi, αij) is called canonical if it is complete and
essential.

Proposition 3. ([12], Prop. 5.2, p. 103). If P = (Hi, αij) is a canonical projective
system over (I,≤) for which there exists k = sup I, then Ȟ0(P ) ≃ Hk.

Let P = (Hi, αij) be a projective system over (I,≤) satisfying the conditions
(1)-(4).

Definition 3. A cohomological resolution of P = (Hi, αij) is an exact sequence in
the category (I,≤)

←−
(Ab),

(RP):...→ Pn−1 Dn−1

−→ Pn
Dn

−→ Pn+1 → ...
such that:
1. P−1 = P, 2. Pn = 0 for n < −1, 3. Ȟq((I,≤),Pn) = 0, for all q ≥ 1 and

n ≥ 0.

A resolution (RP) of a projective system P = (Hi, αij) over (I,≤) induces a
superior semiexact sequence (i.e., a cochain complex)

(∗)...→ Ȟ0(P0)
(D0)∗
−→ Ȟ0(P1)

(D1)∗
−→ Ȟ0(P2)

(D2)∗
−→ ...

Theorem 1. ([12], Th. 6.1, p. 104) The abstract Čech cohomology groups of a
projective system P = (Hi, αij) are isomorphic to the cohomology groups of the
cochain complex (*) associated to a cohomological resolution (RP) of P.

Remark 1. If a projective system P = (Hi, αij) admits a cohomological resolution
whose terms are canonical projective systems, then, by Proposition 3 and Theorem
1 the abstract Čech cohomology groups of P can be immediately determined.

The abstract Čech homology is defined by categorical duality. Let I =
{Gi, αij}(I,≤) be an inductive system of abelian groups over a directed partially or-
dered set (I,≤) satisfying conditions (1)-(4). For a covering J ⊂ I a chain complex
C∗(J,I) is defined by taking

Cq(J,I) :=
⊕

(i0,...,iq)∈Σq

Gi0∧...∧iq
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and dq : Cq(J,I)→ Cq−1(J,I) given by

dqti0∧...∧iq =

q∑

p=0

(−1)pα
i0∧...∧̂ip∧...∧iq,i0∧...∧iq

ti0∧...∧iq .

The groups Hq(C∗(J,I)) are denoted by Hq(J,I). If we consider two coverings
J, J ′ with J ′ ≺ J , then for every q ≥ 0 there exist natural homomorphisms αJ ′≺J :
Hq(J

′,I)→ Hq(J,I) such that a projective system (Hq(J,I)αJ ′≺J is obtained. The
projective limit lim←−

J∈AI

Hq(J,I) is called the q-th abstract Čech homology of the

inductive system I and it is denoted by Ȟq(I) or by Ȟq(|I|,I). The properties of
abstract Čech homology are dual to those of the abstract Čech cohomology.

3 Examples

Example 1. Let (X,A) be a pair of topological spaces, with A a closed subspace
of X, and let Γ be a presheaf over X. Consider the set I := {U |U open subset of X
and U ⊃ A}. This ordered set (by the inclusion relation) satisfies the conditions (1),
(2) and (4). Then we consider the restriction Γ/I, and denote the q-th cohomology
group of this projective system by Ȟq([X,A]; Γ). One can prove that, for every
q ≥ 0, there exists a commutative diagram

Ȟq((X,A); Γ)

��

Ȟq([X,A]; Γ)

**TTTTTTTTTTTTTTT

44jjjjjjjjjjjjjjj

Ȟq(X; ΓA)

where Ȟq((X,A); Γ) and Ȟq(X; ΓA) are the Čech cohomology groups with

ΓA(U) =

{
Γ(U) if U ∩A 6= ∅,
0 if U ⊂ X −A

for every open subset u of X.
Moreover, for these cohomology groups an excision theorem can be proved too:

Ȟq([X − V,A− V ]; Γ) ≃ Ȟq([X,A]; Γ).

Example 2. Let

G1
ϕ1
←− G2

ϕ2
←− G3....← Gn

ϕn
←− Gn+1 ← ....

be a sequence in the category of abelian groups. We obtain a projective system
(sequence) P := {Gn, αn,m}n,m∈N by taking αn,m = ϕn ◦ ϕn+1 ◦ ... ◦ ϕm−1.
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Let us denote I = {Jm = {m,m + 1, ....}}, with N ⊃ J1 ⊃ J2 ⊃ ....
For every Jn ∈ I we define QJn := lim←−

k∈Jn

Gk, and if Jn ⊆ Jm, then we obtain a

homomorphism αJnJm : QJm −→ QJn . For the projective system Q := {QJn , αJnJm}
, we have:

Ȟ0(Q) =lim←−
N

P =lim←−
N

Gn

and

Ȟq(Q) = 0

for q ≥ 1.
Example 3. If the sequence of abelian groups considered above is semiexact, we

consider the projective system P = {Gk, αkh}h,k∈N with αkh = 0 for h > k + 1.
A covering of N (in the sense of our definition) has the form J = {n1 ≤ ... ≤ nk ≤

...}, and we can prove that any two such coverings are cohomologically equivalent.
In this case we obtain Ȟ0(P) = 0 , and Ȟ1(P) is the factor group of the group of
infinite dimensional matrices of the form

A =




0 y12 y13 y13 ... ...
−y12 y′12 y23 y24 y24 ...
−y13 −y23 + y′13 y′23 y34 y35 y35...
... ... ... ... ... ...




by the group of infinite dimensional matrices of the form

B =




0 y12 y12 + ϕ1(y23) y12 + ϕ1(y23) ... ...
−y12 0 y23 y23 + ϕ2(y34) ... ...

−y12 − ϕ1(y23)− y23 0 y24 y34 + ϕ3(y45) ... ...
... ... ... ... ... ...




where yih ∈ Gi and y′ih ∈ Kerϕi.

Example 4. Let X be a Hausdorff topological space, and Cτ the set of the closed
subsets of X. This set satisfies the conditions (1)-(4), with A ∧ B = A ∩ B and
sup Aα := ∪

α
Aα, θ = ∅, for A,B,Aα ∈ Cτ . If I is an inductive system over the set

Cτ , then Ȟq(I) = lim←−
M∈D

Ȟq(M, I), where D is the set of all dense parts M in X. In

particular,

Ȟ0(I) = lim←−
M∈D

( ⊕
x∈M

I(x)).

In general, we cannot consider the cohomology since the coverings in the above
sense do not form a directed set. However, the problem is possible in the case of some
topological spaces which are not Hausdorff. For example, let X be a set with the
”excluded point topology”, i.e., the topology which is obtained by declaring open,
in addition to X itself, all sets which do not include a given point p ∈ X. In this



ON THE ABSTRACT ČECH COHOMOLOGY 49

case the Čech cohomology and homology are less interesting than the cohomology
and homology with coefficients in projective and inductive systems over the closed
subsets of X.

If P is a projective system and I is an inductive system over the set of closed
parts of X, then:

Ȟ0(P) =
∏
x∈X
P({x, p}), Ȟq(P) = 0 for q ≥ 1 , and

Ȟ0(I) = ⊕
x∈X
I({x, p}), Ȟq(I) = 0 for q ≥ 1.

Finally, we mention that if the topological space (X, τ) has the property that for
every open covering U of X there exists an open covering U ′ of X such that U ′ is a
refinement of U and CU is a closed covering of X, then for every presheaf Γ on X
there exists an isomorphism of the group Ȟq(X,Γ) with the group Ȟq(I), where I
is the inductive system defined by I(A) := Γ(CA) for every A ∈ Cτ .

4 Application [18]

In this section, as an application of our abstract Čech cohomology, we consider
some projective systems associated with a standard simplex ∆n by taking as the
indices the faces of ∆n. As examples of such projective systems are the simple

cellular sheaves considered in [3,4,7] and [13], and whose cohomology groups appear
in the calculation of the KG-groups of some particular G-spaces, by using the Atiyah-
Hirzebruch spectral sequences. The cohomology groups of a linear simplex X with
coefficients in a simple cellular sheaf are computed in [3] and [4] by means of a finite
closed covering of X and using a Corollary of Leary’s theorem ([9], p. 209).

We replace these coverings (which are rather complicated and which require
the verification of some difficult acyclicity conditions) by a covering in the sense
considered in [11] and [12], and which in fact consists only of the vertices of the
standard simplex ∆n. In this way we can calculate the cohomology groups with
coefficients in a simple cellular sheaf for every linear simplex.

Let ∆n be the n-dimensional standard simplex and let Σ be the set of the (closed)
faces of ∆n to which we add the empty set ∅. If A0, A1, ..., An are the vertices of
∆n, denote by ∆n

i0i1...ip
the face of ∆n spanned by the vertices Ai0 , Ai1 , ..., Aip .

If σ = ∆n
i0...ip

, σ′ = ∆n
j0...jq

∈ Σ, we define the relation

σ ≤ σ′ if and only if j0, ..., jq ⊆ i0, ..., ip , i.e., σ′ is a face of σ.
This is a partial ordering on the set Σ.

Definition 4. A projective system P = (Hσ, α
σ′

σ )σ,σ′∈Σ over the above partially
ordered set (Σ,≤) is called a simplicial projective system.

Lemma 1. The partially ordered set (Σ,≤) satisfies the conditions (1)-(4).

Proof. (1) If σ′ = ∆n
i0...ip

, σ′′ = ∆n
j0...jq

, then for σ = ∆n
k0,...,kr

, with {k0, ..., kr} =

{i0, ..., ip} ∪ {j0, ..., jq}, we have σ = σ′ ∧ σ′′ (σ is sometimes the joint σ′ ∗ σ′′).
(2) If Σ′ ⊂ Σ, we have sup Σ′ =

⋂
σ′∈Σ′

σ′. Here it is necessary to suppose that Σ

contains the empty set ∅.
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Now we say that a subset Σ′ of the set Σ is a covering if for every face σ ∈ Σ
there exists a subset Σ′σ ⊂ Σ′ such that sup Σ′σ 6= ∅ and σ ≤ sup Σ′σ.

If Σ′,Σ′′ are two coverings, then we have Σ′ ≺ Σ′′ if and only if for every face
σ′ ∈ Σ′ there exists a face σ′′ ∈ Σ′′ such that σ′ ≤ σ′′, i.e., σ′′ is a face of σ′. Now the
condition (4) is verified because if Σ′, Σ′′ are two coverings, then Σ′

⋂
Σ′′ satisfies

the relations Σ′
⋂

Σ′′ ≺ Σ′ and Σ′
⋂

Σ′′ ≺ Σ′′.

By Lemma 1 we can consider the abstract Čech cohomology groups Ȟq(Pn) of
a simplicial projective system Pn = (Hσ, α

σ′

σ )σ,σ′∈Σ.

Now we recall from [7] and [4] that a cellular sheaf over ∆n is a sheaf F on

the topological space ∆n with the property that for every open face
◦
σ of ∆n the

restriction F/
◦
σ is a simple sheaf. For such a sheaf, if

◦
σ and

◦

σ′ are two open faces of

∆n with
◦
σ ∩σ′ 6= ∅ then there exists a homomorphism ϕσσ′ : F/

◦
σ→ F/

◦

σ′ satisfying

the condition that if
◦
σ ∩σ′ ∩ σ′′ 6= ∅ and

◦

σ′ ∩σ′′ 6= ∅, then ϕσ′σ′′ ◦ ϕσσ′ = ϕσσ′′ ([7],
Prop.1). Also, from the definition of the above homomorphisms ϕσσ′ one deduces
that ϕσσ is the identity. Together with the Prop. 3 of [7] and remarking that if σ, σ′

are two faces of ∆n then
◦
σ ∩σ′ 6= ∅ if and only if σ is a face of σ′, i.e., if and only if

σ′ ≤ σ, we obtain the following theorem.

Theorem 2. Every simple cellular sheaf F over the standard simplex ∆n defines
a simplicial projective system P(F) = Pn, and conversely, any simplicial projective
system Pn induces a cellular simple sheaf over ∆n.

Theorem 3. The abstract Čech cohomology groups of a simplicial projective system

Pn := {Hi0∧...∧iq , α
i0∧...∧̂ip∧...∧iq
i0∧...∧iq

}

are given by :

Ȟq(Pn) ∼=

⋂
0≤i0<i1<...<iq+1≤n

Zi0i1...iq+1

⋂
0≤i0<i1<...<iq+1≤n

Bi0i1...iq+1

for q = 0, 1, ..., n (and 0 otherwise), with

Zi0...iq+1 = Hi1∧...∧iq+1

∏
Hi0∧...∧iq+1

q+1⊕

p=1

H
i0∧...∧̂ip∧...∧iq+1

,

Bi0...iq+1 = Imα
i0∧...∧iq
i0∧...∧iq+1

∏
Hi0∧...∧iq+1

q⊕

p=1

Imα
i0∧...∧̂ip∧...∧iq
i0∧...∧iq

where A
∏
SB denotes a fibered product of A and B over S.
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Remark 2. If the homomorphisms α
i0∧...∧̂ip∧...∧iq
i0∧...∧iq

are all injective, then the formulas
from Theorem 3 become more simple. For example, in this case we have

Ȟ0(Pn) ∼=

n⋂

i=0

Hi, Ȟ
n(Pn) ∼=

H012...n

H ′0 + H ′1 + ... + H ′n

where H ′p = H0...p̂...n.

Remark 3. For n = 1, 2, 3 we find some results of [3],[4]. Thus, if n = 1 we obtain

Ȟ0(P1) ∼= H0

∏
H01

H1

and

Ȟ1(P1) ∼=
H01

Imα0
01 + Imα1

01

,

which coincide respectively with the cohomology groups Hq(∆1,F), q = 0, 1.

We can establish a general result. Let F be a simple cellular sheaf over ∆n. The
calculation of the groups Hq(∆n,F) in [4] uses a closed covering U = {U0, ..., Un}
with the acyclicity property Hq(Ui0 ∩ ...∩Uiq ;F ) = 0, q ≥ 1. Then, by Cor. 1 of [9],
p. 209, the natural homomorphism Hq(U ,F) → Hq(∆n,F) is an isomorphism.
Then the cochain complex C∗(U ,F) is given by

Cq(U ,F) =
∏
F(Ui0 ∩ ... ∩ Uiq)

and

(dqt)Ui0
∩...∩Uiq

=

q+1∑

p=0

(−1)pF
Ui0
∩...∩Ûip∩...∩Uiq+1

Ui0
∩...∩Uiq+1

t
Ui0
∩...∩Ûip∩...∩Uiq+1

.

By the choice of the covering U and because F is a simple cellular sheaf one verifies
easily that C∗(U ,F) is equivalent to the cochain complex which appears in the proof
of Theorem 3. Thus we have the following result.

Theorem 4. If F is a simple cellular sheaf over the standard simplex ∆n and if
P(F) is its associated projective system by Theorem 2, then there exists a natural
isomorphism

Hq(∆n,F) ∼= Ȟq(P(F))

for every integer q.

Remark 4. If we replace the standard simplex ∆n by an arbitrary CW-complex, then
a simple cellular sheaf also defines a projective system having as the set of indices the
set of cells, but unfortunately this set does not satisfy the condition (1). But in [8]
a method for the calculation of the cohomology groups of an arbitrary polyhedron
with coefficients in a simple cellular sheaf by using the simplicial cohomology with
local coefficients was given. This leads us to believe that it is possible to extend our
method, that of abstract Čech cohomology, from the case of standard simplex ∆n

to the general case of an arbitrary polyhedron.
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5 De Rham type theorems

5.1 J–resolutions of a projective system [14]

In this section we assume that (I,≤) satisfies (1)–(4) (see Section 2) and for
J ∈ I we put Σs(J) = ×sJ . Let P = (Hi, αij)i,j∈I be a projective system (of
abelian groups) over I and consider the cochain complex of projective systems over
I

0→ P
j
→ P 0 D0

→ P 1 → . . .→ P q D
q

→ P q+1 → . . . (1)

where j = (ji)I∈I and Dq = (Dq
i )i∈I .

Definition 5. A J–resolution of the projective system P over I is a cochain complex
(1) satisfying the following conditions:

a. there exists J ∈ AI such that for any s ≥ 0 and (i0, i1, . . . , is) ∈ Σs(J),

0→ Hi0∧i1∧...∧is

ji0∧i1∧...∧is
→ H0

i0∧i1∧...∧is → . . .

→ Hq
i0∧i1∧...∧is

D
q
i0∧i1∧...∧is
→ Hq+1

i0∧i1∧...∧is
→ . . .

is an exact sequence;

b. the sequence (1) is exact with respect to P and P 0.

Remark 5. 1. Let f : P → Q be a projective systems isomorphism. If J ∈ AI , then
f induces an isomorphism from Hq(J, P ) to Hq(J,Q), hence

Ȟq(|I|, P ) ≃ Ȟq(|I|, Q)

for any q ≥ 0.
2. If the sequence (1) is a J–resolution of the projective system P then its

projective limit

0 −→lim←−
i∈I

Hi

lim
←−
i∈I

ji

−→lim←−
i∈I

H0
i −→ . . . −→lim←−

i∈I

Hq
i

lim
←−
i∈I

D
q
i

−→ lim←−
i∈I

Hq+1
i −→ . . . (2)

is a cochain complex and it is exact with respect to the terms lim←−
i∈I

Hi and lim←−
i∈I

H0
i .

Let (1) be a J–resolution of the projective system P and denote by Cs(J, P q)
and C(J, P ) the s–dimensional cochain groups associate to the systems P q and P ,
respectively. By Remark 5 we can assume that Cs(J, P ) ≤ Cs,0(J, P ) by the inclusion
morphism js. Then the sequence

0→ Cs(J, P )
js

→ Cs,0(J, P )→ . . .→ Cs,q(J, P )
ds,q

→ Cs,q+1(J, P )→ . . . (3)

is exact for each s ≥ 0, q ≥ 1, and we have the following
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Proposition 4. If the projective system P has a J–resolution (1) then (3) is a
resolution for its p–dimensional cochain group.

Definition 6. A J–resolution of the projective system P is acyclic if Hs(J, P q) = 0
for any q ≤ 0 and s ≥ 1.

We remark that if for any J ∈ AI , (1) is an acyclic J–resolution of the projective
system P then it is a resolution of P . Conversely, if there exists J ∈ AI such that
J ≺ J ′ for each J ′ ∈ AI then any resolution of P is a J–resolution.

Now, we can state

Theorem 5. If the projective system P admits an acyclic J–resolution of canonical
projective systems then

H0(J, P ) ≃ ker lim←−
i∈I

D0
i ,

Hq(J, P ) ≃ ker lim←−
i∈I

Dq
i /Im lim←−

i∈I

Dq−1
i for q ≥ 1.

We notice that in [15], the above isomorphism is effectively exhibited.
Denote by P ∗ = ⊕q≥0P

q the differential projective system associate to (1), with
the codifferential d = ⊕q≥0D

q. We have the following generalization of Theorem 5.

Theorem 6. [17] Let P be a projective system over the ∧–semilattice (I,≤), J ∈ AI
and (1) be a J–resolution of P by canonical projective systems. If Hp(Hq(J, P ∗)) = 0
for all p ≥ 0 and q ≥ 1 then

Hp(J, P ) ≃ Hp(lim←−
i∈I

H0
i P
∗).

Now, we present some applications of this result. The first one is the following
de Rham type theorem:

Theorem 7. If for any J ∈ AI , the sequence (1) is an acyclic J–resolution of
canonical projective systems for P , then the following isomorphisms occur:

Ȟ0(|I|, P ) ≃ ker lim←−
i∈I

H0
i D

0
i ,

Ȟq(|I|, P ) ≃ ker lim←−
i∈I

Dq
i /Im lim←−

i∈I

Dq−1
i for q ≥ 1.

From Remark 5 we deduce that the conclusion of Theorem 7 is still valid if there
exists J ∈ AI such that J ≺ J ′ for any J ′ ∈ AI .

On the other hand, if the set I has a supremum k then from Theorem 5 we
obtain

H0(J, P ) ≃ Hk, Hq(J, P ) ≃ ker dqk/Imdq−1
k for q ≥ 1 (4)

and, moreover, if k ∈ J then Hq(J, P ) = 0 for any q ≥ 1.

Proposition 5. Under the hypotheses from Theorem 7, if there exists sup I = k
then

Ȟ0(|I|, P ) ≃ Hk, Ȟq(|I|, P ) = 0 for q ≥ 1.
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5.2 Existence of J–resolutions

We remark that, in order to obtain de Rham type theorems for projective sys-
tems, the existence of a J–resolution is essential. This problem is solved in [16], at
least partially. First, we assume (I,≤) to be a ∧–semilattice and for i ∈ I and J ⊆ I
we put i ∧ J = {i ∧ j}j∈J . Then the group of q–dimensional cochains of P relative
to i ∧ J , is

Kq(i ∧ J) =
∏

Σq

Hi∧io∧...∧iq .

If i′ ∈ I, i′ ≤ i, then for (i0, . . . , iq) ∈ Σq and t ∈ Kq(i ∧ J) we put

(α∗qi′it)i′∧io∧...∧iq = αi′∧io∧...∧iq ,i∧io∧...∧iqti∧io∧...∧iq .

Thus we obtain the projective system Kq(J, P ) = {Kq(i ∧ J), α∗qi′i}i,i′∈I and denote
by ∂q : Kq(J, P ) → Kq+1(J, P ) the coboundary operator. Moreover it induces a
morphism of projective systems. Another such morphism is f = (fi)i∈I : P →
K0(i ∧ J, P ), where [fi(hi)]i∧j = αi∧j,i(hi) for hi ∈ Hi and j ∈ J . Then we have

Proposition 6. Assume that there exists sup I and let P be a canonical projective
system on I. Then the sequence

0 −→ P
f
−→ K0(J, P )

(∂0)
−→ . . . −→ Kq(J, P )

(∂q)
−→ Kq+1(J.P ) −→ . . .

is an acyclic J–resolution of P for any cofinal subset J of I.

5.3 Canonical system associate to a projective system [15]

The determination of these groups is a hard and subtle problem and we know
them explicitly in very few cases.

It is well-known that under some additional restrictions on the set (I,≤), to any
projective system we can associate a canonical projective system. More precisely,
we have the following

Proposition 7. ([10], Prop. 5.1, p. 102) If (I,≤) is a filter at left then to any
projective system P over (I,≤), a canonical projective system P ∗ can be associated.

Under some stronger conditions on (I,≤) we can get a simple relation between
Čech cohomologies of P and P ∗.

Theorem 8. Let (I,≤) be a ∧–semilattice such that any J ∈ AI admits a refinement
J ∈ AI with the property that for every (i0, . . . , iq) ∈ Σq there exist i0, . . . , iq ∈ J
such that i0, . . . , iq ∈ Ji0∧...∧iq .
Then the Čech cohomology groups of P and P ∗ are isomorphic in each dimension,
that is

Ȟq(|I|, P ) ≃ Ȟq(|I|, P ∗)

for all q ≥ 0.
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5.4 Examples

Now, we use the above results to recover some classical theorems (see Introduc-
tion).

Example 9. Let M be a smooth n–dimensional manifold and denote by Λ̃q its
q–forms sheaf and by R̃ the sheaf associated to the constant presheaf on M . If
U = {Ui}i∈I is an open cover of M then the sheaves sequence

0 −→ R̃
j
−→ Λ̃0 d

−→ Λ̃1 −→ . . . −→ Λ̃q
d
−→ Λ̃q+1 −→ . . . (5)

is a cochain complex with respect to the exterior derivative d. (5) is exact for the
terms R̃, Λ̃0 and Hs(U , Λ̃q) = 0 for s ≥ 1 and q ≥ 0. If, moreover, the cover U
is contractible then (5) is an acyclic U–resolution of the sheaf R̃ and we can apply
the isomorphisms (4). On the other hand, any open cover of M can be refined by a
contractible one, so the set Ac of contractible covers of M is cofinal in the set of all
open covers and then

Ȟq(M, R̃) ≃ lim←−
U∈Ac

Hq(U , R̃)

and therefore from the isomorphism Ȟq(M, R̃) ≃ Ȟq(M, R) we deduce the classical
de Rham theorem.

Example 10. Let (X, τ) be a topological space and

∆(U) : . . . −→ ∆q(U)
dq,U
−→ ∆q−1(U) −→ . . . −→ ∆0(U) −→ 0

the singular chain sequence associate to U ∈ τ . Denote by ∆q(U) the group of
q–dimensional singular cochains with coefficients in an abelian group G and for
l ∈ ∆q(U) we put dqU (l) = ldq+1,U . For V ∈ τ , V ⊃ U , we define the morphism
αqUV : ∆q(V ), which, to each cochain on V , associates its restriction to U . Then for
each q ≥ 0, ∆q = {∆q(U), αqUV }U,V ∈τ is a complete projective system and we obtain
the cochain complex

∆∗ : 0 −→ ∆0 −→ . . . −→ ∆q dq

−→ ∆q+1 −→ 0

where dq = (dqU )U∈τ : ∆q → ∆q+1 and dqU (l) = ldq+1,U .

Now, if U = {Uα}α∈I is an open cover for X and U ∩ U is its trace on U then
we consider the group ∆q(U ∩ U) spanned by all singular simplexes whose images
belong to Uα ∈ U for some α ∈ I. Denoting by ∆q(U∩U) the group of all morphisms
from ∆q(U ∩ U) to G, as above, we can construct a complete projective system
∆
q

= {∆q(U ∩U), αqUV }U,V ∈τ and the associate cochain complex ∆
∗
, obtained from

∆∗.

Let LqU be the subgroup of all elements of ∆q(U ∩U) vanishing on ∆q(U
′∩U) for

all U ′ in some cover of U and consider the quotient group ∆̃q(U∩U) = ∆q(U∩U)/LqU .
Then αqUV and the differential d

q

U naturally induce the quotient morphisms α̃qUV and
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d̃qU , respectively. Thus, from ∆
∗
we obtain the following cochain complex of canonical

projective systems

∆̃∗ : 0 −→ ∆̃0 −→ . . . −→ ∆̃q d̃q

−→ ∆̃q+1 −→ 0

Moreover, for any cover of X, the sequences ∆
∗

and ∆̃∗ are homotopy equivalent.
Also, the sequence

0 −→ ker d̃0 →֒
−→ ∆̃0 −→ . . . −→ ∆̃q d̃q

−→ ∆̃q+1 −→ 0

is an acyclic U–resolution of the projective system ker d̃0, for any contractible cover
U of X and from the isomorphisms (4) and since the projective systems ∆̃q are
canonical, we deduce

Ȟq(U , ker d̃0) ≃ Ȟq(U , G) ≃ Hq(X,G)

and we find a Leray’s theorem,[10], asserting that the Čech cohomology groups
relative to a contractible cover of the topological space X and with coefficients in the
abelian group G, are isomorphic, in each dimension, with the singular cohomology
groups of X, with coefficients in G.

6 Spectral sequence [17]

Let P ∗ = ⊕q≥0P
q be a differential projective system over I, with the codifferen-

tial d = ⊕q≥0D
q. For J ⊂ I we consider the coboundary homomorphism associated

to the projective system P q, denoted by dpq10 = (dp)q : Cp(J, P q)→ Cp+1(J, P q) (see

Section 2) and the homomorphism dpq01 = (−1)p(D̃q)p : Cp(J, P q) → Cp(J, P q+1),

where (D̃q)p is induced by the codifferential Dq. Then the following equalities hold

dp+1,q
10 dpq10 = 0, dp,q+1

01 dpq01 = 0, dp,q+1
01 dpq10 + dp+1,q

10 dpq01 = 0 (6)

These equalities show that for any J ⊂ I, the codifferentials dpq10 and dpq01 define on
the group

C(J, P ∗) = ⊕p≥0,q≥0C
p(J, P q)

a double complex structure and then we consider its first and second filtration given
by

′Cp(J, P ∗) = ⊕q≥0
p≥pC

p(J, P q), ′′Cq(J, P ∗) = ⊕p≥0
q≥qC

p(J, P q).

We remark that the first filtration ′Cp(J, P ∗) is regular if P q = 0 for q < q0 for some
q0, while the second filtration ′′Cp(J, P ∗) is always regular.

Now, assume that J ∈ AI and denote by ′Epq
r (J, P ∗) and ′′Epq

r (J, P ∗) the terms
of the spectral sequences corresponding to the first filtration and the second filtration
of the complex C(J, P ∗), respectively. Then we have



ON THE ABSTRACT ČECH COHOMOLOGY 57

Proposition 8. If (I,≤) is a ∧–semilattice then

′Epq
1 (J, P ∗) ≃ Cp(J,Hq(P ∗)), ′Epq

2 (J, P ∗) ≃ Hp(J,Hq(P ∗))
′′Epq

1 (J, P ∗) ≃ Hp(J, P p), ′′Epq
2 (J, P ∗) ≃ Hp(Hq(J, P ∗))

where Hq(P ∗) = ker Dq/Dq−1(P q−1) and Hq(J, P ∗) = ⊕p≥0H
q(J, P p) is endowed

with the differential induced by d01.

One more interesting result can be obtained for the term ′′Ep0
1 (J, P ∗), namely:

Theorem 11. If the projective systems P p are canonical for all p ≥ 0 and (I,≤) is
a ∧–semilattice then for J ∈ AI we have

′′Ep0
1 (J, P ∗) ≃ Hp(lim←−

i∈I

(P ∗)).

Assuming that (I,≤) is a ∧–semilattice, for the term ′′Ep0
2 (J, P ∗) we can prove

the existence of a homomorphism ′′Ep0
2 (J, P ∗) −→ Hp(C(J, P ∗) if (I,≤). But if,

moreover, all projective systems are canonical then we also get the homomorphisms

µp : Hp(lim←−
i∈I

(P ∗)) −→ Hp(C(J, P ∗)

and we can state the following

Proposition 9. Let P and Q be two projective systems over the ∧–semilattice (I,≤)
and J ∈ AI . If P and Q have J–resolutions of the form (1) by canonical projective
systems then for any differential projective systems morphism f : (P ∗) −→ (Q∗) the
following diagrams are commutative

Hp(lim←−
i∈I

(P ∗))
µp

−−−−→ Hp(J, P )

Hp(lim
←−
i∈I

f)
y

ygp

Hp(lim←−
i∈I

(Q∗)) −−−−→
µp

Hp(J,Q)

where gp are induced by the morphism j corresponding to the J–resolution of Q and
f0 is the component P 0 −→ Q0 of f .

The homomorphisms µp are also used to prove the following

Theorem 12. If the projective systems P p are canonical for all p ≥ 0 and the
sequences Hq(J, P ∗) are acyclic for all q ≥ 1 then there exists a spectral sequence
with the term E2 given by

Epq
2 ≃ Hp(J,Hq(P ∗))

and whose term E∞ is the graded group associated to some filtration of the sequence
lim←−
i∈I

(P ∗).
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Finally, we notice some related results concerning projective systems admitting
a J–resolution. The first one is concerning the term ′Epq

2 (J, P ∗).

Proposition 10. Let P be a projective system over the ∧–semilattice (I,≤) and
J ∈ AI . If P has a J–resolution (1) then

′Epq
2 (J, P ∗) = 0

for q ≥ 1.

Now, using Proposition 10, we obtain the following characterization of the groups
Hp(C(J, P ∗)).

Proposition 11. If the projective system P over the ∧–semilattice (I,≤) has a
J–resolution (1) then

Hp(C(J, P ∗) ≃ Hp(J, P )

for p ≥ 0 and J ∈ AI , where P ∗ = ⊕q≥0P
q is the differential projective system

associated to (1).

Also, we have a result similar to the Theorem 12.

Proposition 12. Let P be a projective system over the ∧–semilattice (I,≤) and
J ∈ AI . For any J-resolution (1) of P with canonical projective systems there exists
a spectral sequence with the term E2 given by

Epq
2 ≃ Hp(Hq(J, P ∗))

and whose term E∞ is the graded group associated to the abstract Čech cohomology
of P .
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ON THE ABSTRACT ČECH COHOMOLOGY 59

[8] Dogaru O., Teleman K. Sur une classe de faisceaux, Rev. Roum. Math. Pures Appl., 1983,
28, 577–581.
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[14] Pitiş Gh. Une méthode de calcul des groupes de cohomologie de Čech abstraite, Memoriile
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