Convex Solids with Hyperplanar Midsurfaces for Restricted Families of Chords

Valeriu Soltan

Abstract

We provide new characteristic properties of convex quadrics in \mathbb{R}^{n} in terms of hyperplanarity of midsurfaces of convex solids for restricted families of chords. These properties are based on various auxiliary characterizations of convex quadrics that involve hyperplane supports and plane quadric sections.

Mathematics subject classification: 52A20.
Keywords and phrases: Convex, set, solid, surface, midsurface, quadric, plane, section.

1 Introduction

A classical result of convex geometry states that a convex body $K \subset \mathbb{R}^{n}, n \geq 2$, is a solid ellipsoid (solid ellipse if $n=2$) provided the middle points of every family of parallel chords of K lie in a hyperplane (see Brunn [4, pp.59-61] for $n=2$, Blaschke [3, p. 159] for $n=3$, and Busemann [5, p. 92] for all $n \geq 3$). Gruber [7] refined this result by proving, in particular, that a convex body $K \subset \mathbb{R}^{n}$ is a solid ellipsoid if there is an open nonempty subset T of the unit sphere $\mathbb{S}^{n-1} \subset \mathbb{R}^{n}$ such that for every unit vector $e \in T$, the middle points of all chords of K parallel to e belong to a hyperplane. Another refinement was suggested in 2009 by Erwin Lutwak, who posed the following problem: Is it true that a convex body $K \subset \mathbb{R}^{n}$ is a solid ellipsoid provided there is a point $p \in \operatorname{int} K$ and a scalar $\delta>0$ such that, for every chord $[u, v]$ of K through p, the middle points of all chords of K which are parallel to $[u, v]$ and lie at a distance δ or less from $[u, v]$ belong to a hyperplane?

In this paper, we establish similar characterizations of convex quadric hypersurfaces (briefly, convex quadrics) among all convex hypersurfaces in \mathbb{R}^{n}. By a convex solid in \mathbb{R}^{n} we mean an n-dimensional closed convex set $K \subset \mathbb{R}^{n}$ distinct from the whole space. A convex hypersurface in \mathbb{R}^{n} is the boundary of a convex solid. This definition includes a hyperplane and a pair of parallel hyperplanes.

In a standard way, a quadric (or a second degree hypersurface) in \mathbb{R}^{n} is the locus of points $x=\left(\xi_{1}, \ldots, \xi_{n}\right)$ that satisfy a quadratic equation

$$
\begin{equation*}
F(x) \equiv \sum_{i, k=1}^{n} a_{i k} \xi_{i} \xi_{k}+2 \sum_{i=1}^{n} b_{i} \xi_{i}+c=0 \tag{1}
\end{equation*}
$$

where at least one $a_{i k}$ is distinct from zero and $a_{i k}=a_{k i}$ for all $i, k=1, \ldots, n$. We say that a convex hypersurface $S \subset \mathbb{R}^{n}$ is a convex quadric provided there is a real

[^0]quadric $Q \subset \mathbb{R}^{n}$ and a connected component U of $\mathbb{R}^{n} \backslash Q$ such that U is a convex set and S is the boundary of U. As proved in [17], a convex hypersurface $S \subset \mathbb{R}^{n}$ is a convex quadric if and only if there is a Cartesian coordinate system ξ_{1}, \ldots, ξ_{n} for \mathbb{R}^{n} such that S can be expressed as the locus of points $x=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n}$ which satisfy one of the equations
\[

$$
\begin{array}{ll}
a_{1} \xi_{1}^{2}+\cdots+a_{k} \xi_{k}^{2}=1, & 1 \leq k \leq n, \\
a_{1} \xi_{1}^{2}-a_{2} \xi_{2}^{2}-\cdots-a_{k} \xi_{k}^{2}=1, \xi_{1} \geq 0, & 2 \leq k \leq n, \\
a_{1} \xi_{1}^{2}=0, & \\
a_{1} \xi_{1}^{2}-a_{2} \xi_{2}^{2}-\cdots-a_{k} \xi_{k}^{2}=0, \xi_{1} \geq 0, & 2 \leq k \leq n, \\
a_{1} \xi_{1}^{2}+\cdots+a_{k-1} \xi_{k-1}^{2}=\xi_{k}, & 2 \leq k \leq n,
\end{array}
$$
\]

where all scalars a_{i} involved are positive. In particular, convex quadrics in \mathbb{R}^{n} that contain no lines are ellipsoids, elliptic paraboloids, sheets of elliptic hyperboloids on two sheets, and sheets of elliptic cones. Various characteristic properties of convex quadrics are given in [13, 15-17]. In particular, the following assertions will be of use below.
(A) ([15]) The boundary of a convex solid $K \subset \mathbb{R}^{n}, n \geq 3$, is a convex quadric if and only if there is a point $p \in \operatorname{int} K$ such that every section of $\mathrm{bd} K$ by a 2 -dimensional plane through p is a convex quadric curve.
(B) ([16]) Given a line-free convex solid $K \subset \mathbb{R}^{n}$ and a point $p \in \mathbb{R}^{n}, n \geq 3$, all proper bounded sections of bd K by 2 -dimensional planes through p are ellipses if and only if the set bd $K \backslash((p+\operatorname{rec} K) \cup(p-\operatorname{rec} K))$ lies in a convex quadric, where rec K denotes the recession cone of K (see definitions below).

2 Main Results

We need some definitions to formulate the main results. A chord of the convex solid K is a line segment $[u, v], u \neq v$, such that $[u, v]=K \cap\langle u, v\rangle$, where $\langle u, v\rangle$ denotes the line through u and v. We will say that both $[u, v]$ and $\langle u, v\rangle$ are parallel to a unit vector $e \in \mathbb{R}^{n}$ if $u-v$ is a nonzero multiple of e. A convex solid K has chords if and only if it is distinct from a closed halfspace. By a plane of dimension m we mean a translate of an m-dimensional subspace of \mathbb{R}^{n}. A plane L properly intersects the solid K if L intersects both the boundary bd K and the interior int K of K.

The recession cone of a convex solid $K \subset \mathbb{R}^{n}$ is defined by

$$
\text { rec } K=\left\{y \in \mathbb{R}^{n}: x+\alpha y \in K \text { whenever } x \in K \text { and } \alpha \geq 0\right\} .
$$

It is well-known that rec K is a closed convex cone with apex o, the origin of \mathbb{R}^{n}; furthermore, rec K is distinct from $\{o\}$ if and only if K is unbounded. The subset $\mathbb{S}^{n-1} \backslash(\operatorname{rec} K \cup-\operatorname{rec} K)$ of the unit sphere $\mathbb{S}^{n-1} \subset \mathbb{R}^{n}$ consists of non-recessional unit vectors for K. Equivalently, a unit vector $e \in \mathbb{R}^{n}$ is non-recessional for K if
and only if the intersection of K with any line parallel to e is either bounded or empty. Obviously, K has non-recessional unit vectors if and only if K is distinct from a closed halfspace of \mathbb{R}^{n}.

For any plane $L \subset \mathbb{R}^{n}$ which is complementary to the linearity space of K, defined by

$$
\operatorname{lin} K=\operatorname{rec} K \cap(-\operatorname{rec} K)
$$

the convex solid K can be expressed as the direct sum

$$
K=\operatorname{lin} K \oplus(K \cap L),
$$

and $K \cap L$ is a closed convex set containing no lines (see, e.g., [19] for general references on convex sets).

Theorem 1. Given a convex solid $K \subset \mathbb{R}^{n}, n \geq 2$, distinct from a closed halfspace of \mathbb{R}^{n} and an open nonempty subset T of $\mathbb{S}^{n-1} \backslash(\operatorname{rec} K \cup-\operatorname{rec} K)$, the following conditions are equivalent:

1) for every unit vector $e \in T$, the middle points of all chords of K which are parallel to e belong to a hyperplane,
2) bd K is a convex quadric.

Problem 1. Is it true that Theorem 1 still holds if condition 1) is replaced by the following weaker condition:
1^{\prime}) for every unit vector $e \in T$, there is a scalar $\lambda=\lambda(e) \in(0,1)$ such that the points dividing in the same ratio λ all chords of K which are parallel to e belong to a hyperplane.

The answer to Problem 1 is affirmative in the following two cases: K is a convex body in \mathbb{R}^{n} (see [7]), K is a convex solid in \mathbb{R}^{n} and $T=\mathbb{S}^{n-1} \backslash(\operatorname{rec} K \cup-\operatorname{rec} K)$ (see [15]). The papers [7,15] also contain results which involve a weaker version of $\left.1^{\prime}\right)$, with $\lambda \in[0,1]$ instead of $\lambda \in(0,1)$.

In what follows, we consider double cones $(p+\operatorname{rec} K) \cup(p-\operatorname{rec} K)$ with apices $p \in \mathbb{R}^{n}$, as depicted above.

Definition 1. Let δ be a positive scalar, $K \subset \mathbb{R}^{n}$ a convex solid, p a point in int K, and $h=[u, v]$ a chord of K through p. Denote by $C_{\delta}(h)$ the closed circular cylinder of radius δ centered about the line $\langle u, v\rangle$, and by $\mathcal{F}_{\delta}(h)$ the family of all chords of K which are parallel to h and lie in $C_{\delta}(h)$. Furthermore, let

$$
\Omega_{\delta}(p)=\cup\left(C_{\delta}(h) \cap \operatorname{bd} K\right),
$$

where the union is taken over all chords h of K that contain p.
Clearly, $\Omega_{\delta}(p)$ is a closed neighborhood of bd $K \backslash((p+\operatorname{rec} K) \cup(p-\operatorname{rec} K))$ in bd K.

Theorem 2. Given a convex solid $K \subset \mathbb{R}^{n}, n \geq 2$, distinct from a closed halfspace of \mathbb{R}^{n}, a point $p \in \operatorname{int} K$, and a scalar $\delta>0$, the following conditions are equivalent:

1) for every chord h of K that contains p, the middle points of all chords from $\mathcal{F}_{\delta}(h)$ belong to a hyperplane,
2) the set $\Omega_{\delta}(p)$ lies in a convex quadric.

If K is a convex body in \mathbb{R}^{n}, then rec $K=\{o\}$, implying the equality $\Omega_{\delta}(p)=$ $\mathrm{bd} K$ for any given point $p \in \operatorname{int} K$. Therefore Theorem 2 implies the following corollary, which gives an affirmative solution to Lutwak's problem.

Corollary 1. A convex body $K \subset \mathbb{R}^{n}, n \geq 2$, is a solid ellipsoid if and only if there is a point $p \in \operatorname{int} K$ and a scalar $\delta>0$ such that for every chord h of K which contains p, the middle points of all chords from $\mathcal{F}_{\delta}(h)$ belong to a hyperplane.

Remark 1. We observe that the scalar δ in Theorem 2 and Corollary 1 cannot be chosen as a function of h. Indeed, if K is a 3 -dimensional octahedron, given by

$$
K=\left\{\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in \mathbb{R}^{3}:\left|\xi_{1}\right|+\left|\xi_{2}\right|+\left|\xi_{3}\right| \leq 1\right\}
$$

then for any chord h of K that contains the origin o, there is a scalar $\delta=\delta(h)>0$ such that the middle points of all chords from $\mathcal{F}_{\delta}(h)$ belong to a plane through o.

Problem 2. Is it true that Theorem 2 still holds if condition 1) is replaced by the following weaker condition:
$\left.1^{\prime \prime}\right)$ for any chord h of K that contains p, there is a scalar $\lambda=\lambda(e) \in(0,1)$ such that the points dividing in the same ratio λ all chords from $\mathcal{F}_{\delta}(h)$ belong to a hyperplane.

The proofs of Theorem 1 and 2 are based on some auxiliary statements. The first one complements Theorem 1 from [17] by giving new characteristic properties of quadrics $Q \subset \mathbb{R}^{n}$ with at least one convex connected component of $\mathbb{R}^{n} \backslash Q$ in terms of local convexity and local supports. In what follows, a quadric $Q \subset \mathbb{R}^{n}$ is called
proper provided its complement $\mathbb{R}^{n} \backslash Q$ has two or more connected components, which happens when Q, given by (1), is a hyperplane or both sets

$$
\left\{x \in \mathbb{R}^{n}: F(x)>0\right\} \quad \text { and } \quad\left\{x \in \mathbb{R}^{n}: F(x)<0\right\}
$$

are nonempty.
We will say that a proper quadric $Q \subset \mathbb{R}^{n}$ is locally convex at a point $u \in Q$ if there is an open ball $U_{\rho}(u) \subset \mathbb{R}^{n}$ with center u and radius $\rho>0$ such that $Q \cap U_{\rho}(u)$ is a piece of a convex hypersurface. Similarly, a proper quadric $Q \subset \mathbb{R}^{n}$ is locally supported at $u \in Q$ if there is an open ball $U_{\rho}(u) \subset \mathbb{R}^{n}$ and a hyperplane $H \subset \mathbb{R}^{n}$ through u such that $Q \cap U_{\rho}(u)$ lies in a closed halfspace of \mathbb{R}^{n} bounded by H.

Theorem 3. For a proper quadric $Q \subset \mathbb{R}^{n}, n \geq 2$, the following conditions are equivalent:

1) Q is locally convex at a certain point $u \in Q$,
2) Q is locally supported at a certain point $u \in Q$,
3) at least one of the connected components of $\mathbb{R}^{n} \backslash Q$ is a convex set,
4) Q is the union of at most four convex quadrics,
5) there is a Cartesian coordinate system ξ_{1}, \ldots, ξ_{n} for \mathbb{R}^{n} such that Q can be expressed as the locus of points $x=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n}$ which satisfy one of the equations

$$
\begin{array}{ll}
F_{1}(x) \equiv a_{1} \xi_{1}^{2}+\cdots+a_{k} \xi_{k}^{2}=1, & 1 \leq k \leq n, \\
F_{2}(x) \equiv a_{1} \xi_{1}^{2}-a_{2} \xi_{2}^{2}-\cdots-a_{k} \xi_{k}^{2}=1, & 2 \leq k \leq n, \\
F_{3}(x) \equiv a_{1} \xi_{1}^{2}=0, & \\
F_{4}(x) \equiv a_{1} \xi_{1}^{2}-a_{2} \xi_{2}^{2}-\cdots-a_{k} \xi_{k}^{2}=0, & 2 \leq k \leq n, \\
F_{5}(x) \equiv a_{1} \xi_{1}^{2}+\cdots+a_{k-1} \xi_{k-1}^{2}=\xi_{k}, & 2 \leq k \leq n, \tag{6}
\end{array}
$$

where all scalars a_{i} involved are positive.
There is a certain analogy between Theorem 3 and respective properties of convex hypersurfaces. Indeed, if S is the boundary of an open nonempty connected set $X \subset \mathbb{R}^{n}$, then S is a convex hypersurface provided X is locally supported at every point $u \in S$ (see [6]). Similarly, S is a convex hypersurface if X is locally convex at every point $u \in S$ (see [10,18]). On the other hand, Theorem 3 deals with local convexity and local support of Q at a single point.

The next two results characterize convex quadrics in terms of their 2-dimensional planar sections.

Theorem 4. Let $K \subset \mathbb{R}^{n}$, $n \geq 3$, be a convex solid, p a point in int K, and T an open nonempty subset of $\mathbb{S}^{n-1} \backslash(\operatorname{rec} K \cup-\operatorname{rec} K)$. The following conditions are equivalent:

1) $\mathrm{bd} K$ is a convex quadric,
2) for every 2-dimensional plane L through p which properly intersects K such that the subspace $L-p$ meets T, the section $L \cap \mathrm{bd} K$ is a convex quadric curve.

Remark 2. Theorem 4 refines, with essential modifications of proofs, the respective statements from [15], given there for the case $T=\mathbb{S}^{n-1} \backslash(\operatorname{rec} K \cup-$ rec $K)$. It is unknown whether Theorem 4 remains true for any choice of the point p in \mathbb{R}^{n} (compare with Problem 1 from [17]).

Obvious changes in the proof of Theorem 4 allow us to generalize the following assertion of Petty [12]: the boundary of a convex body $K \subset \mathbb{R}^{n}$ is an ellipsoid provided there is a line $l \subset \mathbb{R}^{n}$ such that all proper sections of bd K by 2-dimensional planes parallel to l are ellipses. Given a line $l \subset \mathbb{R}^{n}$ and a scalar $\delta>0$, denote by $\mathcal{P}_{\delta}(l)$ the family of all 2 -dimensional planes in \mathbb{R}^{n} which are parallel to l and whose distance from l is less than δ.

Theorem 5. Let $K \subset \mathbb{R}^{n}, n \geq 3$, be a convex solid, l a line that meets int K and is parallel to a unit vector from $\mathbb{S}^{n-1} \backslash(\operatorname{rec} K \cup-\operatorname{rec} K)$, and δ a positive scalar. The following conditions are equivalent:

1) $\mathrm{bd} K$ is a convex quadric,
2) for any 2-dimensional plane $L \in \mathcal{P}_{\delta}(l)$ properly intersecting K, the section $L \cap \mathrm{bd} K$ is a convex quadric curve.

Remark 3. The condition that l is parallel to a unit vector from $\mathbb{S}^{n-1} \backslash(\operatorname{rec} K \cup$ - rec K) is essential in Theorem 5. Indeed, let C be the unit cube in the coordinate hyperplane $\xi_{1}=0$ of \mathbb{R}^{n} and l be the ξ_{1}-axis of \mathbb{R}^{n}. Denote by K the Cartesian product of C and l. Clearly, K is a convex solid with rec $K=l$ and any proper section of bd K by a 2-dimensional plane parallel to l is a pair of parallel lines, which is a degenerate convex quadric curve.

Alonso and Martín [1] proved that if $L_{1}, L_{2}, L_{3} \subset \mathbb{R}^{n}, n \geq 3$, are three pairwise distinct ($n-1$)-dimensional subspaces and $K \subset \mathbb{R}^{n}$ a centrally symmetric convex body such that every proper section of $\operatorname{bd} K$ by a hyperplane parallel to one of these subspaces is an $(n-1)$-dimensional ellipsoid, then $\operatorname{bd} K$ is an ellipsoid itself. They also observed that the assumption on central symmetry of K here cannot be omitted. Indeed, if $K_{\alpha} \subset \mathbb{R}^{3}, 0<|\alpha| \leq 2$, is a convex body, given by

$$
K_{\alpha}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}+\alpha x y z \leq 1, \max \{|x|,|y|,|z|\} \leq 1\right\},
$$

then any proper section of $\mathrm{bd} K_{\alpha}$ by a plane parallel to one of the coordinate subspaces $x=0, y=0$, and $z=0$ is an ellipse (see [1] for other examples). Our next theorem extends the result of Alonso and Martín to the case of any convex body in \mathbb{R}^{n}.

Theorem 6. If $L_{1}, L_{2}, L_{3}, L_{4} \subset \mathbb{R}^{n}$, $n \geq 3$, are four pairwise distinct ($n-1$)dimensional subspaces and $K \subset \mathbb{R}^{n}$ a convex body such that every proper section of bd K by a hyperplane parallel to one of these subspaces is an $(n-1)$-dimensional ellipsoid, then bd K is an ellipsoid itself.

It would be interesting to generalize Theorem 6 to the case of convex quadrics. In what follows, $\operatorname{rbd} M$ and rint M denote, respectively, the relative boundary and the relative interior of a closed convex set $M \subset \mathbb{R}^{n}$.

3 Auxiliary Lemmas

If a proper quadric $Q \subset \mathbb{R}^{n}$ is given by (1), then a point $u \in Q$ is called regular provided the gradient vector

$$
\nabla F(u)=\left(\frac{\partial F(u)}{\partial \xi_{1}}, \ldots, \frac{\partial F(u)}{\partial \xi_{n}}\right),
$$

the normal to Q at u, is distinct from the zero vector o; otherwise u is singular. The standard classification of quadrics in \mathbb{R}^{n} (see, e.g., [2]) immediately implies that a description of a proper quadric $Q \subset \mathbb{R}^{n}$, given by (1), can be reduced to one of the canonical equations

$$
\begin{array}{ll}
a_{1} \xi_{1}^{2}+\cdots+a_{k} \xi_{k}^{2}=1, & 1 \leq k \leq n \\
a_{1} \xi_{1}^{2}+\cdots+a_{r} \xi_{r}^{2}-a_{r+1} \xi_{r+1}^{2}-\cdots-a_{k} \xi_{k}^{2}=1, & 1 \leq r<k \leq n \\
a_{1} \xi_{1}^{2}=0, & \\
a_{1} \xi_{1}^{2}+\cdots+a_{r} \xi_{r}^{2}-a_{r+1} \xi_{r+1}^{2}-\cdots-a_{k} \xi_{k}^{2}=0, & 1 \leq r<k \leq n \\
a_{1} \xi_{1}^{2}+\cdots+a_{k-1} \xi_{k-1}^{2}=\xi_{k}, & 1<k \leq n, \\
a_{1} \xi_{1}^{2}+\cdots+a_{r} \xi_{r}^{2}-a_{r+1} \xi_{r+1}^{2}-\cdots-a_{k-1} \xi_{k-1}^{2}=\xi_{k}, & 1 \leq r<k-1<n \tag{12}
\end{array}
$$

where all scalars a_{i} involved are positive. The following lemma routinely follows from (7)-(12).

Lemma 1. A proper quadric $Q \subset \mathbb{R}^{n}$ has singular points if and only if its canonical equation is expressed by (9) or (10). The set of singular points of Q is given by $\xi_{1}=0$ if Q is described by (9) and by $\xi_{1}=\cdots=\xi_{k}=0$ if Q is described by (10).

If $u=\left(\mu_{1}, \ldots, \mu_{n}\right)$ is a regular point of a proper quadric $Q \subset \mathbb{R}^{n}$, then the linear equation in $x=\left(\xi_{1}, \ldots, \xi_{n}\right)$,

$$
\begin{equation*}
\nabla F(u) \cdot(x-u) \equiv \frac{\partial F(u)}{\partial \xi_{1}}\left(\xi_{1}-\mu_{1}\right)+\cdots+\frac{\partial F(u)}{\partial \xi_{n}}\left(\xi_{n}-\mu_{n}\right)=0 \tag{13}
\end{equation*}
$$

defines the hyperplane through u which is orthogonal to $\nabla F(u)$; it is called tangent to Q at u. Since a proper quadric is differentiable at any regular point, we immediately obtain the following lemma.

Lemma 2. If a proper quadric $Q \subset \mathbb{R}^{n}$ is locally supported by a hyperplane G at a regular point $u \in Q$, then G is tangent to Q at u.

Lemma 3. The middle points of all chords of a quadric $Q \subset \mathbb{R}^{n}$ which are parallel to a given chord $[a, c]$ of Q belong to a hyperplane.

Proof. Assume that Q is given by (1). The line $l=\langle a, c\rangle$ can be expressed as

$$
l=\left\{z+t v \in \mathbb{R}^{n}: t \in \mathbb{R}\right\}, \quad v \neq o
$$

where z is the middle point of $[a, c]$ and $v=a-c$. Equivalently, $x=\left(\xi_{1}, \ldots, \xi_{n}\right) \in l$ if and only if

$$
\begin{equation*}
\xi_{i}=\phi_{i}+t \nu_{i}, \quad t \in \mathbb{R}, \quad i=1, \ldots, n, \tag{14}
\end{equation*}
$$

where $z=\left(\phi_{1}, \ldots, \phi_{n}\right)$ and $v=\left(\nu_{1}, \ldots, \nu_{n}\right)$. To determine the values of t for which $x \in l \cap Q$, we substitute ξ_{1}, \ldots, ξ_{n} from (14) into (1) and arrange the powers of t. The result is a quadratic equation in t,

$$
\begin{equation*}
A(v) t^{2}+2 B(v, z) t+C(z)=0 \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
A(v)=\sum_{i, k=1}^{n} a_{i k} \nu_{i} \nu_{k}, \quad B(v, z)=\frac{1}{2} \sum_{i=1}^{n} \frac{\partial F(z)}{\partial \xi_{i}} \nu_{i}, \quad C(z)=F(z) . \tag{16}
\end{equation*}
$$

Then a and c correspond to opposite non-zero solutions t_{0} and $-t_{0}$ of (15), which is possible if and only if $A(v) C(z)<0$ and $B(v, z)=0$. Hence

$$
\sum_{i=1}^{n}\left(\sum_{k=1}^{n} a_{i k} \phi_{k}+b_{i}\right) \nu_{i}=\frac{1}{2} \sum_{i=1}^{n} \frac{\partial F(z)}{\partial \xi_{i}} \nu_{i}=B(v, z)=0 .
$$

Equivalently,

$$
\begin{equation*}
\sum_{k=1}^{n}\left(\sum_{i=1}^{n} a_{i k} \nu_{i}\right) \phi_{k}+\sum_{i=1}^{n} b_{i} \nu_{i}=0 . \tag{17}
\end{equation*}
$$

Interpreted as an equation in $\phi_{1}, \ldots, \phi_{n},(17)$ describes a hyperplane, H, because at least one of the scalars

$$
c_{k}=\sum_{i=1}^{n} a_{i k} \nu_{i}, \quad k=1, \ldots, n
$$

is distinct from zero. Indeed, assuming $c_{1}=\cdots=c_{n}=0$, we would obtain

$$
A(v)=c_{1} \nu_{1}+\cdots+c_{n} \nu_{n}=0
$$

which is impossible because of $A(v) C(z)<0$. If $\left[a^{\prime}, c^{\prime}\right]$ is a chord of Q that is parallel to $[a, c]$, then v is a nonzero multiple of $a^{\prime}-c^{\prime}$, which implies that

$$
\left\langle a^{\prime}, c^{\prime}\right\rangle=\left\{z^{\prime}+t v \in \mathbb{R}^{n}: t \in \mathbb{R}\right\}
$$

where $z^{\prime}=\left(\phi_{1}^{\prime}, \ldots, \phi_{n}^{\prime}\right)$ is the middle point of $\left[a^{\prime}, c^{\prime}\right]$. Repeating the argument above, we obtain that $\phi_{1}^{\prime}, \ldots, \phi_{n}^{\prime}$ satisfy (17), which gives $z^{\prime} \in H$.

4 Proof of Theorem 3

$1) \Rightarrow 2)$ Assume that Q is locally convex at a point $u \in Q$; that is, $Q \cap U_{\rho}(u)$ is a piece of a convex hypesurface $S \subset \mathbb{R}^{n}$ for a suitable scalar $\rho>0$. By a convexity argument, there is a hyperplane H supporting S at u. Therefore, $Q \cap U_{\rho}(u)$ lies in a closed halfspace of \mathbb{R}^{n} bounded by H, which implies that Q is locally supported at u.
$2) \Rightarrow 3$) Choosing a suitable orthonormal basis e_{1}, \ldots, e_{n} for \mathbb{R}^{n}, we may suppose that Q is described by one of the equations (7)-(12). Put $u=\left(\mu_{1}, \ldots, \mu_{n}\right)$ and denote by H a hyperplane that supports $Q \cap U_{\rho}(u)$ for a suitable choice of $\rho>0$.
(a) If Q is expressed by (7), then Q itself is a convex quadric and the connected component $\left\{x \in \mathbb{R}^{n}: F_{1}(x)<1\right\}$ of $\mathbb{R}^{n} \backslash Q$ is an open convex set.
(b) Suppose that Q is given by (8). From Lemma 1 it follows that u is a regular point of Q. Choosing suitable orthogonal bases $e_{1}^{\prime}, \ldots, e_{r}^{\prime}$ and $e_{r+1}^{\prime}, \ldots, e_{n}^{\prime}$ for the subspaces span $\left(e_{1}, \ldots, e_{r}\right)$ and span $\left(e_{r+1}, \ldots, e_{n}\right)$, respectively, we may assume that Q is still expressed by (8) and

$$
u=\left(\mu_{1}, 0, \ldots, 0, \mu_{r+1}, 0, \ldots, 0\right), \quad \mu_{1}>0, \mu_{r+1} \geq 0
$$

with $a_{1} \mu_{1}^{2}-a_{r+1} \mu_{r+1}^{2}=1$. The section of Q by the 2 -dimensional subspace $L_{1}=$ $\operatorname{span}\left(e_{1}, e_{r+1}\right)$ is a hyperbola, whose arm E_{1} containing u is given by

$$
a_{1} \xi_{1}^{2}-a_{r+1} \xi_{r+1}^{2}=1, \xi_{1}>0, \quad \xi_{2}=\cdots=\xi_{r}=\xi_{r+2}=\cdots=\xi_{n}=0
$$

By Lemma $2, H$ is tangent to Q at u. Due to (13), H is expressed as

$$
a_{1} \mu_{1}\left(\xi_{1}-\mu_{1}\right)-a_{r+1} \mu_{r+1}\left(\xi_{r+1}-\mu_{r+1}\right)=0
$$

Equivalently,

$$
a_{1} \mu_{1} \xi_{1}-a_{r+1} \mu_{r+1} \xi_{r+1}=1
$$

We are going to show that $r=1$. Indeed, assume for a moment that $r \geq 2$. Then the section of Q by the r-dimensional plane

$$
L_{2}=\left\{\left(\xi_{1}, \ldots, \xi_{n}\right): \xi_{r+1}=\mu_{r+1}, \xi_{r+2}=\cdots=\xi_{n}=0\right\}
$$

is the r-dimensional ellipsoid, E_{2}, described by

$$
a_{1} \xi_{1}^{2}+\cdots+a_{r} \xi_{r}^{2}=1+a_{r+1} \mu_{r+1}^{2}, \quad \xi_{r+1}=\mu_{r+1}, \quad \xi_{r+2}=\cdots=\xi_{n}=0
$$

From $a_{1} \xi_{1}^{2}+\cdots+a_{r} \xi_{r}^{2}=a_{1} \mu_{1}^{2}$ it follows that $\left|\xi_{1}\right| \leq \mu_{1}$.
We state that E_{1} and E_{2} lie in the opposite closed halfspaces of \mathbb{R}^{n} determined by H. Indeed, since the set $B_{1} \subset L_{1}$ given by

$$
a_{1} \xi_{1}^{2}-a_{r+1} \xi_{r+1}^{2} \geq 1, \xi_{1}>0, \quad \xi_{2}=\cdots=\xi_{r}=\xi_{r+2}=\cdots=\xi_{n}=0
$$

is strictly convex, the point

$$
\left(\frac{\xi_{1}+\mu_{1}}{2}, 0, \ldots, 0, \frac{\xi_{r+1}+\mu_{r+1}}{2}, 0, \ldots, 0\right)
$$

belongs to rint B_{1} provided the point $x=\left(\xi_{1}, 0, \ldots, 0, \xi_{r+1}, 0, \ldots, 0\right) \in E_{1}$ is distinct from u. Hence

$$
a_{1}\left(\frac{\xi_{1}+\mu_{1}}{2}\right)^{2}-a_{r+1}\left(\frac{\xi_{r+1}+\mu_{r+1}}{2}\right)^{2} \geq 1,
$$

which results in

$$
a_{1} \mu_{1} \xi_{1}-a_{r+1} \mu_{r+1} \xi_{r+1} \geq 1
$$

with equality if and only if $\xi_{1}=\mu_{1}$ and $\xi_{r+1}=\mu_{r+1}$.
If $x \in E_{2}$, then from $\left|\xi_{1}\right| \leq \mu_{1}$ and $\xi_{r+1}=\mu_{r+1}$ we obtain

$$
a_{1} \mu_{1} \xi_{1}-a_{r+1} \mu_{r+1} \xi_{r+1} \leq a_{1} \mu_{1}^{2}-a_{r+1} \mu_{r+1}^{2}=1,
$$

with equality if and only if $\xi_{1}=\mu_{1}$. Summing up, $E_{1} \cap U_{\rho}(u)$ and $E_{2} \cap U_{\rho}(u)$ lie in the opposite closed halfspaces of \mathbb{R}^{n} bounded by H such that $E_{1} \cap H=E_{2} \cap H=\{u\}$, in contradiction with the choice of $U_{\rho}(u)$. Hence $r=1$, and, by proved in [17], the connected component $\left\{x \in \mathbb{R}^{n}: F_{2}(x)>1\right\}$ of $\mathbb{R}^{n} \backslash Q$ is an open convex set.
(c) If Q is given by (9), then Q is the hyperplane described by $\xi_{1}=0$ and both open halfspaces $\xi_{1}>0$ and $\xi_{1}<0$ are the connected components of $\mathbb{R}^{n} \backslash Q$.
(d) Assume that Q is expressed by (10). Since any point

$$
x=\left(0, \ldots, 0, \xi_{k+1}, \ldots, \xi_{n}\right) \in Q
$$

is the apex of a "double cone" $Q \cap \operatorname{span}\left(e_{k+1}, \ldots, e_{n}\right)$, which cannot be locally supported at x, at least one of the coordinates μ_{1}, \ldots, μ_{k} of u must be distinct from 0 . From Lemma 1 it follows that u is a regular point of Q. By Lemma 2, H is tangent to Q at u. Choosing suitable orthogonal bases $e_{1}^{\prime}, \ldots, e_{r}^{\prime}$ and $e_{r+1}^{\prime}, \ldots, e_{n}^{\prime}$ for the subspaces span $\left(e_{1}, \ldots, e_{r}\right)$ and span $\left(e_{r+1}, \ldots, e_{n}\right)$, respectively, we may assume that Q is still expressed by (10) and

$$
u=\left(\mu_{1}, 0, \ldots, 0, \mu_{r+1}, 0, \ldots, 0\right), \quad \mu_{1}>0, \mu_{r+1}>0
$$

with $a_{1} \mu_{1}^{2}-a_{r+1} \mu_{r+1}^{2}=0$. Clearly, the section of Q by the 2-dimensional subspace $L_{1}=\operatorname{span}\left(e_{1}, e_{r+1}\right)$ is a double cone. Denote by E_{1} the arm of this cone given by

$$
a_{1} \xi_{1}^{2}-a_{r+1} \xi_{r+1}^{2}=0, \xi_{1}>0, \xi_{r+1}>0, \quad \xi_{2}=\cdots=\xi_{r}=\xi_{r+2}=\cdots=\xi_{n}=0
$$

Then $u \in E_{1}$. Hence H is given by

$$
a_{1} \mu_{1}\left(\xi_{1}-\mu_{1}\right)-a_{r+1} \mu_{r+1}\left(\xi_{r+1}-\mu_{r+1}\right)=0
$$

or

$$
a_{1} \mu_{1} \xi_{1}-a_{r+1} \mu_{r+1} \xi_{r+1}=0 .
$$

We are going to show that $r=1$. Indeed, assume for a moment that $r \geq 2$. Then the section of Q by the r-dimensional plane

$$
L_{2}=\left\{\left(\xi_{1}, \ldots, \xi_{n}\right): \xi_{r+1}=\mu_{r+1}, \xi_{r+2}=\cdots=\xi_{n}=0\right\}
$$

is the r-dimensional ellipsoid, E_{2}, described by

$$
a_{1} \xi_{1}^{2}+\cdots+a_{r} \xi_{r}^{2}=a_{r+1} \mu_{r+1}^{2}, \quad \xi_{r+1}=\mu_{r+1}, \quad \xi_{r+2}=\cdots=\xi_{n}=0 .
$$

Similarly to case (b) above, one can show that $E_{1} \cap U_{\rho}(u)$ and $E_{2} \cap U_{\rho}(u)$ lie in distinct closed halfspaces of \mathbb{R}^{n} determined by H such that $E_{1} \cap H=E_{2} \cap H=\{u\}$, in contradiction with the choice of $U_{\rho}(u)$. Hence $r=1$. As shown in [17], the connected component $\left\{x \in \mathbb{R}^{n}: F_{4}(x)>0\right\}$ of $\mathbb{R}^{n} \backslash Q$ is a convex set.
(e) If Q is expressed by (11), then Q itself is a convex quadric and the connected component $\left\{x \in \mathbb{R}^{n}: F_{5}(x)<\xi_{k}\right\}$ of $\mathbb{R}^{n} \backslash Q$ is a convex set.
(f) Finally, assume that Q is expressed by (12). From Lemma 1 it follows that u is a regular point of Q. So, H is tangent to Q at u. Choosing suitable orthogonal bases $e_{1}^{\prime}, \ldots, e_{r}^{\prime}$ and $e_{r+1}^{\prime}, \ldots, e_{n}^{\prime}$ for the subspaces span $\left(e_{1}, \ldots, e_{r}\right)$ and $\operatorname{span}\left(e_{r+1}, \ldots, e_{n}\right)$, respectively, we may assume that Q is still expressed by (12) and

$$
u=\left(\mu_{1}, 0, \ldots, 0, \mu_{r+1}, 0, \ldots, 0, \mu_{k}, 0, \ldots, 0\right),
$$

where $a_{1} \mu_{1}^{2}-a_{r+1} \mu_{r+1}^{2}=\mu_{k}$. Due to (13), H is expressed as

$$
2 a_{1} \mu_{1}\left(\xi_{1}-\mu_{1}\right)-2 a_{r+1} \mu_{r+1}\left(\xi_{r+1}-\mu_{r+1}\right)-\left(\xi_{k}-\mu_{k}\right)=0 .
$$

Equivalently,

$$
\xi_{k}=2 a_{1} \mu_{1} \xi_{1}-2 a_{r+1} \mu_{r+1} \xi_{r+1} .
$$

The section of Q by the 2-dimensional plane $L_{1}=u+\operatorname{span}\left(e_{1}, e_{k}\right)$ is a parabola, E_{1}, given by

$$
\xi_{k}=a_{1} \xi_{1}^{2}-a_{r+1} \mu_{r+1}^{2}, \xi_{r+1}=\mu_{r+1}, \xi_{i}=0 \text { for all } i \in\{1, \ldots, n\} \backslash\{1, r+1, k\}
$$

Similarly, the section of Q by another 2-dimensional plane, $L_{2}=u+\operatorname{span}\left(e_{r+1}, e_{k}\right)$ also is a parabola, E_{2}, given by

$$
\xi_{k}=a_{1} \mu_{1}^{2}-a_{r+1} \xi_{r+1}^{2}, \xi_{1}=\mu_{1}, \xi_{i}=0 \text { for all } i \in\{1, \ldots, n\} \backslash\{1, r+1, k\}
$$

Clearly, $E_{1} \cap U_{\rho}(u)$ and $E_{2} \cap U_{\rho}(u)$ lie in distinct closed halfspaces of \mathbb{R}^{n} determined by H such that $E_{1} \cap H=E_{2} \cap H=\{u\}$, in contradiction with the choice of $U_{\rho}(u)$. Hence Q cannot be given by (12).

Equivalence of conditions 1), 3)-5) follows from the proof of Theorem 1 from [17].

5 Proof of Theorem 4

The statement 1$) \Rightarrow 2$) immediately follows from the fact that a proper section of a convex quadric by a 2-dimensional plane is a convex quadric curve. Conversely, assume that condition 2) of the theorem holds. Translating K on the vector $-p$, we may suppose that $o=p \in \operatorname{int} K$. We observe that K is distinct from a halfspace, since otherwise rec $K \cup-\operatorname{rec} K=\mathbb{R}^{n}$ in contradiction with the choice of T. Also, we eliminate the trivial case when K is a slab between two parallel hyperplanes
(implying that $\mathrm{bd} K$ is a degenerate convex quadric). Therefore we may assume that $\operatorname{dim}(\operatorname{lin} K) \leq n-2$.

We observe that the proof of 2$) \Rightarrow 1$) can be reduced to the case $\operatorname{dim}(\operatorname{lin} K)=0$; that is, to the case when K contains no lines. Indeed, assuming the inequality $\operatorname{dim}(\operatorname{lin} K) \geq 1$, choose a subspace $M \subset \mathbb{R}^{n}$ complementary to lin K and intersecting T. Put $K^{\prime}=M \cap K$ and $T^{\prime}=T \cap M$. Clearly, lin $K^{\prime}=M \cap \operatorname{lin} K=\{o\}$ and T^{\prime} is an open nonempty subset of $\left(M \cap \mathbb{S}^{n-1}\right) \backslash\left(\operatorname{rec} K^{\prime} \cup-r e c K^{\prime}\right)$. Choose a 2-dimensional subspace $L \subset M$ that meets T^{\prime} and properly intersects K^{\prime}. From the equality $K=\operatorname{lin} K \oplus K^{\prime}$, we obtain $L \cap \operatorname{rbd} K^{\prime}=L \cap \mathrm{bd} K$. Hence condition 2) implies that $L \cap \operatorname{rbd} K^{\prime}$ is a convex quadric curve. Therefore, K^{\prime} satisfies condition 2) of the theorem (with M and T^{\prime} instead of \mathbb{R}^{n} and T, respectively). Finally, the equality $\operatorname{bd} K=\operatorname{lin} K \oplus \operatorname{rbd} K^{\prime}$ shows that $\operatorname{bd} K$ is a degenerate convex quadric provided $\operatorname{rbd} K^{\prime}$ is a convex quadric.

Our further consideration of the case $\operatorname{dim}(\operatorname{lin} K)=0$ is organized by induction on $n(\geq 3)$. Let $n=3$. Since K is line-free, there is a 2 -dimensional subspace L^{\prime} through l properly intersecting K such that $L^{\prime} \cap K$ is bounded. Choose a pair of distinct planes L_{1} and L_{2} both containing l and placed so close to L^{\prime} that the sets $L_{1} \cap K$ and $L_{2} \cap K$ are bounded. By condition 2), both sections $E_{1}=L_{1} \cap \operatorname{bd} K$ and $E_{2}=L_{2} \cap \mathrm{bd} K$ are convex quadric curves, whence they are ellipses. Let c be the midpoint of the line segment $l \cap K$ and c_{1} and c_{2} the centers of E_{1} and E_{2}, respectively. Applying a suitable affine transformation, we may assume that both E_{1} and E_{2} are circles and the planes L_{1} and L_{2} are orthogonal. Clearly, the image of K under this transformation, also denoted by K, satisfies condition 2) of the theorem. Let 2δ be the length of $l \cap K$.

Choose a coordinate system $\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ such that l is the ξ_{3}-axis, the points c, c_{1}, c_{2} lie in the coordinate plane $\xi_{3}=\sigma_{3}$, where σ_{3} is a suitable scalar, and

$$
c_{1}=\left(\sigma_{1}, 0, \sigma_{3}\right), \quad c_{2}=\left(0, \sigma_{2}, \sigma_{3}\right), \quad c=\left(0,0, \sigma_{3}\right), \quad \sigma_{1}, \sigma_{2}, \sigma_{3} \geq 0 .
$$

Then E_{1} and E_{2} are described as

$$
\begin{aligned}
& E_{1}=\left\{\left(\xi_{1}, 0, \xi_{3}\right):\left(\xi_{1}-\sigma_{1}\right)^{2}+\left(\xi_{3}-\sigma_{3}\right)^{2}=\sigma_{1}^{2}+\delta^{2}\right\}, \\
& E_{2}=\left\{\left(0, \xi_{2}, \xi_{3}\right):\left(\xi_{2}-\sigma_{2}\right)^{2}+\left(\xi_{3}-\sigma_{3}\right)^{2}=\sigma_{2}^{2}+\delta^{2}\right\} .
\end{aligned}
$$

Clearly, L_{1} and L_{2} are given by the equations $\xi_{2}=0$ and $\xi_{1}=0$, respectively.
Choose a point $v \in \operatorname{bd} K \backslash\left(L_{1} \cup L_{2}\right)$ so close to l that $v /\|v\| \in T$ and a certain 2-dimensional plane L through $\langle o, v\rangle$ meets K along a bounded set and intersects each of the ellipses E_{1}, E_{2} at precisely two points. As above, $L \cap \mathrm{bd} K$ is an ellipse.

We state the existence of a quadric surface $Q \subset \mathbb{R}^{3}$ that contains $\{v\} \cup E_{1} \cup E_{2}$. For this, consider the family of quadrics $Q(\mu) \subset \mathbb{R}^{3}$, given by

$$
\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}+\mu \xi_{1} \xi_{2}-2 \sigma_{1} \xi_{1}-2 \sigma_{2} \xi_{2}-2 \sigma_{3} \xi_{3}+\sigma_{3}^{2}-\delta^{2}=0
$$

where μ is a scalar parameter. Obviously, $E_{i}=L_{i} \cap Q(\mu), i=1,2$, for all $\mu \in \mathbb{R}$. If $v=\left(v_{1}, v_{2}, v_{3}\right)$, then $v \notin L_{1} \cup L_{2}$ if and only if $v_{1} v_{2} \neq 0$. Hence $v \in Q=Q\left(\mu_{0}\right)$,
where

$$
\mu_{0}=\frac{\delta^{2}-\sigma_{3}^{2}+2 \sigma_{1} v_{1}+2 \sigma_{2} v_{2}+2 \sigma_{3} v_{3}-v_{1}^{2}-v_{2}^{2}-v_{3}^{2}}{v_{1} v_{2}}
$$

Next, we observe that $L \cap \mathrm{bd} K \subset Q$. Indeed, a planar quadric curve is uniquely determined by any five points which do not belong to a line (see, e. g., [11, pp. 395397]). Hence the ellipse $L \cap \mathrm{bd} K$ is uniquely determined by the five-point set $\{v\} \cup$ $\left(E_{1} \cap L\right) \cup\left(E_{2} \cap L\right)$. Since $L \cap Q$ is a quadric curve containing $\{v\} \cup\left(E_{1} \cap L\right) \cup\left(E_{2} \cap L\right)$, one has $L \cap \mathrm{bd} K=L \cap Q \subset Q$.

Slightly rotating L about the line $\langle o, v\rangle$, we obtain a family of ellipses $L \cap \mathrm{bd} K$ that cover an open subset V of $\mathrm{bd} K$, which consists of two open "lenses" with a common endpoint v. As above, $V \subset Q$. Repeating this argument for the points $w \in V \cap Q$ with $\langle o, w\rangle$ sufficiently close to l, we obtain that both endpoints q_{1} and q_{2} of the line segment $K \cap l$ are interior to an open set $W \subset$ bd K such that $W \cap Q=W$.

Finally, to show the inclusion bd $K \subset Q$, choose any point $x \in \operatorname{bd} K$ and denote by N the 2 -dimensional subspace through $\{x\} \cup l$. Since the quadric curve $N \cap Q$ and the convex quadric curve $N \cap \operatorname{bd} K$ coincide along the non-collinear set $N \cap W$ and are uniquely determined by this set, one has $N \cap \operatorname{bd} K \subset N \cap Q$. Varying N about l, we conclude that $\mathrm{bd} K \subset Q$. Since Q is locally convex at any point $x \in \operatorname{bd} K$, Theorem 3 implies that bd K is a convex quadric.

Let $n \geq 4$. As above, we assume that $o \in \operatorname{int} K$. To prove that $\operatorname{bd} K$ is a convex quadric in \mathbb{R}^{n}, it suffices to show that the intersection of bd K with any 2-dimensional subspace $L \subset \mathbb{R}^{n}$ is a convex quadric curve (see statement (A) from the introduction). Choose a vector $e \in T \backslash L$ and put $M=\operatorname{span}(e \cup L)$. Then M is a 3 -dimensional subspace of \mathbb{R}^{n}. Since the set $T \cap M$ is open in $\mathbb{S}^{n-1} \cap M$, there is a scalar $\varepsilon>0$ such that any 2 -dimensional subspace N of M that forms with $\langle o, e\rangle$ an angle of size less than ε intersects $T \cap M$. By condition 2), $N \cap \operatorname{bd} K$ is a convex quadric curve. From the case $n=3$ it follows that $M \cap \operatorname{bd} K$ is a 3dimensional convex quadric. Hence $L \cap \mathrm{bd} K(=L \cap M \cap \mathrm{bd} K)$ is a convex quadric curve. Therefore bd K is a convex quadric.

6 Proof of Theorem 1

Since Lemma 3 shows that 2) $\Rightarrow 1$), it remains to prove the converse assertion. In what follows, given a vector $e \in T$, denote by $H(e)$ a hyperplane that contains the middle points of all chords of K which are parallel to e.

First, we consider the case $n=2$. Choose a vector $e_{0} \in T$ and a chord $\left[p_{0}, q_{0}\right.$] of K in direction e_{0}. Then $\left[p_{0}, q_{0}\right]$ cuts K into two planar convex solids, say K_{0} and K_{0}^{\prime}. If both K_{0} and K_{0}^{\prime} are unbounded, then, as easily seen, K is a closed slab between a pair of parallel lines, which implies that $\mathrm{bd} K$ is a degenerate convex quadric. Assume that at least one of the sets K_{0} and K_{0}^{\prime} is bounded. Denote by P a closed halfplane of \mathbb{R}^{2} determined by the line $\left\langle p_{0}, q_{0}\right\rangle$ for which $K \cap P$ is bounded. Let $e_{m}, m \geq 1$, be the unit vector forming with e_{0} an angle of size π / m such that the chord $\left[p_{0}, q_{1}(m)\right.$] of K in direction e_{m} lies in P. Clearly, there is a positive integer m_{0} with the property that $e_{m} \in T$ for all $m \geq m_{0}$. Denote by $p_{1}(m)$ and $q_{2}(m)$ the
points in $P \cap \operatorname{bd} K$ so that $\left[p_{1}(m), q_{1}(m)\right]$ and $\left[p_{1}(m), q_{2}(m)\right]$ have directions e_{0} and e_{m}, respectively. By the assumption, $H\left(e_{0}\right)$ contains the middle points of the chords [p_{0}, q_{0}] and $\left[p_{1}(m), q_{1}(m)\right]$, while $H\left(e_{m}\right)$ contains the middle points of the chords [$\left.p_{0}, q_{1}(m)\right]$ and $\left[p_{1}(m), q_{2}(m)\right]$.

Since the set

$$
X_{5}(m)=\left\{p_{0}, q_{0}, p_{1}(m), q_{1}(m), q_{2}(m)\right\}
$$

does not belong to a line, there is a unique quadric curve $Q(m)$ containing $X_{5}(m)$ (see, e. g., [11, pp. 395-397]). If a point $q_{k}(m), k \geq 2$, is chosen and the line through $q_{k}(m)$ in direction e_{0} intersects $H\left(e_{0}\right) \cap K$, then denote by $p_{k}(m)$ the point in $\mathrm{bd} K$ for which the line segment $\left[p_{k}(m), q_{k}(m)\right]$ has direction e_{0}. Similarly, if a point $p_{k}(m), k \geq 2$, is chosen and the line through $p_{k}(m)$ in direction e_{m} intersects $H\left(e_{m}\right) \cap K$, then denote by $q_{k+1}(m)$ the point in bd K for which $\left[p_{k}(m), q_{k+1}(m)\right]$ has direction e_{m}. By Lemma 3 and condition 1) of the theorem, the set

$$
X_{2 k+1}(m)=\left\{p_{0}, q_{0}, p_{1}(m), q_{1}(m), \ldots, p_{k}(m), q_{k}(m), q_{k+1}(m)\right\}
$$

belongs to $Q(m) \cap \mathrm{bd} K$. Clearly, there is an increasing sequence of positive integers $k(m), m \geq m_{0}$, such that $X_{2 k(m)+1}(m)$ exists and the sequence of sets

$$
X_{2 k\left(m_{0}\right)+1}\left(m_{0}\right), X_{2 k\left(m_{0}+1\right)+1}\left(m_{0}+1\right), \ldots,
$$

tends to a dense subset of $P \cap \operatorname{bd} K$. Hence the arcs $P \cap Q\left(m_{0}\right), P \cap Q\left(m_{0}+1\right), \ldots$ converge to $P \cap \mathrm{bd} K$, which shows that the arc $P \cap \mathrm{bd} K$ is a piece of a quadric curve. Continuously translating $\left[p_{0}, q_{0}\right]$ away from P, we express bd K as the union of an increasing sequence of convex quadrics, implying that $\mathrm{bd} K$ is itself a convex quadric.

Let $n \geq 3$. Choose a point $p \in \operatorname{int} K$, and let L be a 2 -dimensional plane through p which properly intersects K such that the subspace $L-p$ meets T. Then $L \cap T$ is an open subset of $L \cap\left(\mathbb{S}^{n-1} \backslash(\operatorname{rec} K \cup-\operatorname{rec} K)\right)$. If $e \in L \cap\left(\mathbb{S}^{n-1} \backslash(\operatorname{rec} K \cup-\operatorname{rec} K)\right)$, then, by condition 2) of the theorem, the middle points of all chords of K in direction e belong to a hyperplane $H(e)$. Clearly, $L \cap H(e)$ is a line in L such that the middle points of all chords of $K \cap L$ in direction e belong to $L \cap H(e)$. By the proved above, $L \cap \mathrm{bd} K$ is a convex quadric curve. Theorem 4 implies that $\mathrm{bd} K$ is a convex quadric.

7 Proof of Theorem 2

2) $\Rightarrow 1$) Translating K on $-p$, we may assume that $p=o$. Denote by h is a chord of K which contains o. Then h is parallel to a unit vector $e \in \mathbb{S}^{n-1} \backslash(\operatorname{rec} K \cup-\operatorname{rec} K)$. If $\Omega_{\delta}(p)$ is the neighborhood of $\mathrm{bd} K \backslash((p+\operatorname{rec} K) \cup(p-\operatorname{rec} K))$ in bd K that lies in a convex quadric, Q, then the cylinder $C_{\delta}(h)$ of radius δ centered about the line $\langle o, e\rangle$ intersects bd K within Q. By Lemma 3, the middle points of all chords from $\mathcal{F}_{\delta}(h)$ belong to a hyperplane.
$1) \Rightarrow 2$) As above, we can reduce our consideration to the case when $p=o$. Furthermore, we may suppose that K is a line-free. Indeed, assume that $\operatorname{dim}(\operatorname{lin} K) \geq 1$.

Choose a chord h of K that contains o. Let $M \subset \mathbb{R}^{n}$ be a subspace which is complementary to $\operatorname{lin} K$ and contains h. Put $K^{\prime}=M \cap K$. Clearly, $\operatorname{lin} K^{\prime}=M \cap \operatorname{lin} K=$ $\{o\}$. If H is a hyperplane that contains the middle points of all chords from $\mathcal{F}_{\delta}(h)$, then $H \cap M$ contains the middle points of these chords that lie in M. So, if we prove the existence of the neighborhood $\Omega_{\delta}^{\prime}(o)$ of the set $\operatorname{rbd} K^{\prime} \backslash\left(\operatorname{rec} K^{\prime} \cup-\operatorname{rec} K^{\prime}\right)$ in $\operatorname{rbd} K^{\prime}$ which lies in a convex quadric $Q^{\prime} \subset M$, then from the equality bd $K=\operatorname{lin} K \oplus \operatorname{rbd} K^{\prime}$ we will conclude that the neighborhood $\Omega_{\delta}(o)$ of $\operatorname{bd} K \backslash(\operatorname{rec} K \cup-\operatorname{rec} K)$ in $\operatorname{bd} K$ lies in the convex quadric $\operatorname{lin} K \oplus Q^{\prime}$.

First, we consider the case $n=2$. Choose a chord $h=\left[p_{0}, q_{0}\right]$ of K that contains o and denote by e_{0} the unit vector which is a positive scalar of $q_{0}-p_{0}$. As above, $C_{\delta}(h)$ stands for the closed slab of \mathbb{R}^{2} of width 2δ centered about the line $\left\langle p_{0}, q_{0}\right\rangle$. Denote by $e_{m}, m \geq 1$, the unit vector forming with e_{0} an angle of size π / m. Clearly, there is a positive integer m_{0} with the property that both chords $\left[p_{0}, q_{1}(m)\right.$] and [$p_{-1}(m), q_{0}$] of K in direction e_{m} lie within $C_{\delta}(h)$ for all $m \geq m_{0}$.

Denote by $p_{1}(m), m \geq m_{0}$, the point in $C_{\delta}(h) \cap \mathrm{bd} K$ so that $\left[p_{1}(m), q_{1}(m)\right]$ has direction e_{0}. By condition 1), there is a line $H\left(e_{0}\right)$ which contains the middle points of the chords $\left[p_{0}, q_{0}\right]$ and $\left[p_{1}(m), q_{1}(m)\right]$. Similarly, there is a line $H\left(e_{m}\right)$ containing the middle points of the chords $\left[p_{-1}, q_{0}(m)\right]$ and $\left[p_{0}, q_{1}(m)\right]$.

Since the set

$$
Y_{5}(m)=\left\{p_{0}, q_{0}, p_{-1}(m), p_{1}(m), q_{1}(m)\right\}
$$

does not belong to a line, there is a unique quadric curve $Q(m)$ containing $Y_{5}(m)$ (see, e. g., [11, pp. 395-397]). If a point $q_{k}(m), k \geq 2$, is chosen in $C_{\delta}(h) \cap \mathrm{bd} K$ and the line through $q_{k}(m)$ in direction e_{0} intersects $H\left(e_{0}\right) \cap K$, then let $p_{k}(m)$ be the point in $C_{\delta}(h) \cap \mathrm{bd} K$ for which the line segment $\left[p_{k}(m), q_{k}(m)\right]$ has direction e_{0}. If a point $p_{k}(m), k \geq 2$, is chosen in $C_{\delta}(h) \cap \operatorname{bd} K$ and the line through $p_{k}(m)$ in direction e_{m} intersects both $H\left(e_{m}\right) \cap K$ and $C_{\delta}(h) \cap \operatorname{bd} K$, then denote by $q_{k+1}(m)$ the point in $C_{\delta}(h) \cap \operatorname{bd} K$ for which $\left[p_{k}(m), q_{k+1}(m)\right]$ has direction e_{m}.

Similarly, if a point $p_{-k}(m), k \geq 1$, is chosen in $C_{\delta}(h) \cap \mathrm{bd} K$ and the line through $p_{-k}(m)$ in direction e_{0} intersects $H\left(e_{0}\right) \cap K$, then denote by $q_{-k}(m)$ the point in $C_{\delta}(h) \cap \mathrm{bd} K$ for which the line segment $\left[p_{-k}(m), q_{-k}(m)\right]$ has direction e_{0}. If a point $q_{-k}(m), k \geq 1$, is chosen in $C_{\delta}(h) \cap \mathrm{bd} K$ and the line through $q_{-k}(m)$ in direction e_{m} intersects both $H\left(e_{m}\right) \cap K$ and $C_{\delta}(h) \cap \mathrm{bd} K$, then denote by $p_{-k-1}(m)$ the point in $C_{\delta}(h) \cap \mathrm{bd} K$ for which $\left[p_{-k-1}(m), q_{-k}(m)\right]$ has direction e_{m}.

By Lemma 3 and condition 1) of the theorem, the set

$$
\begin{aligned}
Y_{2 k+2}(m)= & \left\{p_{0}, q_{0}, p_{1}(m), q_{1}(m), \ldots, p_{k}(m), q_{k}(m),\right. \\
& \left.p_{-1}(m), q_{-1}(m), \ldots, p_{-k}(m), q_{-k}(m)\right\}
\end{aligned}
$$

belongs to $Q(m) \cap C_{\delta}(h) \cap \mathrm{bd} K$. Clearly, there is an increasing sequence of positive integers $k(m), m \geq m_{0}$, such that $Y_{2 k(m)+2}(m)$ exists for all $m \geq m_{0}$, and the sets

$$
Y_{2 k\left(m_{0}\right)+2}\left(m_{0}\right), Y_{2 k\left(m_{0}+1\right)+2}\left(m_{0}+1\right), \ldots
$$

tend to a dense subset of $C_{\delta}(h) \cap \mathrm{bd} K$. Hence the curves

$$
C_{\delta}(h) \cap Q\left(m_{0}\right), C_{\delta}(h) \cap Q\left(m_{0}+1\right), \ldots
$$

converge to $C_{\delta}(h) \cap \mathrm{bd} K$, which shows that $C_{\delta}(h) \cap \mathrm{bd} K$ is a piece of a quadric curve (consisting of one or two arcs). Continuously rotating h about o, we cover $\operatorname{bd} K \backslash(\operatorname{rec} K \cup-\operatorname{rec} K)$ by the family of overlapping pieces $C_{\delta}(h) \cap \mathrm{bd} K$ of the same quadric curve. Hence the neighborhood $\Omega_{\delta}(o)$ of bd $K \backslash(\operatorname{rec} K \cup-\operatorname{rec} K)$ in bd K lies in a convex quadric.

Let $n \geq 3$. Choose any 2 -dimensional subspace L such that $L \cap K$ is bounded (this is possible since K is assumed to be line-free). Then $\operatorname{rec}(L \cap K)=\{o\}$. If h is a chord of $L \cap K$ and $H \subset \mathbb{R}^{n}$ is a hyperplane containing the middle points of all chords of K which are parallel to h and lie within the cylinder $C_{\delta}(h)$, then $C_{\delta}(h) \cap L$ is a slab of width 2δ centered about the line containing h and $L \cap H$ is a line that contains the middle points of all chords of $L \cap K$ that belong to $\mathcal{F}_{\delta}(h)$. Hence $L \cap K$ satisfies condition 1) of the theorem (with L instead of \mathbb{R}^{n}) By the proved above (see the case $n=2), \operatorname{rbd}(L \cap K)$ is a convex quadric; so, it is an ellipse.

Because the argument above holds for any choice of a 2-dimensional subspace L, the set $\operatorname{bd} K \backslash(\operatorname{rec} K \cup-\operatorname{rec} K)$ lies in a convex quadric Q (see assertion (B) from the introduction). If K is bounded, then rec $K=\{o\}$ and the whole hypersurface $\mathrm{bd} K$ is a convex quadric. Assume that K is unbounded and choose a halfline t with endpoint o that lies in int K. Then (see the case $n=2$) for any 2-dimensional subspace L that contains t, the neighborhood $\Omega_{\delta}(o)$ of $(L \cap \operatorname{bd} K) \backslash(\operatorname{rec} K \cup-\operatorname{rec} K)$ in $\operatorname{rbd}(L \cap K)$ lies in $L \cap Q$. Therefore the neighborhood $\Omega_{\delta}(o)$ of bd $K \backslash(\operatorname{rec} K \cup-\operatorname{rec} K)$ in bd K lies in Q.

8 Proof of Theorem 6

The proof is organized by induction on $n(\geq 3)$. Let $n=3$. Consider the 1 -dimensional subspace $l=L_{1} \cap L_{2}$ and choose a longest chord $[x, z]$ of K in direction l. Translating K on a suitable vector, we may suppose that the origin o of \mathbb{R}^{3} is the middle point of $[x, z]$. By the assumption, both sections $E_{1}=L_{1} \cap \mathrm{bd} K$ and $E_{2}=L_{2} \cap \mathrm{bd} K$ are ellipses. Due to the choice of $[x, z]$, there are parallel planes M_{x} and M_{z} both supporting K such that $K \cap M_{x}=\{x\}$ and $K \cap M_{z}=\{z\}$ (see, e.g., [14]). Applying a suitable linear transformation, we may suppose that (i) L_{1} and L_{2} are orthogonal to each other, (ii) both ellipses E_{1} and E_{2} are circumferences with diameter $[x, z]$, (iii) both planes M_{x} and M_{z} are orthogonal to $[x, z]$. Clearly, the image of K under this transformation still satisfies the hypothesis of the theorem.

Choosing suitable Cartesian coordinates $\xi_{1}, \xi_{2}, \xi_{3}$ for \mathbb{R}^{3}, we may consider that x shows a positive direction of the ξ_{3}-axis and

$$
E_{1}=\left\{\left(\xi_{1}, 0, \xi_{3}\right): \xi_{1}^{2}+\xi_{3}^{2}=\rho^{2}\right\}, \quad E_{2}=\left\{\left(0, \xi_{2}, \xi_{3}\right): \xi_{2}^{2}+\xi_{3}^{2}=\rho^{2}\right\}
$$

where $\rho=\|x\|$. Clearly, L_{1} and L_{2} are given by the equations $\xi_{2}=0$ and $\xi_{1}=0$, respectively. Furthermore, M_{x} and M_{z} are described by $\xi_{3}=\rho$ and $\xi_{3}=-\rho$.

Choose a point $v \in\left(L_{3} \cap \mathrm{bd} K\right) \backslash\left(L_{1} \cup L_{2}\right)$ and consider the family of quadrics $Q(\mu)$ defined by

$$
\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}+\mu \xi_{1} \xi_{2}-\rho^{2}=0,
$$

where μ is a scalar parameter. Clearly, $E_{i}=L_{i} \cap Q(\mu), i=1,2$, for all $\mu \in \mathbb{R}$. If $v=\left(v_{1}, v_{2}, v_{3}\right)$, then $v \notin L_{1} \cup L_{2}$ if and only if $v_{1} v_{2} \neq 0$. Hence $v \in Q=Q\left(\mu_{0}\right)$, where

$$
\mu_{0}=\frac{\rho^{2}-v_{1}^{2}-v_{2}^{2}-v_{3}^{2}}{v_{1} v_{2}} .
$$

Since v lies within the slab $-\rho \leq \xi_{3} \leq \rho$ and does not belong to the interior of $\operatorname{conv}\left(E_{1} \cup E_{2}\right)$, the quadric Q is either a cylinder or an ellipsoid.

We state that the ellipse $E_{3}=L_{3} \cap \mathrm{bd} K$ is symmetric about o and lies in Q. Indeed, if L_{3} contains $[x, z]$, then $[x, z]$ is the longest diameter of E_{3}, which shows that E_{3} is uniquely determined by $[x, z]$ and v. In particular, E_{3} is symmetric about o. Since $L_{3} \cap Q$ is an ellipse containing $\{v, x, z\}$ and supported by both planes M_{x} and M_{z}, we conclude that $E_{3}=L_{3} \cap Q$. If L_{3} does not contain $[x, z]$, then L_{3} meets each of E_{1}, E_{2} at a pair of points symmetric about o. Because E_{3} is uniquely determined by v and the four points of intersection with $E_{1} \cup E_{2}$, the ellipse E_{3} is symmetric about o and lies in Q.

Considering separately the cases $l \subset L_{3}$ and $l \not \subset L_{3}$, we observe that a certain plane $u_{0}+L_{4}, u_{0} \in \operatorname{bd} K$, intersects the union $E_{1} \cup E_{2} \cup E_{3}$ at precisely six points, which do not belong to a line. Since the ellipse $E_{4}\left(u_{0}\right)=\left(u_{0}+L_{4}\right) \cap \mathrm{bd} K$ is uniquely determined by these six points and since $\left(u_{0}+L_{4}\right) \cap Q$ is also an ellipse determined by these points, one has $E_{4}\left(u_{0}\right) \subset Q$. By continuity, there is a small neighborhood U of u_{0} such that the argument above holds for all $u \in U$. Clearly, the ellipses $E_{4}(u)$, $u \in U$, cover an open "belt" Ω of bd K which lies in Q. Repeating this consideration for the subspace L_{1} and all points $u \in \Omega$, we obtain a wider "belt" of bd K which also lies in Q. Since the whole bd K can be expressed as the union of an increasing sequence of such "belts" obtained by the alternating consideration of translates of L_{1} and L_{2}, we conclude that bd $K \subset Q$. Therefor Q is a bounded convex quadric; that is, bd $K=Q$ is an ellipsoid.

Let $n \geq 4$. Assume that the theorem is true for all $\mathbb{R}^{m}, m \leq n-1$, and let $K \subset \mathbb{R}^{n}$ be a convex body which satisfies its hypothesis. Translating K on a suitable vector, we may suppose that $o \in \operatorname{int} K$. Choose an $(n-1)$-dimensional subspace $P \subset \mathbb{R}^{n}$ such that the ($n-2$)-dimensional subspaces $P \cap L_{i}, i=1,2,3,4$, are pairwise distinct. From the hypothesis it follows that all proper sections of $P \cap \mathrm{bd} K$ by translates of the subspaces $P \cap L_{i}, i=1,2,3,4$, within P are ($n-2$)-dimensional ellipsoids. The inductive assumption gives that $P \cap \mathrm{bd} K$ is an $(n-1)$-dimensional ellipsoid. Because the family of ($n-1$)-dimensional subspaces $P \subset \mathbb{R}^{n}$ with the property

$$
P \cap L_{i} \neq P \cap L_{j}, \quad i \neq j, \quad i, j \in\{1,2,3,4\},
$$

is dense in the family of all $(n-1)$-dimensional subspaces of \mathbb{R}^{n}, we obtain, by continuity, that every section of bd K by an $(n-1)$-dimensional subspace is an ($n-1$)-dimensional ellipsoid. This implies that bd K is an ellipsoid itself (see [5]).

References

[1] Alonso J., Martín P. Some characterizations of ellipsoids by sections, Discrete Comput. Geom., 2004, 31, 643-654.
[2] Berger M. Geometry. I, II. Springer, Berlin, 1987.
[3] Blaschke W. Kreis und Kugel. Viet, Leipzig, 1916.
[4] Brunn H. Ueber Kurven ohne Wendepunkte. Habilitationschrift, Ackermann, München, 1889.
[5] Busemann H. The geometry of geodesics. Academic Press, New York, 1955.
[6] Carathéodory C. Über den Variabilitätsbereich der Koefficienten von Potenzreihen, die gegebene Werte nicht annehmen. Math. Ann., 1907, 64, 95-115.
[7] Gruber P. M. Über kennzeichende Eigenschaften von eucklidischen Raumen und Ellipsoiden. I. J. Reine Angew. Math., 1974, 265, 61-83.
[8] Klee V. L. Some characterizations of convex polyhedra. Acta Math., 1959, 102, 79-107.
[9] Kubota T. On a characteristic property of the ellipse. Tôhoku Math. J., 1916, 9, 148-151.
[10] Nakajima S. Über konvexe Kurven und Flächen. Tohôku Math. J., 1928, 29, 227-230.
[11] Osgood W. F., Graustein W. C. Plane and solid analytic geometry. Macmillan, New York, 1942.
[12] Petty C. M. Ellipsoids. in: P. M. Gruber, J. M. Wills (eds). Convexity and its applications, pp. 264-276, Birkhäuser, Basel, 1983.
[13] Soltan V. Convex bodies with polyhedral midhypersurfaces. Arch. Math., 1995, 65, 336-341.
[14] Soltan V. Affine diameters of convex bodies-a survey. Expo. Math., 2005, 23, 47-63.
[15] Soltan V. Convex solids with planar midsurfaces. Proc. Amer. Math. Soc., 2008, 136, 1071-1081.
[16] Soltan V. Convex solids with planar homothetic sections through given points. J. Convex Analysis, 2009, 16, 473-486.
[17] Soltan V. Convex quadrics. Bul. Acad. Ştiinţe Repub. Moldova. Mat., 2010, No. 3(64), 94-106.
[18] Tietze H. Über Konvexheit im kleinen und im grossen und über gewisse den Punkten einer Menge zugeordnete Dimensionszahlen. Math. Z., 1928, 28, 697-707.
[19] Webster R. J. Convexity, Oxford University Press, Oxford, 1994.

Valeriu Soltan
Received June 15, 2011
George Mason University
Fairfax, Virginia 22030, USA
E-mail: vsoltan@gmu.edu

[^0]: (c) V. Soltan, 2011

