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Convex Solids with Hyperplanar Midsurfaces

for Restricted Families of Chords

Valeriu Soltan

Abstract. We provide new characteristic properties of convex quadrics in R
n in

terms of hyperplanarity of midsurfaces of convex solids for restricted families of chords.
These properties are based on various auxiliary characterizations of convex quadrics
that involve hyperplane supports and plane quadric sections.
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1 Introduction

A classical result of convex geometry states that a convex body K ⊂ R
n, n ≥ 2, is

a solid ellipsoid (solid ellipse if n = 2) provided the middle points of every family
of parallel chords of K lie in a hyperplane (see Brunn [4, pp. 59–61] for n = 2,
Blaschke [3, p. 159] for n = 3, and Busemann [5, p. 92] for all n ≥ 3). Gruber [7]
refined this result by proving, in particular, that a convex body K ⊂ R

n is a solid
ellipsoid if there is an open nonempty subset T of the unit sphere S

n−1 ⊂ R
n such

that for every unit vector e ∈ T , the middle points of all chords of K parallel to e
belong to a hyperplane. Another refinement was suggested in 2009 by Erwin Lutwak,
who posed the following problem: Is it true that a convex body K ⊂ R

n is a solid
ellipsoid provided there is a point p ∈ int K and a scalar δ > 0 such that, for every
chord [u, v] of K through p, the middle points of all chords of K which are parallel
to [u, v] and lie at a distance δ or less from [u, v] belong to a hyperplane?

In this paper, we establish similar characterizations of convex quadric hypersur-
faces (briefly, convex quadrics) among all convex hypersurfaces in R

n. By a convex

solid in R
n we mean an n-dimensional closed convex set K ⊂ R

n distinct from the
whole space. A convex hypersurface in R

n is the boundary of a convex solid. This
definition includes a hyperplane and a pair of parallel hyperplanes.

In a standard way, a quadric (or a second degree hypersurface) in R
n is the locus

of points x = (ξ1, . . . , ξn) that satisfy a quadratic equation

F (x) ≡
n

∑

i,k=1

aikξiξk + 2
n

∑

i=1

biξi + c = 0, (1)

where at least one aik is distinct from zero and aik = aki for all i, k = 1, . . . , n. We
say that a convex hypersurface S ⊂ R

n is a convex quadric provided there is a real
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quadric Q ⊂ R
n and a connected component U of R

n \ Q such that U is a convex
set and S is the boundary of U . As proved in [17], a convex hypersurface S ⊂ R

n is
a convex quadric if and only if there is a Cartesian coordinate system ξ1, . . . , ξn for
R

n such that S can be expressed as the locus of points x = (ξ1, . . . , ξn) ∈ R
n which

satisfy one of the equations

a1ξ
2
1 + · · · + akξ

2
k = 1, 1 ≤ k ≤ n,

a1ξ
2
1 − a2ξ

2
2 − · · · − akξ

2
k = 1, ξ1 ≥ 0, 2 ≤ k ≤ n,

a1ξ
2
1 = 0,

a1ξ
2
1 − a2ξ

2
2 − · · · − akξ

2
k = 0, ξ1 ≥ 0, 2 ≤ k ≤ n,

a1ξ
2
1 + · · · + ak−1ξ

2
k−1 = ξk, 2 ≤ k ≤ n,

where all scalars ai involved are positive. In particular, convex quadrics in R
n that

contain no lines are ellipsoids, elliptic paraboloids, sheets of elliptic hyperboloids on
two sheets, and sheets of elliptic cones. Various characteristic properties of convex
quadrics are given in [13, 15–17]. In particular, the following assertions will be of
use below.

(A) ([15]) The boundary of a convex solid K ⊂ R
n, n ≥ 3, is a convex quadric if

and only if there is a point p ∈ intK such that every section of bdK by a
2-dimensional plane through p is a convex quadric curve.

(B) ([16]) Given a line-free convex solid K ⊂ R
n and a point p ∈ R

n, n ≥ 3,
all proper bounded sections of bdK by 2-dimensional planes through p are
ellipses if and only if the set bdK \

(

(p + rec K)∪ (p− rec K)
)

lies in a convex
quadric, where rec K denotes the recession cone of K (see definitions below).

2 Main Results

We need some definitions to formulate the main results. A chord of the convex solid
K is a line segment [u, v], u 6= v, such that [u, v] = K ∩ 〈u, v〉, where 〈u, v〉 denotes
the line through u and v. We will say that both [u, v] and 〈u, v〉 are parallel to a
unit vector e ∈ R

n if u − v is a nonzero multiple of e. A convex solid K has chords
if and only if it is distinct from a closed halfspace. By a plane of dimension m we
mean a translate of an m-dimensional subspace of R

n. A plane L properly intersects
the solid K if L intersects both the boundary bdK and the interior int K of K.

The recession cone of a convex solid K ⊂ R
n is defined by

rec K = {y ∈ R
n : x + αy ∈ K whenever x ∈ K and α ≥ 0}.

It is well-known that rec K is a closed convex cone with apex o, the origin of R
n;

furthermore, recK is distinct from {o} if and only if K is unbounded. The subset
S

n−1 \ (rec K ∪ −recK) of the unit sphere S
n−1 ⊂ R

n consists of non-recessional

unit vectors for K. Equivalently, a unit vector e ∈ R
n is non-recessional for K if
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and only if the intersection of K with any line parallel to e is either bounded or
empty. Obviously, K has non-recessional unit vectors if and only if K is distinct
from a closed halfspace of R

n.
For any plane L ⊂ R

n which is complementary to the linearity space of K,
defined by

lin K = recK ∩ (−rec K),

the convex solid K can be expressed as the direct sum

K = lin K ⊕ (K ∩ L),

and K ∩ L is a closed convex set containing no lines (see, e. g., [19] for general
references on convex sets).

Theorem 1. Given a convex solid K ⊂ R
n, n ≥ 2, distinct from a closed halfspace

of R
n and an open nonempty subset T of S

n−1 \ (rec K ∪ −recK), the following

conditions are equivalent:

1) for every unit vector e ∈ T , the middle points of all chords of K which are

parallel to e belong to a hyperplane,

2) bdK is a convex quadric.

Problem 1. Is it true that Theorem 1 still holds if condition 1) is replaced by the
following weaker condition:

1′) for every unit vector e ∈ T , there is a scalar λ = λ(e) ∈ (0, 1) such that the
points dividing in the same ratio λ all chords of K which are parallel to e
belong to a hyperplane.

The answer to Problem 1 is affirmative in the following two cases: K is a convex
body in R

n (see [7]), K is a convex solid in R
n and T = S

n−1 \ (rec K ∪ −recK)
(see [15]). The papers [7, 15] also contain results which involve a weaker version of
1′), with λ ∈ [0, 1] instead of λ ∈ (0, 1).
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In what follows, we consider double cones (p + recK) ∪ (p − recK) with apices
p ∈ R

n, as depicted above.
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Definition 1. Let δ be a positive scalar, K ⊂ R
n a convex solid, p a point in int K,

and h = [u, v] a chord of K through p. Denote by Cδ(h) the closed circular cylinder
of radius δ centered about the line 〈u, v〉, and by Fδ(h) the family of all chords of
K which are parallel to h and lie in Cδ(h). Furthermore, let

Ωδ(p) = ∪ (Cδ(h) ∩ bdK),

where the union is taken over all chords h of K that contain p.

Clearly, Ωδ(p) is a closed neighborhood of bdK \
(

(p + recK) ∪ (p − recK)
)

in
bdK.

Theorem 2. Given a convex solid K ⊂ R
n, n ≥ 2, distinct from a closed halfspace

of R
n, a point p ∈ int K, and a scalar δ > 0, the following conditions are equivalent:

1) for every chord h of K that contains p, the middle points of all chords from

Fδ(h) belong to a hyperplane,

2) the set Ωδ(p) lies in a convex quadric.

If K is a convex body in R
n, then recK = {o}, implying the equality Ωδ(p) =

bdK for any given point p ∈ intK. Therefore Theorem 2 implies the following
corollary, which gives an affirmative solution to Lutwak’s problem.

Corollary 1. A convex body K ⊂ R
n, n ≥ 2, is a solid ellipsoid if and only if there

is a point p ∈ int K and a scalar δ > 0 such that for every chord h of K which

contains p, the middle points of all chords from Fδ(h) belong to a hyperplane.

Remark 1. We observe that the scalar δ in Theorem 2 and Corollary 1 cannot be
chosen as a function of h. Indeed, if K is a 3-dimensional octahedron, given by

K = {(ξ1, ξ2, ξ3) ∈ R
3 : |ξ1| + |ξ2| + |ξ3| ≤ 1},

then for any chord h of K that contains the origin o, there is a scalar δ = δ(h) > 0
such that the middle points of all chords from Fδ(h) belong to a plane through o.

Problem 2. Is it true that Theorem 2 still holds if condition 1) is replaced by the
following weaker condition:

1′′) for any chord h of K that contains p, there is a scalar λ = λ(e) ∈ (0, 1) such
that the points dividing in the same ratio λ all chords from Fδ(h) belong to a
hyperplane.

The proofs of Theorem 1 and 2 are based on some auxiliary statements. The
first one complements Theorem 1 from [17] by giving new characteristic properties
of quadrics Q ⊂ R

n with at least one convex connected component of R
n\Q in terms

of local convexity and local supports. In what follows, a quadric Q ⊂ R
n is called
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proper provided its complement R
n \ Q has two or more connected components,

which happens when Q, given by (1), is a hyperplane or both sets

{x ∈ R
n : F (x) > 0} and {x ∈ R

n : F (x) < 0}

are nonempty.
We will say that a proper quadric Q ⊂ R

n is locally convex at a point u ∈ Q if
there is an open ball Uρ(u) ⊂ R

n with center u and radius ρ > 0 such that Q∩Uρ(u)
is a piece of a convex hypersurface. Similarly, a proper quadric Q ⊂ R

n is locally

supported at u ∈ Q if there is an open ball Uρ(u) ⊂ R
n and a hyperplane H ⊂ R

n

through u such that Q ∩ Uρ(u) lies in a closed halfspace of R
n bounded by H.

Theorem 3. For a proper quadric Q ⊂ R
n, n ≥ 2, the following conditions are

equivalent:

1) Q is locally convex at a certain point u ∈ Q,

2) Q is locally supported at a certain point u ∈ Q,

3) at least one of the connected components of R
n \ Q is a convex set,

4) Q is the union of at most four convex quadrics,

5) there is a Cartesian coordinate system ξ1, . . . , ξn for R
n such that Q can be

expressed as the locus of points x = (ξ1, . . . , ξn) ∈ R
n which satisfy one of the

equations

F1(x) ≡ a1ξ
2
1 + · · · + akξ

2
k = 1, 1 ≤ k ≤ n, (2)

F2(x) ≡ a1ξ
2
1 − a2ξ

2
2 − · · · − akξ

2
k = 1, 2 ≤ k ≤ n, (3)

F3(x) ≡ a1ξ
2
1 = 0, (4)

F4(x) ≡ a1ξ
2
1 − a2ξ

2
2 − · · · − akξ

2
k = 0, 2 ≤ k ≤ n, (5)

F5(x) ≡ a1ξ
2
1 + · · · + ak−1ξ

2
k−1 = ξk, 2 ≤ k ≤ n, (6)

where all scalars ai involved are positive.

There is a certain analogy between Theorem 3 and respective properties of convex
hypersurfaces. Indeed, if S is the boundary of an open nonempty connected set
X ⊂ R

n, then S is a convex hypersurface provided X is locally supported at every
point u ∈ S (see [6]). Similarly, S is a convex hypersurface if X is locally convex
at every point u ∈ S (see [10, 18]). On the other hand, Theorem 3 deals with local
convexity and local support of Q at a single point.

The next two results characterize convex quadrics in terms of their 2-dimensional
planar sections.

Theorem 4. Let K ⊂ Rn, n ≥ 3, be a convex solid, p a point in int K, and T
an open nonempty subset of S

n−1 \ (rec K ∪ −recK). The following conditions are

equivalent:
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1) bdK is a convex quadric,

2) for every 2-dimensional plane L through p which properly intersects K such

that the subspace L − p meets T , the section L ∩ bdK is a convex quadric

curve.

Remark 2. Theorem 4 refines, with essential modifications of proofs, the respective
statements from [15], given there for the case T = S

n−1 \ (rec K ∪ −recK). It is
unknown whether Theorem 4 remains true for any choice of the point p in R

n

(compare with Problem 1 from [17]).

Obvious changes in the proof of Theorem 4 allow us to generalize the following
assertion of Petty [12]: the boundary of a convex body K ⊂ R

n is an ellipsoid
provided there is a line l ⊂ Rn such that all proper sections of bdK by 2-dimensional
planes parallel to l are ellipses. Given a line l ⊂ R

n and a scalar δ > 0, denote by
Pδ(l) the family of all 2-dimensional planes in R

n which are parallel to l and whose
distance from l is less than δ.

Theorem 5. Let K ⊂ R
n, n ≥ 3, be a convex solid, l a line that meets int K and is

parallel to a unit vector from S
n−1 \ (recK ∪ −recK), and δ a positive scalar. The

following conditions are equivalent:

1) bdK is a convex quadric,

2) for any 2-dimensional plane L ∈ Pδ(l) properly intersecting K, the section

L ∩ bdK is a convex quadric curve.

Remark 3. The condition that l is parallel to a unit vector from S
n−1 \ (rec K ∪

−recK) is essential in Theorem 5. Indeed, let C be the unit cube in the coordinate
hyperplane ξ1 = 0 of R

n and l be the ξ1-axis of R
n. Denote by K the Cartesian

product of C and l. Clearly, K is a convex solid with rec K = l and any proper
section of bdK by a 2-dimensional plane parallel to l is a pair of parallel lines, which
is a degenerate convex quadric curve.

Alonso and Mart́ın [1] proved that if L1, L2, L3 ⊂ R
n, n ≥ 3, are three pairwise

distinct (n − 1)-dimensional subspaces and K ⊂ R
n a centrally symmetric convex

body such that every proper section of bdK by a hyperplane parallel to one of
these subspaces is an (n − 1)-dimensional ellipsoid, then bdK is an ellipsoid itself.
They also observed that the assumption on central symmetry of K here cannot be
omitted. Indeed, if Kα ⊂ R

3, 0 < |α| ≤ 2, is a convex body, given by

Kα = {(x, y, z) ∈ R
3 : x2 + y2 + z2 + αxyz ≤ 1, max {|x|, |y|, |z|} ≤ 1},

then any proper section of bdKα by a plane parallel to one of the coordinate sub-
spaces x = 0, y = 0, and z = 0 is an ellipse (see [1] for other examples). Our next
theorem extends the result of Alonso and Mart́ın to the case of any convex body in
R

n.
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Theorem 6. If L1, L2, L3, L4 ⊂ R
n, n ≥ 3, are four pairwise distinct (n − 1)-

dimensional subspaces and K ⊂ R
n a convex body such that every proper section of

bdK by a hyperplane parallel to one of these subspaces is an (n − 1)-dimensional

ellipsoid, then bdK is an ellipsoid itself.

It would be interesting to generalize Theorem 6 to the case of convex quadrics.
In what follows, rbdM and rint M denote, respectively, the relative boundary and
the relative interior of a closed convex set M ⊂ R

n.

3 Auxiliary Lemmas

If a proper quadric Q ⊂ R
n is given by (1), then a point u ∈ Q is called regular

provided the gradient vector

∇F (u) =
(

∂F (u)
∂ξ1

, . . . , ∂F (u)
∂ξn

)

,

the normal to Q at u, is distinct from the zero vector o; otherwise u is singular. The
standard classification of quadrics in R

n (see, e. g., [2]) immediately implies that a
description of a proper quadric Q ⊂ R

n, given by (1), can be reduced to one of the
canonical equations

a1ξ
2
1 + · · · + akξ

2
k = 1, 1 ≤ k ≤ n, (7)

a1ξ
2
1 + · · · + arξ

2
r − ar+1ξ

2
r+1 − · · · − akξ

2
k = 1, 1 ≤ r < k ≤ n, (8)

a1ξ
2
1 = 0, (9)

a1ξ
2
1 + · · · + arξ

2
r − ar+1ξ

2
r+1 − · · · − akξ

2
k = 0, 1 ≤ r < k ≤ n, (10)

a1ξ
2
1 + · · · + ak−1ξ

2
k−1 = ξk, 1 < k ≤ n, (11)

a1ξ
2
1 + · · · + arξ

2
r − ar+1ξ

2
r+1 − · · · − ak−1ξ

2
k−1 = ξk, 1 ≤ r < k − 1 < n, (12)

where all scalars ai involved are positive. The following lemma routinely follows
from (7)–(12).

Lemma 1. A proper quadric Q ⊂ R
n has singular points if and only if its canonical

equation is expressed by (9) or (10). The set of singular points of Q is given by

ξ1 = 0 if Q is described by (9) and by ξ1 = · · · = ξk = 0 if Q is described by

(10).

If u = (µ1, . . . , µn) is a regular point of a proper quadric Q ⊂ R
n, then the linear

equation in x = (ξ1, . . . , ξn),

∇F (u)·(x − u) ≡ ∂F (u)
∂ξ1

(ξ1 − µ1) + · · · + ∂F (u)
∂ξn

(ξn − µn) = 0, (13)

defines the hyperplane through u which is orthogonal to ∇F (u); it is called tangent to
Q at u. Since a proper quadric is differentiable at any regular point, we immediately
obtain the following lemma.
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Lemma 2. If a proper quadric Q ⊂ R
n is locally supported by a hyperplane G at a

regular point u ∈ Q, then G is tangent to Q at u.

Lemma 3. The middle points of all chords of a quadric Q ⊂ R
n which are parallel

to a given chord [a, c] of Q belong to a hyperplane.

Proof. Assume that Q is given by (1). The line l = 〈a, c〉 can be expressed as

l = {z + tv ∈ R
n : t ∈ R}, v 6= o,

where z is the middle point of [a, c] and v = a− c. Equivalently, x = (ξ1, . . . , ξn) ∈ l
if and only if

ξi = φi + tνi, t ∈ R, i = 1, . . . , n, (14)

where z = (φ1, . . . , φn) and v = (ν1, . . . , νn). To determine the values of t for which
x ∈ l ∩ Q, we substitute ξ1, . . . , ξn from (14) into (1) and arrange the powers of t.
The result is a quadratic equation in t,

A(v) t2 + 2B(v, z) t + C(z) = 0, (15)

where

A(v) =

n
∑

i,k=1

aikνiνk, B(v, z) = 1
2

n
∑

i=1

∂F (z)
∂ξi

νi, C(z) = F (z). (16)

Then a and c correspond to opposite non-zero solutions t0 and −t0 of (15), which
is possible if and only if A(v)C(z) < 0 and B(v, z) = 0. Hence

n
∑

i=1

(

n
∑

k=1

aikφk + bi

)

νi = 1
2

n
∑

i=1

∂F (z)
∂ξi

νi = B(v, z) = 0.

Equivalently,
n

∑

k=1

(

n
∑

i=1

aikνi

)

φk +

n
∑

i=1

biνi = 0. (17)

Interpreted as an equation in φ1, . . . , φn, (17) describes a hyperplane, H, because at
least one of the scalars

ck =

n
∑

i=1

aikνi, k = 1, . . . , n,

is distinct from zero. Indeed, assuming c1 = · · · = cn = 0, we would obtain

A(v) = c1ν1 + · · · + cnνn = 0,

which is impossible because of A(v)C(z) < 0. If [a′, c′] is a chord of Q that is parallel
to [a, c], then v is a nonzero multiple of a′ − c′, which implies that

〈a′, c′〉 = {z′ + tv ∈ R
n : t ∈ R},

where z′ = (φ′

1, . . . , φ
′

n) is the middle point of [a′, c′]. Repeating the argument above,
we obtain that φ′

1, . . . , φ
′

n satisfy (17), which gives z′ ∈ H.
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4 Proof of Theorem 3

1) ⇒ 2) Assume that Q is locally convex at a point u ∈ Q; that is, Q ∩ Uρ(u) is a
piece of a convex hypesurface S ⊂ R

n for a suitable scalar ρ > 0. By a convexity
argument, there is a hyperplane H supporting S at u. Therefore, Q ∩ Uρ(u) lies in
a closed halfspace of R

n bounded by H, which implies that Q is locally supported
at u.

2) ⇒ 3) Choosing a suitable orthonormal basis e1, . . . , en for R
n, we may suppose

that Q is described by one of the equations (7)–(12). Put u = (µ1, . . . , µn) and
denote by H a hyperplane that supports Q ∩ Uρ(u) for a suitable choice of ρ > 0.

(a) If Q is expressed by (7), then Q itself is a convex quadric and the connected
component {x ∈ R

n : F1(x) < 1} of R
n \ Q is an open convex set.

(b) Suppose that Q is given by (8). From Lemma 1 it follows that u is a regular
point of Q. Choosing suitable orthogonal bases e′1, . . . , e

′

r and e′r+1, . . . , e
′

n for the
subspaces span (e1, . . . , er) and span (er+1, . . . , en), respectively, we may assume that
Q is still expressed by (8) and

u = (µ1, 0, . . . , 0, µr+1, 0, . . . , 0), µ1 > 0, µr+1 ≥ 0,

with a1µ
2
1 − ar+1µ

2
r+1 = 1. The section of Q by the 2-dimensional subspace L1 =

span (e1, er+1) is a hyperbola, whose arm E1 containing u is given by

a1ξ
2
1 − ar+1ξ

2
r+1 = 1, ξ1 > 0, ξ2 = · · · = ξr = ξr+2 = · · · = ξn = 0.

By Lemma 2, H is tangent to Q at u. Due to (13), H is expressed as

a1µ1(ξ1 − µ1) − ar+1µr+1(ξr+1 − µr+1) = 0.

Equivalently,
a1µ1ξ1 − ar+1µr+1ξr+1 = 1.

We are going to show that r = 1. Indeed, assume for a moment that r ≥ 2. Then
the section of Q by the r-dimensional plane

L2 = {(ξ1, . . . , ξn) : ξr+1 = µr+1, ξr+2 = · · · = ξn = 0}

is the r-dimensional ellipsoid, E2, described by

a1ξ
2
1 + · · · + arξ

2
r = 1 + ar+1µ

2
r+1, ξr+1 = µr+1, ξr+2 = · · · = ξn = 0.

From a1ξ
2
1 + · · · + arξ

2
r = a1µ

2
1 it follows that |ξ1| ≤ µ1.

We state that E1 and E2 lie in the opposite closed halfspaces of R
n determined

by H. Indeed, since the set B1 ⊂ L1 given by

a1ξ
2
1 − ar+1ξ

2
r+1 ≥ 1, ξ1 > 0, ξ2 = · · · = ξr = ξr+2 = · · · = ξn = 0,

is strictly convex, the point

( ξ1+µ1

2 , 0, . . . , 0, ξr+1+µr+1

2 , 0, . . . , 0)
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belongs to rintB1 provided the point x = (ξ1, 0, . . . , 0, ξr+1, 0, . . . , 0) ∈ E1 is distinct
from u. Hence

a1

(

ξ1+µ1

2

)2
− ar+1

( ξr+1+µr+1

2

)2
≥ 1,

which results in

a1µ1ξ1 − ar+1µr+1ξr+1 ≥ 1,

with equality if and only if ξ1 = µ1 and ξr+1 = µr+1.

If x ∈ E2, then from |ξ1| ≤ µ1 and ξr+1 = µr+1 we obtain

a1µ1ξ1 − ar+1µr+1ξr+1 ≤ a1µ
2
1 − ar+1µ

2
r+1 = 1,

with equality if and only if ξ1 = µ1. Summing up, E1∩Uρ(u) and E2∩Uρ(u) lie in the
opposite closed halfspaces of R

n bounded by H such that E1 ∩ H = E2 ∩ H = {u},
in contradiction with the choice of Uρ(u). Hence r = 1, and, by proved in [17], the
connected component {x ∈ R

n : F2(x) > 1} of R
n \ Q is an open convex set.

(c) If Q is given by (9), then Q is the hyperplane described by ξ1 = 0 and both
open halfspaces ξ1 > 0 and ξ1 < 0 are the connected components of R

n \ Q.

(d) Assume that Q is expressed by (10). Since any point

x = (0, . . . , 0, ξk+1, . . . , ξn) ∈ Q

is the apex of a “double cone” Q ∩ span (ek+1, . . . , en), which cannot be locally
supported at x, at least one of the coordinates µ1, . . . , µk of u must be distinct
from 0. From Lemma 1 it follows that u is a regular point of Q. By Lemma 2, H is
tangent to Q at u. Choosing suitable orthogonal bases e′1, . . . , e

′

r and e′r+1, . . . , e
′

n for
the subspaces span (e1, . . . , er) and span (er+1, . . . , en), respectively, we may assume
that Q is still expressed by (10) and

u = (µ1, 0, . . . , 0, µr+1, 0, . . . , 0), µ1 > 0, µr+1 > 0,

with a1µ
2
1 − ar+1µ

2
r+1 = 0. Clearly, the section of Q by the 2-dimensional subspace

L1 = span (e1, er+1) is a double cone. Denote by E1 the arm of this cone given by

a1ξ
2
1 − ar+1ξ

2
r+1 = 0, ξ1 > 0, ξr+1 > 0, ξ2 = · · · = ξr = ξr+2 = · · · = ξn = 0.

Then u ∈ E1. Hence H is given by

a1µ1(ξ1 − µ1) − ar+1µr+1(ξr+1 − µr+1) = 0,

or

a1µ1ξ1 − ar+1µr+1ξr+1 = 0.

We are going to show that r = 1. Indeed, assume for a moment that r ≥ 2. Then
the section of Q by the r-dimensional plane

L2 = {(ξ1, . . . , ξn) : ξr+1 = µr+1, ξr+2 = · · · = ξn = 0}
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is the r-dimensional ellipsoid, E2, described by

a1ξ
2
1 + · · · + arξ

2
r = ar+1µ

2
r+1, ξr+1 = µr+1, ξr+2 = · · · = ξn = 0.

Similarly to case (b) above, one can show that E1 ∩ Uρ(u) and E2 ∩ Uρ(u) lie in
distinct closed halfspaces of R

n determined by H such that E1∩H = E2∩H = {u},
in contradiction with the choice of Uρ(u). Hence r = 1. As shown in [17], the
connected component {x ∈ R

n : F4(x) > 0} of R
n \ Q is a convex set.

(e) If Q is expressed by (11), then Q itself is a convex quadric and the connected
component {x ∈ R

n : F5(x) < ξk} of R
n \ Q is a convex set.

(f) Finally, assume that Q is expressed by (12). From Lemma 1 it follows that u is
a regular point of Q. So, H is tangent to Q at u. Choosing suitable orthogonal bases
e′1, . . . , e

′

r and e′r+1, . . . , e
′

n for the subspaces span (e1, . . . , er) and span (er+1, . . . , en),
respectively, we may assume that Q is still expressed by (12) and

u = (µ1, 0, . . . , 0, µr+1, 0, . . . , 0, µk, 0, . . . , 0),

where a1µ
2
1 − ar+1µ

2
r+1 = µk. Due to (13), H is expressed as

2a1µ1(ξ1 − µ1) − 2ar+1µr+1(ξr+1 − µr+1) − (ξk − µk) = 0.

Equivalently,
ξk = 2a1µ1ξ1 − 2ar+1µr+1ξr+1.

The section of Q by the 2-dimensional plane L1 = u+span (e1, ek) is a parabola,
E1, given by

ξk = a1ξ
2
1 − ar+1µ

2
r+1, ξr+1 = µr+1, ξi = 0 for all i ∈ {1, . . . , n} \ {1, r + 1, k}.

Similarly, the section of Q by another 2-dimensional plane, L2 = u + span (er+1, ek)
also is a parabola, E2, given by

ξk = a1µ
2
1 − ar+1ξ

2
r+1, ξ1 = µ1, ξi = 0 for all i ∈ {1, . . . , n} \ {1, r + 1, k}.

Clearly, E1∩Uρ(u) and E2∩Uρ(u) lie in distinct closed halfspaces of R
n determined

by H such that E1 ∩ H = E2 ∩ H = {u}, in contradiction with the choice of Uρ(u).
Hence Q cannot be given by (12).

Equivalence of conditions 1), 3)–5) follows from the proof of Theorem 1 from [17].

5 Proof of Theorem 4

The statement 1) ⇒ 2) immediately follows from the fact that a proper section of
a convex quadric by a 2-dimensional plane is a convex quadric curve. Conversely,
assume that condition 2) of the theorem holds. Translating K on the vector −p, we
may suppose that o = p ∈ int K. We observe that K is distinct from a halfspace,
since otherwise recK ∪ −recK = R

n in contradiction with the choice of T . Also,
we eliminate the trivial case when K is a slab between two parallel hyperplanes
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(implying that bdK is a degenerate convex quadric). Therefore we may assume
that dim (lin K) ≤ n − 2.

We observe that the proof of 2) ⇒ 1) can be reduced to the case dim (lin K) = 0;
that is, to the case when K contains no lines. Indeed, assuming the inequality
dim (lin K) ≥ 1, choose a subspace M ⊂ R

n complementary to lin K and intersecting
T . Put K ′ = M ∩K and T ′ = T ∩M . Clearly, lin K ′ = M ∩ linK = {o} and T ′ is an
open nonempty subset of (M ∩ S

n−1) \ (rec K ′ ∪ −recK ′). Choose a 2-dimensional
subspace L ⊂ M that meets T ′ and properly intersects K ′. From the equality
K = lin K ⊕K ′, we obtain L∩ rbdK ′ = L∩ bdK. Hence condition 2) implies that
L ∩ rbdK ′ is a convex quadric curve. Therefore, K ′ satisfies condition 2) of the
theorem (with M and T ′ instead of R

n and T , respectively). Finally, the equality
bdK = lin K ⊕ rbdK ′ shows that bdK is a degenerate convex quadric provided
rbdK ′ is a convex quadric.

Our further consideration of the case dim (linK) = 0 is organized by induction
on n (≥ 3). Let n = 3. Since K is line-free, there is a 2-dimensional subspace L′

through l properly intersecting K such that L′ ∩ K is bounded. Choose a pair of
distinct planes L1 and L2 both containing l and placed so close to L′ that the sets
L1 ∩ K and L2 ∩ K are bounded. By condition 2), both sections E1 = L1 ∩ bdK
and E2 = L2 ∩ bdK are convex quadric curves, whence they are ellipses. Let c be
the midpoint of the line segment l ∩ K and c1 and c2 the centers of E1 and E2,
respectively. Applying a suitable affine transformation, we may assume that both
E1 and E2 are circles and the planes L1 and L2 are orthogonal. Clearly, the image
of K under this transformation, also denoted by K, satisfies condition 2) of the
theorem. Let 2δ be the length of l ∩ K.

Choose a coordinate system (ξ1, ξ2, ξ3) such that l is the ξ3-axis, the points
c, c1, c2 lie in the coordinate plane ξ3 = σ3, where σ3 is a suitable scalar, and

c1 = (σ1, 0, σ3), c2 = (0, σ2, σ3), c = (0, 0, σ3), σ1, σ2, σ3 ≥ 0.

Then E1 and E2 are described as

E1 = {(ξ1, 0, ξ3) : (ξ1 − σ1)
2 + (ξ3 − σ3)

2 = σ2
1 + δ2},

E2 = {(0, ξ2, ξ3) : (ξ2 − σ2)
2 + (ξ3 − σ3)

2 = σ2
2 + δ2}.

Clearly, L1 and L2 are given by the equations ξ2 = 0 and ξ1 = 0, respectively.
Choose a point v ∈ bdK \ (L1 ∪ L2) so close to l that v/‖v‖ ∈ T and a certain

2-dimensional plane L through 〈o, v〉 meets K along a bounded set and intersects
each of the ellipses E1, E2 at precisely two points. As above, L∩ bdK is an ellipse.

We state the existence of a quadric surface Q ⊂ R
3 that contains {v} ∪E1 ∪E2.

For this, consider the family of quadrics Q(µ) ⊂ R
3, given by

ξ2
1 + ξ2

2 + ξ2
3 + µξ1ξ2 − 2σ1ξ1 − 2σ2ξ2 − 2σ3ξ3 + σ2

3 − δ2 = 0,

where µ is a scalar parameter. Obviously, Ei = Li ∩ Q(µ), i = 1, 2, for all µ ∈ R.
If v = (v1, v2, v3), then v /∈ L1 ∪ L2 if and only if v1v2 6= 0. Hence v ∈ Q = Q(µ0),
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where

µ0 =
δ2 − σ2

3 + 2σ1v1 + 2σ2v2 + 2σ3v3 − v2
1 − v2

2 − v2
3

v1v2
.

Next, we observe that L∩ bdK ⊂ Q. Indeed, a planar quadric curve is uniquely
determined by any five points which do not belong to a line (see, e. g., [11, pp. 395–
397]). Hence the ellipse L∩ bdK is uniquely determined by the five-point set {v} ∪
(E1∩L)∪(E2∩L). Since L∩Q is a quadric curve containing {v}∪(E1∩L)∪(E2∩L),
one has L ∩ bdK = L ∩ Q ⊂ Q.

Slightly rotating L about the line 〈o, v〉, we obtain a family of ellipses L ∩ bdK
that cover an open subset V of bdK, which consists of two open “lenses” with a
common endpoint v. As above, V ⊂ Q. Repeating this argument for the points
w ∈ V ∩Q with 〈o,w〉 sufficiently close to l, we obtain that both endpoints q1 and q2

of the line segment K∩l are interior to an open set W ⊂ bdK such that W∩Q = W .

Finally, to show the inclusion bdK ⊂ Q, choose any point x ∈ bdK and denote
by N the 2-dimensional subspace through {x}∪ l. Since the quadric curve N∩Q and
the convex quadric curve N ∩ bdK coincide along the non-collinear set N ∩W and
are uniquely determined by this set, one has N ∩ bdK ⊂ N ∩ Q. Varying N about
l, we conclude that bdK ⊂ Q. Since Q is locally convex at any point x ∈ bdK,
Theorem 3 implies that bdK is a convex quadric.

Let n ≥ 4. As above, we assume that o ∈ int K. To prove that bdK is a
convex quadric in R

n, it suffices to show that the intersection of bdK with any
2-dimensional subspace L ⊂ R

n is a convex quadric curve (see statement (A) from
the introduction). Choose a vector e ∈ T \ L and put M = span (e ∪ L). Then
M is a 3-dimensional subspace of R

n. Since the set T ∩ M is open in S
n−1 ∩ M ,

there is a scalar ε > 0 such that any 2-dimensional subspace N of M that forms
with 〈o, e〉 an angle of size less than ε intersects T ∩ M . By condition 2), N ∩ bdK
is a convex quadric curve. From the case n = 3 it follows that M ∩ bdK is a 3-
dimensional convex quadric. Hence L∩ bdK (= L∩M ∩ bdK) is a convex quadric
curve. Therefore bdK is a convex quadric.

6 Proof of Theorem 1

Since Lemma 3 shows that 2) ⇒ 1), it remains to prove the converse assertion. In
what follows, given a vector e ∈ T , denote by H(e) a hyperplane that contains the
middle points of all chords of K which are parallel to e.

First, we consider the case n = 2. Choose a vector e0 ∈ T and a chord [p0, q0]
of K in direction e0. Then [p0, q0] cuts K into two planar convex solids, say K0

and K ′

0. If both K0 and K ′

0 are unbounded, then, as easily seen, K is a closed
slab between a pair of parallel lines, which implies that bdK is a degenerate convex
quadric. Assume that at least one of the sets K0 and K ′

0 is bounded. Denote by P
a closed halfplane of R

2 determined by the line 〈p0, q0〉 for which K ∩P is bounded.
Let em, m ≥ 1, be the unit vector forming with e0 an angle of size π/m such that the
chord [p0, q1(m)] of K in direction em lies in P . Clearly, there is a positive integer
m0 with the property that em ∈ T for all m ≥ m0. Denote by p1(m) and q2(m) the
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points in P ∩ bdK so that [p1(m), q1(m)] and [p1(m), q2(m)] have directions e0 and
em, respectively. By the assumption, H(e0) contains the middle points of the chords
[p0, q0] and [p1(m), q1(m)], while H(em) contains the middle points of the chords
[p0, q1(m)] and [p1(m), q2(m)].

Since the set
X5(m) = {p0, q0, p1(m), q1(m), q2(m)}

does not belong to a line, there is a unique quadric curve Q(m) containing X5(m)
(see, e. g., [11, pp. 395–397]). If a point qk(m), k ≥ 2, is chosen and the line through
qk(m) in direction e0 intersects H(e0) ∩ K, then denote by pk(m) the point in
bdK for which the line segment [pk(m), qk(m)] has direction e0. Similarly, if a
point pk(m), k ≥ 2, is chosen and the line through pk(m) in direction em intersects
H(em) ∩ K, then denote by qk+1(m) the point in bdK for which [pk(m), qk+1(m)]
has direction em. By Lemma 3 and condition 1) of the theorem, the set

X2k+1(m) = {p0, q0, p1(m), q1(m), . . . , pk(m), qk(m), qk+1(m)}

belongs to Q(m)∩bdK. Clearly, there is an increasing sequence of positive integers
k(m), m ≥ m0, such that X2k(m)+1(m) exists and the sequence of sets

X2k(m0)+1(m0),X2k(m0+1)+1(m0 + 1), . . . ,

tends to a dense subset of P ∩ bdK. Hence the arcs P ∩Q(m0), P ∩Q(m0 + 1), . . .
converge to P ∩ bdK, which shows that the arc P ∩ bdK is a piece of a quadric
curve. Continuously translating [p0, q0] away from P , we express bdK as the union
of an increasing sequence of convex quadrics, implying that bdK is itself a convex
quadric.

Let n ≥ 3. Choose a point p ∈ intK, and let L be a 2-dimensional plane through
p which properly intersects K such that the subspace L− p meets T . Then L∩ T is
an open subset of L∩ (Sn−1 \ (rec K ∪−recK)). If e ∈ L∩ (Sn−1 \ (rec K ∪−recK)),
then, by condition 2) of the theorem, the middle points of all chords of K in direction
e belong to a hyperplane H(e). Clearly, L∩H(e) is a line in L such that the middle
points of all chords of K ∩ L in direction e belong to L ∩ H(e). By the proved
above, L∩bdK is a convex quadric curve. Theorem 4 implies that bdK is a convex
quadric.

7 Proof of Theorem 2

2) ⇒ 1) Translating K on −p, we may assume that p = o. Denote by h is a chord of
K which contains o. Then h is parallel to a unit vector e ∈ S

n−1 \ (rec K ∪−rec K).
If Ωδ(p) is the neighborhood of bdK \

(

(p + rec K) ∪ (p − recK)
)

in bdK that lies
in a convex quadric, Q, then the cylinder Cδ(h) of radius δ centered about the line
〈o, e〉 intersects bdK within Q. By Lemma 3, the middle points of all chords from
Fδ(h) belong to a hyperplane.

1) ⇒ 2) As above, we can reduce our consideration to the case when p = o. Fur-
thermore, we may suppose that K is a line-free. Indeed, assume that dim (lin K) ≥ 1.
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Choose a chord h of K that contains o. Let M ⊂ R
n be a subspace which is comple-

mentary to lin K and contains h. Put K ′ = M ∩ K. Clearly, lin K ′ = M ∩ lin K =
{o}. If H is a hyperplane that contains the middle points of all chords from Fδ(h),
then H ∩M contains the middle points of these chords that lie in M . So, if we prove
the existence of the neighborhood Ω′

δ(o) of the set rbdK ′\(rec K ′∪−recK ′) in rbdK ′

which lies in a convex quadric Q′ ⊂ M , then from the equality bdK = lin K⊕rbdK ′

we will conclude that the neighborhood Ωδ(o) of bdK \ (rec K ∪ −recK) in bdK
lies in the convex quadric lin K ⊕ Q′.

First, we consider the case n = 2. Choose a chord h = [p0, q0] of K that contains
o and denote by e0 the unit vector which is a positive scalar of q0 − p0. As above,
Cδ(h) stands for the closed slab of R

2 of width 2δ centered about the line 〈p0, q0〉.
Denote by em, m ≥ 1, the unit vector forming with e0 an angle of size π/m. Clearly,
there is a positive integer m0 with the property that both chords [p0, q1(m)] and
[p−1(m), q0] of K in direction em lie within Cδ(h) for all m ≥ m0.

Denote by p1(m), m ≥ m0, the point in Cδ(h)∩ bdK so that [p1(m), q1(m)] has
direction e0. By condition 1), there is a line H(e0) which contains the middle points
of the chords [p0, q0] and [p1(m), q1(m)]. Similarly, there is a line H(em) containing
the middle points of the chords [p−1, q0(m)] and [p0, q1(m)].

Since the set
Y5(m) = {p0, q0, p−1(m), p1(m), q1(m)}

does not belong to a line, there is a unique quadric curve Q(m) containing Y5(m)
(see, e. g., [11, pp. 395–397]). If a point qk(m), k ≥ 2, is chosen in Cδ(h) ∩ bdK and
the line through qk(m) in direction e0 intersects H(e0) ∩ K, then let pk(m) be the
point in Cδ(h) ∩ bdK for which the line segment [pk(m), qk(m)] has direction e0.
If a point pk(m), k ≥ 2, is chosen in Cδ(h) ∩ bdK and the line through pk(m) in
direction em intersects both H(em)∩K and Cδ(h) ∩ bdK, then denote by qk+1(m)
the point in Cδ(h) ∩ bdK for which [pk(m), qk+1(m)] has direction em.

Similarly, if a point p−k(m), k ≥ 1, is chosen in Cδ(h)∩bd K and the line through
p−k(m) in direction e0 intersects H(e0) ∩ K, then denote by q−k(m) the point in
Cδ(h)∩bd K for which the line segment [p−k(m), q−k(m)] has direction e0. If a point
q−k(m), k ≥ 1, is chosen in Cδ(h) ∩ bdK and the line through q−k(m) in direction
em intersects both H(em)∩K and Cδ(h)∩bd K, then denote by p−k−1(m) the point
in Cδ(h) ∩ bdK for which [p−k−1(m), q−k(m)] has direction em.

By Lemma 3 and condition 1) of the theorem, the set

Y2k+2(m) = {p0, q0, p1(m), q1(m), . . . , pk(m), qk(m),

p−1(m), q−1(m), . . . , p−k(m), q−k(m)}

belongs to Q(m)∩Cδ(h)∩ bd K. Clearly, there is an increasing sequence of positive
integers k(m), m ≥ m0, such that Y2k(m)+2(m) exists for all m ≥ m0, and the sets

Y2k(m0)+2(m0), Y2k(m0+1)+2(m0 + 1), . . . ,

tend to a dense subset of Cδ(h) ∩ bdK. Hence the curves

Cδ(h) ∩ Q(m0), Cδ(h) ∩ Q(m0 + 1), . . .
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converge to Cδ(h) ∩ bdK, which shows that Cδ(h) ∩ bdK is a piece of a quadric
curve (consisting of one or two arcs). Continuously rotating h about o, we cover
bdK \(rec K∪−recK) by the family of overlapping pieces Cδ(h)∩bdK of the same
quadric curve. Hence the neighborhood Ωδ(o) of bdK \ (rec K ∪ −recK) in bdK
lies in a convex quadric.

Let n ≥ 3. Choose any 2-dimensional subspace L such that L ∩ K is bounded
(this is possible since K is assumed to be line-free). Then rec (L ∩ K) = {o}. If h
is a chord of L∩K and H ⊂ R

n is a hyperplane containing the middle points of all
chords of K which are parallel to h and lie within the cylinder Cδ(h), then Cδ(h)∩L
is a slab of width 2δ centered about the line containing h and L ∩ H is a line that
contains the middle points of all chords of L∩K that belong to Fδ(h). Hence L∩K
satisfies condition 1) of the theorem (with L instead of R

n) By the proved above
(see the case n = 2), rbd (L ∩ K) is a convex quadric; so, it is an ellipse.

Because the argument above holds for any choice of a 2-dimensional subspace L,
the set bdK \ (rec K ∪ −recK) lies in a convex quadric Q (see assertion (B) from
the introduction). If K is bounded, then rec K = {o} and the whole hypersurface
bdK is a convex quadric. Assume that K is unbounded and choose a halfline t
with endpoint o that lies in int K. Then (see the case n = 2) for any 2-dimensional
subspace L that contains t, the neighborhood Ωδ(o) of (L∩bdK)\(rec K∪−recK) in
rbd (L∩K) lies in L∩Q. Therefore the neighborhood Ωδ(o) of bdK\(rec K∪−recK)
in bdK lies in Q.

8 Proof of Theorem 6

The proof is organized by induction on n (≥ 3). Let n = 3. Consider the 1-di-
mensional subspace l = L1 ∩ L2 and choose a longest chord [x, z] of K in direction
l. Translating K on a suitable vector, we may suppose that the origin o of R

3 is
the middle point of [x, z]. By the assumption, both sections E1 = L1 ∩ bdK and
E2 = L2 ∩bdK are ellipses. Due to the choice of [x, z], there are parallel planes Mx

and Mz both supporting K such that K ∩ Mx = {x} and K ∩ Mz = {z} (see, e. g.,
[14]). Applying a suitable linear transformation, we may suppose that (i) L1 and L2

are orthogonal to each other, (ii) both ellipses E1 and E2 are circumferences with
diameter [x, z], (iii) both planes Mx and Mz are orthogonal to [x, z]. Clearly, the
image of K under this transformation still satisfies the hypothesis of the theorem.

Choosing suitable Cartesian coordinates ξ1, ξ2, ξ3 for R
3, we may consider that

x shows a positive direction of the ξ3-axis and

E1 = {(ξ1, 0, ξ3) : ξ2
1 + ξ2

3 = ρ2}, E2 = {(0, ξ2, ξ3) : ξ2
2 + ξ2

3 = ρ2},

where ρ = ‖x‖. Clearly, L1 and L2 are given by the equations ξ2 = 0 and ξ1 = 0,
respectively. Furthermore, Mx and Mz are described by ξ3 = ρ and ξ3 = −ρ.

Choose a point v ∈ (L3 ∩ bdK) \ (L1 ∪ L2) and consider the family of quadrics
Q(µ) defined by

ξ2
1 + ξ2

2 + ξ2
3 + µξ1ξ2 − ρ2 = 0,
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where µ is a scalar parameter. Clearly, Ei = Li ∩ Q(µ), i = 1, 2, for all µ ∈ R. If
v = (v1, v2, v3), then v /∈ L1 ∪ L2 if and only if v1v2 6= 0. Hence v ∈ Q = Q(µ0),
where

µ0 =
ρ2 − v2

1 − v2
2 − v2

3

v1v2
.

Since v lies within the slab −ρ ≤ ξ3 ≤ ρ and does not belong to the interior of
conv (E1 ∪ E2), the quadric Q is either a cylinder or an ellipsoid.

We state that the ellipse E3 = L3 ∩ bdK is symmetric about o and lies in Q.
Indeed, if L3 contains [x, z], then [x, z] is the longest diameter of E3, which shows
that E3 is uniquely determined by [x, z] and v. In particular, E3 is symmetric about
o. Since L3 ∩ Q is an ellipse containing {v, x, z} and supported by both planes Mx

and Mz, we conclude that E3 = L3 ∩ Q. If L3 does not contain [x, z], then L3

meets each of E1, E2 at a pair of points symmetric about o. Because E3 is uniquely
determined by v and the four points of intersection with E1 ∪ E2, the ellipse E3 is
symmetric about o and lies in Q.

Considering separately the cases l ⊂ L3 and l 6⊂ L3, we observe that a certain
plane u0 + L4, u0 ∈ bdK, intersects the union E1 ∪E2 ∪ E3 at precisely six points,
which do not belong to a line. Since the ellipse E4(u0) = (u0+L4)∩bdK is uniquely
determined by these six points and since (u0 + L4)∩Q is also an ellipse determined
by these points, one has E4(u0) ⊂ Q. By continuity, there is a small neighborhood U
of u0 such that the argument above holds for all u ∈ U . Clearly, the ellipses E4(u),
u ∈ U , cover an open “belt” Ω of bdK which lies in Q. Repeating this consideration
for the subspace L1 and all points u ∈ Ω, we obtain a wider “belt” of bdK which
also lies in Q. Since the whole bdK can be expressed as the union of an increasing
sequence of such “belts” obtained by the alternating consideration of translates of
L1 and L2, we conclude that bdK ⊂ Q. Therefor Q is a bounded convex quadric;
that is, bdK = Q is an ellipsoid.

Let n ≥ 4. Assume that the theorem is true for all R
m, m ≤ n−1, and let K ⊂ R

n

be a convex body which satisfies its hypothesis. Translating K on a suitable vector,
we may suppose that o ∈ int K. Choose an (n − 1)-dimensional subspace P ⊂ Rn

such that the (n−2)-dimensional subspaces P∩Li, i = 1, 2, 3, 4, are pairwise distinct.
From the hypothesis it follows that all proper sections of P ∩ bdK by translates
of the subspaces P ∩ Li, i = 1, 2, 3, 4, within P are (n − 2)-dimensional ellipsoids.
The inductive assumption gives that P ∩ bdK is an (n − 1)-dimensional ellipsoid.
Because the family of (n − 1)-dimensional subspaces P ⊂ R

n with the property

P ∩ Li 6= P ∩ Lj, i 6= j, i, j ∈ {1, 2, 3, 4},

is dense in the family of all (n − 1)-dimensional subspaces of R
n, we obtain, by

continuity, that every section of bdK by an (n − 1)-dimensional subspace is an
(n − 1)-dimensional ellipsoid. This implies that bdK is an ellipsoid itself (see [5]).



40 VALERIU SOLTAN

References

[1] Alonso J., Mart́ın P. Some characterizations of ellipsoids by sections, Discrete Comput.
Geom., 2004, 31, 643–654.

[2] Berger M. Geometry. I, II. Springer, Berlin, 1987.

[3] Blaschke W. Kreis und Kugel. Viet, Leipzig, 1916.

[4] Brunn H. Ueber Kurven ohne Wendepunkte. Habilitationschrift, Ackermann, München, 1889.

[5] Busemann H. The geometry of geodesics. Academic Press, New York, 1955.
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