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Estimation of the number of one-point expansions

of a topology∗ which is given on a finite set

V. I.Arnautov

Abstract. Let X be a finite set and τ be a topology on X which has precisely m

open sets. If t(τ ) is the number of possible one-point expansions of the topology τ on

Y = X
⋃
{y}, then

m · (m + 3)

2
−1 ≥ t(τ ) ≥ 2·m+log2m−1 and

m · (m + 3)

2
−1 = t(τ )

if and only if τ is a chain (i.e. it is a linearly ordered set) and t(τ ) = 2 ·m+ log2m− 1
if and only if τ is an atomistic lattice.
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1 Introduction

The present article is a continuation of the article [1].

The basic result of this article is Theorem 2, in which for any topology given on
a finite set, estimations of the number of one-point expansions are obtained.

To the proof of this theorem we applied the following algorithm, which is proved
in the article [1] and which allows to obtain any topology τ1 that is a one-point
expansion of the topology τ0 given on a finite set.

Let τ0 be some topology given on a finite set X0 and Y = X0
⋃
{y}.

1. We choose arbitrarily V0 ∈ τ0.

2. We choose arbitrarily U0 ∈ τ0 such that U0 ⊆
⋂

V ∈τ0,V *V0

V ( consider that

⋂
V ∈∅

V = X0).

3. We determine the topology

τ̃1(V0, U0) = {V ∈ τ | V ⊆ V0} ∪ {U ∪ {y} | U ∈ τ, U ⊇ U0}.

2 Main results

Assume that (X, τ) is a topological space.

c© V. I.Arnautov, 2011
∗If Y = X

⋃
{y} then a topology τ̃ on the set Y is called a one-point expansion of the topology

τ = τ̃ |X .
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Definition 1. A subset B ⊆ τ is called a base of the topological space (X, τ) if any
open set is a union of some sets from B.

Definition 2. A weight of the topological space (X, τ) is the minimal cardinal num-
ber m for which there exists a base of the topological space (X, τ) of cardinality
m.

Definition 3. The minimal base of the topological space (X, τ) is any base which
has cardinality equal to the weight of the space (X, τ).

Theorem 1. If X is a finite set and τ is a topology on X, then the topological space
(X, τ) has the unique minimal base.

Proof. For each element x ∈ X we consider the set V (x) =
⋂

U∈τ,x∈U
U and let

B = {V (x) | x ∈ X}.
Let’s show that B is a base in the topological space (X, τ).
From the finiteness of the set τ it follows that V (x) ∈ τ for any x ∈ X, and

hence, B ⊆ τ .
If now U ∈ τ , from the definition of the set V (x) it follows that V (x) ⊆ U for

any x ∈ U . Then U =
⋃

x∈U
{x} ⊆

⋃
x∈U

V (x) ⊆ U , and hence,
⋃

x∈U
V (x) = U .

From the randomness of U it follows that B is a base in the topological space
(X, τ).

Let’s show that B is a minimal base in the topological space (X, τ), i.e. that its
cardinality is equal to the weight of the topological space (X, τ).

Let B′ be some minimal base of the topological space (X, τ) and x ∈ X. As
V (x) ∈ τ and x ∈ V (x) then there exists V ′ ∈ B′ such that x ∈ V ′ ⊆ V (x). From
the definition of the set V (x) it follows that V (x) ⊆ V ′, and hence, V (x) = V ′ ∈ B′.
From the randomness of the element x ∈ X it follows that B = {V (x) | x ∈ X} ⊆ B′.

Then B ⊂ B′ or B = B′.
If B ⊂ B′, then from the finiteness of the set B′ it follows that cardinality of the

set B will be less than cardinality of the set B′. We have received a contradiction
with the choice of the base B′.

Hence B = B′.
From the randomness of the base B′ it follows that the minimal base of the

topological space (X, τ) is unique, and moreover, this minimal base can be received
by the method which is specified in the beginning of the proof of the theorem.

Proposition 1. Let X be a finite set and τ = {∅ = W1, . . . ,Wn = X} be a topology
on the set X. If the topology τ is a chain (i.e. it is a linearly ordered set), then τ

has precisely
n · (n + 3)

2
− 1 one-point expansions.

Proof. As τ is a chain we can consider that Wi ⊂Wi+1 for all 1 ≤ i < n.
If 1 ≤ i ≤ n − 1 and V0 = Wi (designations for V0 and U0 are given in Algo-

rithm 1), then
⋂

V ∈τ0,V *Wi

V =
n⋂

j=i+1
Wj = Wi+1. Then U0 can take i + 1 values,

namely, it can be any Wj for 1 ≤ j ≤ i+ 1.
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If V0 = X then
⋂

V ∈τ0,V *X

V =
⋂

V ∈∅

V = X. Then U0 can take n values. As

n−1∑

i=1

(i+ 1) + n =
(n+ 2) · (n− 1)

2
+ n =

n2 + n− 2

2
+ n =

n2 + n+ 2n− 2

2
=
n · (3 + n)

2
− 1

then we have
n · (n+ 3)

2
− 1 various pairs (V0, U0) and hence the topology τ has

precisely
n · (n+ 3)

2
− 1 various one-point expansions.

The proposition is completely proved.

Definition 4. As it is usual (see, for example, [3]), a lattice (L,≤) is called a
distributive lattice if inf{a, sup{b, c}} = sup{inf{a, b}, inf{a, c}} for any a, b, c ∈ L.

Definition 5. As it is usual, a nonzero element a of a lattice (L,≤) with zero is
called an atom if between 0 and a there are no other elements of the lattice (L,≤).

Definition 6. As it is usual, a lattice (L,≤) with zero is called (see, for example,
[2]) an atomistic lattice if for any nonzero element a ∈ L there exists a finite set
S ⊆ L of atoms of the lattice L such that a = supS.

Remark 1. From ([3, VIII, §2, Lemma 2] it follows that in any distributive, atomistic
lattice (L,≤) for any element a ∈ L there exists the unique set S ⊆ L of atoms of
the lattice L for which a = infS.

Remark 2. It is known that if (X, τ) is a topological space then (τ,≤) is a distributive
lattice with zero 0 = ∅, in which sup{U, V } = U

⋃
V and inf{U, V } = U

⋂
V .

Proposition 2. Let X be a finite set and τ be a topology on the set X. If τ is an
atomistic lattice and {W1, . . . ,Wn} is the set of all atoms of the lattice τ , then the
topology τ has precisely 2(n+1) + n− 1 one-point expansions.

Proof. Let Y = {y1, . . . , yn} and τ ′ = {M |M ⊆ Y } be the discrete topology on the
set Y .

If we map each subset M = {yi1, . . . , yik} ∈ τ ′ of the set Y on the subset
k⋃

j=1
Wij ∈ τ of the set X, then we define a mapping ψ : τ ′ → τ .

As the lattices τ ′ and τ are distributive and atomistic lattices, then (see Re-
mark 1) in each of them we shall present any element uniquely as the supremum of
some set of atoms. And as the sets {W1, . . . ,Wn} and {{y1}, . . . , {yn}} are sets of
all atoms in the lattices τ and τ ′, accordingly, then the mapping ψ : τ ′ → τ is a
lattice isomorphism. Then (see [1], Theorem 2.6) the topologies τ and τ ′ have the
same number of one-point expansions and hence (see [1], Theorem 2.7) the topology
τ has precisely 2(n+1) + n− 1 one-point expansions.

The proposition is completely proved.
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Theorem 2. Let X be a finite set and τ be a topology on X which has precisely m
open sets. If t(τ) is the number of possible one-point expansions of the topology τ
on the set Y = X

⋃
{y}, then the following statements are true:

A)
m · (m+ 3)

2
− 1 ≥ t(τ) ≥ 2 ·m+ log2m− 1;

B)
m · (m+ 3)

2
− 1 = t(τ) if and only if τ is a chain (i.e. it is a linearly ordered

set);

C) t(τ) = 2 ·m+ log2m− 1 if and only if τ is an atomistic lattice.

Proof. A) Let (see Theorem 1) {V1, . . . , Vk)} be the minimal base in the topological
space (X, τ).

As any U ∈ τ can be presented as the union of some sets from {V1, . . . , Vk},
then the number of all open sets in the topological space (X, τ) does not exceed the
number 2k of all subsets of the set {V1, . . . , Vk}, and hence, m ≤ 2k.

For every 1 ≤ i ≤ k we consider the set Ui =
⋃

U∈τ,Vi*U

U .

From the construction of minimal base (see the proof of Theorem 1) it follows
that there exists a subset {x1, . . . , xk} of the setX such that Vi = V (xi) =

⋂
U∈τ,xi∈U

U

for 1 ≤ i ≤ k. Then for any 1 ≤ i ≤ k it follows that xi ∈ U if and only if Vi ⊆ U
for any U ∈ τ , and hence, Ui =

⋃
U∈τ,xi /∈U

U .

Prove first that Ui 6= Uj for i 6= j.
We assume the contrary, i.e. that Us = Ul for some s 6= l.
Then from the minimality of the base {V1, . . . , Vk)} in the topological space

(X, τ) it follows that Vs 6= Vl. Let (for definiteness) Vs * Vl. Then xs /∈ Vl (otherwise
Vs =

⋂
U∈τ,xs∈U

U ⊆ Vl), and hence, Vs ⊆
⋃

U∈τ,xs /∈U

U = Us = Ul. Then xl ∈ Vl ⊆ Ul.

We obtain a contradiction with the construction of the sets Ul, and hence, Ui 6=
Uj for i 6= j.

Now let’s apply Algorithm 1 for calculation of the number t(τ) of one-point
expansions of the topology τ .

The following 3 cases are possible:
1. V0 = X;
2. V0 = Ui for some 1 ≤ i ≤ k;
3. V0 /∈ {X}

⋃
{Ui | 1 ≤ i ≤ k}.

Consider each of these cases separately.
1. Let V0 = X. Then

⋂
V *V0

V =
⋂

V ∈∅

V = X, and hence, U0 can take n values.

Then the number of all pairs (X,U0), where U0 ⊆ X, is equal to m.
2. Now let V0 = Ui for some 1 ≤ i ≤ k. Then

⋃

U∈τ,U*V0

U =
⋃

U∈τ,U*Ui

U =
⋃

U∈τ,xi /∈Ui

U = Vi 6= ∅,
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and hence, in this case the set U0 can take not less than two values.

Then the number of all pairs (Ui, U0) for 1 ≤ i ≤ k and U0 ⊆
⋂

V ∈τ,V *Ui

V is not

less than 2 · k.
3. Let V0 /∈ {X}

⋃
{U1, . . . , Uk}. Then ∅ ⊆

⋂
V ∈τ,V *V0

V , and hence, U0 can

take not less than one value. Then the number of all pairs (V0, U0) is not less than
1 · (m− k − 1) = m− k − 1.

Then the number of all pairs (V0, U0) will be not less than

m+ 2 · k +m− k − 1 = 2m+ k − 1 ≥ 2m+ log2m− 1.

Then (see [1], Theorem 2.7) the topology τ has not less than 2m + log2m − 1
one-point expansions, i.e. t(τ) ≥ 2m+ log2m− 1.

Now let’s show that t(τ) ≤
m · (m+ 3)

2
− 1.

Let τ = {W1, . . . ,Wm} be such a numbering of the set τ that Wi * Wj for
j < i (such a numbering of the set τ is possible as the set τ is finite). Then the set
{Wj ∈ τ |Wj ⊆Wi} has no more than i subsets for every 1 ≤ i ≤ m .

If V0 = Wi for 1 ≤ i ≤ m− 1, then U0 ⊆
⋂

V ∈τ,V *Wi

V ⊆ Wi+1, and hence it has

no more than i+ 1 subsets. And as for V0 = X the set U0 ⊆ X has m subsets, then
the number of all pairs (V0, U0) is no more than

(

m−1∑

i=1

(i+ 1)) +m =
(m+ 2) · (m− 1)

2
+m =

m2 + 2m−m− 2 + 2m

2
=
m · (m+ 3)

2
− 1.

Then the topology τ has no more than
m · (3 +m)

2
− 1 one-point expansions.

So, we have proved that 2 ·m+ log2m− 1 ≤ t(τ) ≤
m · (m+ 1)

2
+m− 1.

The statement A) is proved.

B) If τ is a chain then (see Proposition 1)
m · (m+ 3)

2
− 1 = t(τ).

If τ is not a chain, then Wk * Wk+1 (the definition of Wi at the end of the proof
of the statement A) ) for some 1 < k < m. Then the number of possible values for
the set U0 if V0 = Wk is strictly less than k + 1, and hence,

t(τ) < (

m−1∑

i=1

(i+ 1)) +m =
(m+ 2) · (m− 1)

2
+m =

m2 + 2m−m− 2 + 2m

2
=
m · (m+ 3)

2
− 1.
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The statement B) is proved.

C) If τ is an atomistic lattice and n is the number of atoms, then (see Proposi-
tion 2) t(τ) = 2(n+1) + n− 1. So in this case m = 2n, then t(τ) = 2 ·m+ log2m− 1.

If τ is not an atomistic lattice, then the set of all atoms is not a base of a
topological space (X, τ), and hence, there exists 1 ≤ i ≤ k such that Vi (definition
of sets Vj see in the beginning of the proof of statement A) ) is not an atom. Then
there exists ∅ 6= V ′ ∈ τ such that V ′ ⊂ Vi. As

⋃
U∈τ,xi /∈Ui

U = Vi (see the beginning of

the proof of the case 2 of the statement A) ), then the set {U ∈ τ | U *
⋃

U∈τ,xi /∈Ui

U}

contains not less than three subsets from τ , instead of two as we considered in
the proof of the statement A) (see the case 2). Hence, in this case we have that
t(τ) > 2m+ log2m− 1.

The statement C) is proved, and hence, the theorem is proved completely.
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