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Abstract. We study the compactification of the Wallman-Shanin type of Tp-spaces.
We have introduced the notion of compressed compactification and proved that any
compressed compactification is of the Wallman-Shanin type. The problem of the
validity of the equality w(X X Y) = wX X wY is examined. Two open questions have
arisen.
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1 Introduction. Preliminaries

Any space is considered to be a Ty-space. We use the terminology from [6,9].
By |A| we denote the cardinality of a set A, w(X) be the weight of a space X,
N = {1,2,...}. The intersection of 7 open sets is called a G -set. For any space
X denote by P.X the set X with the topology generated by the G -sets of the
space X.

Let 7 be an infinite cardinal. A space X is called 7-subtle if on X the closed
G -sets form a closed base.

Let X be a dense subspace of a space Y. The space Y is called a compressed
extension of the space X if for some infinite cardinal 7 the set X is dense in the
space P;Y and Y is 7-subtle. The cardinal 7 is called the index of compressing of
the extension Y of X and put ic(X CY) <.

Any completely regular space is Ng-subtle, i.e. is 7-subtle for any infinite
cardinal 7.

Example 1.1. Let 7 be an uncountable cardinal, I = [0, 1] and L be a dense subset
of I™ of the cardinality < 7. Denote by 7; the topology of the Tychonoff cube I7
and 7 is the topology generated by the open base 77 U{U \ L : U € 73}. Denote
by X the set I™ with the topology 7. The set L is closed in X. If m < 7, H is a
Gyn-set of X and L C H, then the set H is dense in X. Thus X is a Hausdorff space
which is not m-subtle for any m < .

Example 1.2. A space X is called feebly compact if any locally finite family of
open non-empty sets is finite. Let Y be an Ny-subtle extension of the feebly compact
space X. Then Y is a compressed extension of the space X and ic(X CY) < 7.
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Example 1.3. A completely regular space X is feebly compact if and only if it
is pseudocompact. Thus any completely regular extension Y of a pseudocompact
space X is compressed and ic(X CY) = N,.

Example 1.4. Let Y be the one-point Alexandroff compactification of an uncount-
able discrete space X. Then ic(X CY) = No.

Definition 1.5. A family L of subsets of a space X is called a WS-ring if L is a
family of closed subsets of X and FNH,F UH € L for any F,H € L.

Definition 1.6. A family £ of subsets of a space X is called a W F-ring if L is a
WS-ring and X \ F =U{H € L: HNF = (} for any F € L.

The family F(X) of closed subsets of a space X is a W S-ring. The family F(X)
is a W F-ring if and only if X is a Tj-space.

Definition 1.7. A g-compactification of a space X is a pair (Y, f), where Y is a
compact Ty-space, f: X — Y is a continuous mapping, the set f(X) is dense in'Y
and for any point y € Y\ f(X) the set {y} is closed in' Y. If f is an embedding, then
we say that 'Y is a compactification of X and consider that X CY, where f(z) =«
for any x € X.

Fix a W S-ring £ of a space X. For any x € X we put {(z,L) ={F € L:x € F}.
Denote by M (L, X) the family of all ultrafilters £ € £. Let w, X = M (L, X)U{¢ C
L: & =¢&(x,y) for some x € X}. Consider the mapping wy : X — w,eX, where
weX = &(x, L) for any x € X. On w,sX consider the topology generated by the
closed base < L >={< H >={{ €w, X :He}: HeL}

Theorem 1.8 (M. Choban, L. Calmutchi [5]). If £ is a WS-ring of a space X,
then:

1. (weX,wr) is a g-compactification of the space X.

2. < H>=cly,xwe(H), H=w;'(< H>) and < H > Nwg(X) = we(H) for
any H € L.

8. L is a WF-ring if and only if w, X is a T1-space.

Definition 1.9. A g-compactification (Y, f) of a space X is called a Wallman-
Shanin g-compactification of the space X if (X, f) = (weX,wr) for some W S-ring
L.

Definition 1.10. A g-compactification (Y, f) of a space X is called a Wallman-
Frink g-compactification of the space X if (X, f) = (weX,wr) for some W F-ring
L.

The compactifications of the Wallman-Shanin type were introduced by N. A.
Shanin [10] and studied by many authors (see [1,5,7,11-14] and the references
in these articles). Any Wallman-Frink g-compactification is a Wallman-Shanin g-
compactification. The Wallman compactification wX = wzrx)X is a Wallman-
Shanin compactification of X. The compactification wX is a Wallman-Frink com-
pactification if and only if X is a Tj-space. There exists Hausdorff compactifications
of discrete spaces which are not Wallman-Shanin compactifications [11,13].
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2  Comparison of the W S-rings

Following [7] and [14] on the family F(X) of closed subsets of a space X consider
the binary relation ~: A ~ B if and only if the set AAB = (A\ B)U (B\ A) is
relatively compact in X, i.e. its closure in X is compact.

For any family £ C F(X) we put mL = {F € F(X) : F ~ A for some A € L}.
A family £ is called maximal if £ =m/L.

Lemma 2.1. If £ is a WS-ring of subsets of a space X, then mL is a WS-ring
too.

Proof. Follows from the relations (AN B)A(FNH) C (AAF)U(BAH) and (AU
B)A(FUH) C (AAF)U(BAH).

Let £ and M be W S-rings of closed subsets of a space X. We put £ < M if
L C M and for each £ € wpmX we have EN L € we X.

Lemma 2.2. Let L and M be W S-rings of closed subsets of a space X and L <
M. Then there exists a unique continuous mapping ¢ : WpmX — weX such that
we(z) = e(wm(z)) for any x € X, ie. wp = powpnm.

Proof. By definition for any £ € wapX we have ENL € weX. We put (&) =N L.
Thus ¢ is a mapping of wyX into weX. Obviously, p(wpmX) = weX.

Ifx € X, then {(z, L) = &(x, M)N L. Hence wr(z) = p(wa(z)). For any F € L
we have ¢ 1({¢ € w X : F € &}) = {n € weX : F €n}. Thus the mapping ¢ is
continuous.

If f:wmX — weX is a continuous mapping and wy = f o wy, then f1({¢ €
weX Fegl)={n€weX :F €n}forany FF € L. Thus f = ¢. The proof is
complete.

Theorem 2.3. Let L be a WS-ring and a closed base of a space X and F € L
for any closed compact subset F' of X. Then (weX,wr) = (WmeX,wme). Moreover,
wr X is a compactification of the space X.

Proof. For any £ € wp X we put p(§) =&N L.

Claim 1. (&) € weX.

Let F € £ and F € . Then there exists H € ¢ such that F N H = (). Since
H € mL, we have H ~ ® for some ® € L. Hence, there exists a closed compact
subset ®1 € L such that HA®PAD;.

Case 1. ¢, € &.

In this case NE # () and there exists a point € ®; C X such that £ = &(z, mL).
In this case ¢(§) = ¢&(x, L) € weX.

Case 2. ¢ £ €.

In this case there exists H; € £ such that H; C H and H; N ®; = (). Since L is
a base, there exists Hy € £ such that H; C Hy and Hy N ®; = (). Then Hy € £ and
HyNF =1. Thus Hy € ¢(€) and Hy N F = (). Hense (&) is a maximal filter in £,
ie. p(§) € weX. Claim 1 is proved.

By virtue of Lemma 2.2, ¢ : w;,s X — w,X is the unique continuous mapping
for which wy = @ o wpr.

Claim 2. If E cw, X, Fe, He L,NE =0 and F ~ H, then H € &.



ON WALLMAN COMPACTIFICATIONS OF Tp-SPACES ... 105

There exists a compact subset ® € L such that FAH C ®. Let H ¢ £&. Then
there exists L € £ such that LC F,LNH =0 and LN® = (). Then F C HU® and
LN (HU®) =, a contradiction.

Claim 3. ¢ : wpy,X — we X is a homeomorphism.

Let &1,82 € wineX, &1 # & and 1 = ¢(§1) = ¢(§2). In this case N = 0.
Thus there exist Hy € & \ & and Hy € & \ & such that Hy N Hy = (. Since
Hi N Hy € mL, there exist F1,F>, € £ and a compact subset ® € L such that
Py~ H{,Fy, ~ Hy, FAH, C ®, F,AHy C ®. By virtue of Claim 2, we have F € &
and Fy € &. Then F, F5» € nand F1NE, C @, i.e. ® € 1, a contradiction. Therefore
¢ is a one-to-one mapping. Let H € mL and Hy = {{ € wyc X : H € £}. Assume
that 7 € wy,, X and H € 1.

Case 1. Nn # 0.

In this case n = £(xz,mL) for some x € X and x ¢ H. Since L is a base of X,
there exists F' € £ such that ¢ F and H C F. Thus ¢(n) & clu,.xp(H1).

Case 2. Nn = 0.

In this case there exists F' € £ such that H ~ . We can assume that H C F.
Then F ¢ n and p(n) € cly,.xp(H1) C {€ € weX : F € £}. Therefore the set p(H;)
is closed for any H € mM. Since {H; : H € mM is a closed base of w,sX, the
mapping ¢ is closed. Hence ¢ is a homeomorphism. The proof is complete.

Let £ and M be W S-rings of closed subsets of a space X. We put £L << M
if for any two sets Fy, Fy € £, with the empty intersection Fy N Fy = (), there exist
two sets Hi, Hy € M such that H; N Hy is a compact subset of X, F; C Hy and
Fy, C Hs. If L << M and M << L, then we put £ ~ M.

Proposition 2.4. Let L, M be two W S-rings and closed bases of a space X and
F € LNM for any closed compact subset F' of X. The next assertions are equivalent:
1. L << M.
2. mL << mM.
3. mL << M.

Proof. Let £L << M. Assume that Fy,Fy € mL and F; N Fy = (. By virtue of
Theorem 2.3, we have cl,, . x F1 Ncly,. x F1 = (). Then there exist two sets Ly, Ly € L
such that Ly N Ly = (0, F; C Ly and Fy, C L. Since £ << M, there exist two
sets Hi, Hy € M such that H; N Hy is a compact subset of X, F; C L1 C H;
and Fy C Lo C Hs. Therefore mL£ << M and mL << mM. The implications
1 — 3 — 2 — 3 are proved. Theorem 2.3 completes the proof.

Proposition 2.5. Let we X and wap X be Hausdorff compactifications of a space X
and F' € M for any compact subset F' of X. The next assertions are equivalent:

1. There exists a continuous mapping ¢ : wmX — weX such that o(x) = x for
any x € X.

2. L << M.

3. mL << M.

4. mL << mM.

Proof. Let ¢ : wpmX — weX be a continuous mapping and ¢(x) = x for any = € X.
Fix F1,F; € £ such that F; N F, = (. Then cl,.xF1 Ncly,.xF2 = 0. Since ¢ is a
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continuous mapping, then cl,,, x F1 Nely,, x Fo» = 0 . The family {cl,, xH : H € M}
is a closed base of a compact space waX. Thus there exists Hy, Hy € M such that
HiNHy=0,F C Hy,F, C Hy. Implication 1 — 2 is proved.

Assume that £ << M. There exist two continuous mappings f : 6X — wsX
and g : X — waX of the Stone-Cech compactification 3X of X such that f(z) =
g(x) = z for any x € X. It is sufficient to prove that p(z) = f(g~!(x)) is a singleton
for any © € wpX. Let y € we X and 21,22 € p(y) be two distinct points of wyX.
Obviously, y € wpmX \ X and ¢(y) € weX. There exists Fy, F € L such that
T € ClwcFl,xg S CZWCFQ and 1 N Fy = (. Let H{,H, e M, H= H{NH, bea
compact subset of X, Fy C Hy, Iy C Hy. Then H = cl,,,xHy Necly,,, xHo. Let
@y = f~l(x1) and @y = f1(x3). Then y € g(®1) N g(P3). Since &; C clgx F1
and g(clgx F1) = clu,,xF1 we have g(®1) C clo, xF1 C clo,,xHi and g(®2) C
clyyxFo C cly,xHs. Hence Y € H C X, a contradiction. Implication 2 — 1 is
proved. Proposition 2.4 completes the proof.

Corollary 2.6. Let wp X and wp X be Hausdorff compactifications of a space X.
Then we X = wpmX if and only if L ~ M.

3  On compressed compactification

Teorem 3.1. If (Y, f) is a compressed g-compactification of a space X, then (Y, f)
is a Wallman-Shanin g-compactification of the space X.

Proof. Let T be a cardinal number for which:

— f(X) is dense in P.Y;

— the closed G--subsets of Y form a closed base of the space Y.

We put Z = f(X). Denote by F.(Y) the family of all closed G -subsets of Y.
By construction, £ = {f~1(H) : H € F,(Y)} is a W S-ring of closed subsets of the
space X.

Claim 1. If H € F-(Y), then H = cly(H N Z).

Obviously, cly (HNZ) C H. Let y € H, U be an open subset of Y and y € U.
Then Y = UNH is a G,-subset of Y. Since Z is G,-dense in Y, we have VN Z # ().
Hence UN(HNZ) 2V NZ#( and y € cly(H N Z). Claim is proved.

Claim 2. (Y, f) = (weX,wr).

Let £ € we X.

Case 1. N # 0.

There exists € X such that £ = {(z, £). In this case we put ¢(&) = f(x)

Case 2. N¢ = 0.

In this case ¢ is an L-ultrafilter. Let & = {L, : a« € A}. For each a € A
there exists a unique H, € F,(Y) such that L, = f~!(H,). By construction,
n={Hy:a¢€ A} is an F,(Y)-ultrafilter and Nn = (). There exists a unique point
y € Y \ Z such that y € Nn. We put ¢(§) = y.

The mapping ¢ : wy X — Y of w,X onto Y is constructed. Obviously, the
mapping ¢ is one-to-one. By construction, ¢(wg(z)) = f(x) for any z € X and
o({€ € weX : f7Y(H) € &} = H for each H € F,(Y). Hence the mapping ¢ is a
homeomorphism. The proof is complete.
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Corollary 3.2. Let Y be a Hausdorff compactification of a space X and the space
X is Gy-dense in Y. ThenY is a Wallman-Frink compactification of the space X.

Corollary 3.3 (R. A. Alo, H. L. Shapiro [1], E. Wajch [14]). Let X be a pseudo-
compact space. Then any Hausdorff compactification Y of X is a Wallman-Frink
compactification.

Corollary 3.4. Let (Y, f) be a Hausdorff g-compactification of a feebly compact
space X. Then (Y, f) is a Wallman-Frink g-compactification of the space X.

For any discrete uncountable space the family of compressed Hausdorff com-
pactifications is large. Moreover, this fact is valid for Hausdorff paracompact locally
compact non-Lindelof spaces.

Theorem 3.5. Let X be a Hausdorff locally compact space which contains an
uncountable discrete family of open non-empty subsets. Assume that dimX = 0.
Then the family B of all compressed Hausdorff compactifications of X is uncountable
and BX = supB.

Proof. Fix n > 2. There exists a family {X,, : © € M} of open-and-closed subsets of
X such that for any p € M the set X, is compact and there exist n distinct points
b1y b2y s by € Xy The sets {B; = {bj, : o € M} : i < n} are closed and disjoint.
Fix n distinct points by, bg,...,b, € X \ X. Since the sets {clgxB; : i < n} are
disjoint we can assume that by, & U{clgxB; : j < n,j # i} for any i < n. Fix n
open-and-closed subsets {H; : i < n} of 3X \ X such that b; € H;, H; N H; = 0,
H;NeclgxBj =0 for any i # j and X \ X = U{H; : ¢ < n}. Then there exists a
compactification Y of X and a continuous mapping f : X — Y such that f(z) ==z
for any 2 € X and f~'(f(b;)) = H; for any i < n. The compactification Y is
compressed. By construction, the compressed compactifications B of X separate
the points of 5X. Thus X = supB. The proof is complete.

4 Cartesian products of compactifications

Let A be a non-empty set, {X, : @ € A} be a family of non-empty spaces,
X =1{Xy : a € A}, (baXa,pa) be a family of g-compactifications of given spaces
Xgo. Then bX = II{b, X, : @ € A} and the mapping ¢ : X — bX, where ¢((x, :
a € A)) = (pa(rq) : @ € A) for any (z, : @ € A) € X, is a g-compactification
of the space X. If each b, X, is a compactification of the space X,, then bX is a
compactification of the space X. Let L, be a W S-ring of closed sets of the space
Xo. Weput £ ={lI{H, : € A} : H, € Ly,a € A}, L={HUHyU..UH, :
H{,H,, .. . H, € E’,n S N}

Now we put £ = @{L, : a € A}.
Theorem 4.1. The family L of closed subsets of the space X is a W S-ring and
weX ={we, Xt a € A}

Proof. Obviously, £ is a W S-ring of closed subsets of the space X.
Let £ be an L'-filter. Obviously e(§) = {HUF : H € £, F € L} is a L-filter.
Moreover, ¢ is an L'-ultrafilter if and only if e(£) is an L-ultrafilter.
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Let x = (xq: o€ A}, €0 € Ly and € = {II{H, : aA} : H, € {,,a € A}. Then:
—if any &, is an L,-filter, then & is an L£'-filter;

— &, is an L-ultrafilter if and only if £ is an £'-ultrafilter;

—&o =&(xq, Ly) for any a € A if and only if € = &(x, L") and e(§) = &(z, L£).
These facts complete the proof.

Theorem 4.2. If |A| > 2, wX = [l{wX, : a € A} and any X, is an infinite
T1-space, then any space X is countably compact.

Proof. Fix f € A. Assume that the space Xg is not countably compact. Then Xz
contains an infinite, discrete and closed subset F' = {b,, : n € N}.

Since wZy = cl,z 7 for any closed subspace Z; of a Ty-space Z, we can assume
that XﬁF.

We put Yz = II{wX, : a € A~ {8}}. Obviously, X = Xg x Y3 and wX =
ng X wYﬁ.

If the space Yj is not countably compact, then Y3 contains a discrete infinite
space Z and w(Xg x Z) = clyx(Xg X Z) = (wXp X wZ), a contradiction with the
Glicksberg’s theorem ([6], Problem 3.12.20(d)). Thus we can assume that the space
Y} is countably compact.

In the space Y3 fix a set L = {¢, : n € N}, where ¢, # ¢, for distinct n,m € N.
The set ® = {(bn, cn) : n € N} is closed and discrete in X. Projection p : X3 x Y3 —
Xp is a continuous closed mapping. Fix an ultrafilter { of closed subsets of the
space X for which ® € £ and N§ = 0. Then p(§) = {p(H) : H € &} is an ultrafilter
of closed subsets of the space X. If Np(&) # 0, then there exists a unique point
b € X3 for which {b} = Np(§). In this case {b} x Yz € { and N = (). Since ® € ¢,
there exists a unique n € N such that b = b,, and (by,¢,) € H N ({b} x Yj3) for each
H € &, a contradiction with N¢ = (). Thus Np(§) = 0. Hence there exists a unique
b€ wXg\ Xg for which {b} = N{clx,H : H € p(§)}.

Since wX = wXp X wYj, there exists a unique ¢ € wYp \ Y3 such that (b, c) €
N{cluxH : H € £}. In this case X3 x {c} € £ There exists a unque n € N and
some H € & such that (b,,¢,) € ® N (X x {c}) and H N (Xg x {c}) = 0. Then
(b,c) € clyxH Nelyx (X x {c}) and clyx H Nelyx (X x {c}), a contradiction. The
proof is complete.

Theorem 4.3. Let f : X — Y be a continuous closed mapping of a space X onto a
space Y. Then there exists a unique continuous mapping wf : wX — wY such that
f=wf|X. Moreover, the mapping wf is closed.

Proof. If ¢ is an ultrafilter of closed subsets of X, then wf(§) = {f(H) : H € {} is
an ultrafilter of closed subsets of Y. The mapping w f is constructed.

Let 7 be an infinite cardinal number. A space X is called initial 7-compact if
any open cover v of X of the cardinality < 7 contains a finite subcover.

We say that the sequential character sx(X) < 7 if for any non-closed subset
H of X there exist a subset Y C X and a point z € X \ H such that z € Y,
x€cx(HNY)and x(Y,z) < 7. A space X is sequential if and only if sy (X) < .
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Theorem 4.4. Let T be an infinite cardinal number, X be an initial T-compact
space, Y be a compact space and sx(Y) < 7. Then:

1. The projection p: X x Y — Y, where p(z,y) =y for each (x,y) € X XY, is
a continuous closed-and-open mapping.

2. There ezists a continuous bijection ¢ : w(X X Y) — wX x Y such that
o(z,y) = (x,y) for all (x,y) € X X Y.

Proof. 1t is well known that the projection p is continuous and open.

Let yo € Y, W be an open subset of X x Y and p~'(y9) = X x {yo} C W.
Weput V={y €Y :pl(y) C W} Obviously, yo € V. We affirm that the set
V is open in Y. Suppose that the set V is not open in Y. Then the set ¥ \ V is
not closed in Y. Thus there exist a point z € V' and a subspace Z C Y such that
z€Z, z€dz(ZN(Y \NV)) and x(Z,z) < 7. We fix an open base {V,, : a« € A}
of the space Z at the point z such that |A|] < 7. For any o € A consider the
set Uy = U{U : U is open X, U x V,, € W}. Obviously X = U{U, : a € A}.
Since X is 7-compact and |A| < 7, there exists a finite set B C A such that
X = U{U, : o € B}. There exists an element § € A for which Vg C N{V,, : « € B}.
Then Ug 2 U{U, : @ € B} = X. Hence Us = X and X x V3 =Ugx V3 C W,
Therefore z € V3 C V and z ¢ cly (Y \ V), a contradiction. Assertion 1 is proved.

Consider the projection f: X xY — X. The mappings f and p are continuous
open-and-closed. Then there exist two continuous closed mappings wf : w(X xY) —
wX and wp : w(X X Y) — wY such thatf = wf|X xY and p = wp| X x Y. Consider
the continuous mapping ¢ : w(X xXY) — wX xY for which ¢(2) = (wf(2),wp(z)) for
each z € w(X x Y). By construction, we have ¢(z) = (f(z,y),p(z,y)) = (z,y) = =z
for each z = (z,y) e X XY Cw(X xY). Fix z € w(X xY )~ (X xY). Then there
exists a unique ultrafilter £ of closed subsets of X x Y for which {2} = N{cly,(xxy)H :
H € ¢}. The family p(§) = {g(H) : H € £} is an ultrafilter of closed subsets of the
space Y. There exists a unique point y(z) = wg(z) € N{clyg(H) : H € £}. In this
case X(&) = X x {y(z)} € & Thus £ = {HN X(€) : H € £} C ¢ is an ultrafilter of
closed subsets of the subspace X (§) of X x Y.

Let &, 7 be two ultrafilters of closed subsets of the space X xY', z € N{cly,(xxy)H :
H € &} and 2/ € N{clyxxyyH : H € n}. Assume that y(z) = y(z'). Then
X(¢€) = X(n) and there there exist H € £ and L € 7 such that H N L = .

Since f|X(€) : X(¢) — X is a homeomorphism, f(¢) = f(8), f(n) = f(7) and

FUH) A F(L) = 0. Thus f(€) # f(n) and wf(z) = N{elux f(M) : M € &} #
MN{clyx f(P): P e én} =wf(z). Therefore ¢ is a bijection. The proof is complete.

Corollary 4.6. Let 7 be an infinite cardinal number, X be an initial T-compact
normal space, Y be a compact Hausdorff space and sx(Y) < 7. Then:
1. w(X xY)=wX xY.

2. X XY 1is an initial T-compact normal space.
Remark 4.7. Let X be a first countable normal countably compact not paracom-
pact space and Y = $X. By virtue of Tamano’s Theorem (see [6], Theorem 5.1.38),
the space X xY is not normal. ThenwX = X and w(X xY) # (X xY) = wX xY.
Thus the restriction sx(Y) < 7 in the above assertions is essential.
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5 Remainders of compactifications

The main result of the section is the following theorem.

Theorem 5.1 For any space Y the following assertions are equivalent:

1. Y is a Ti-space.

2. There exists a Ty-space X such that the spaces Y and wX ~ X are homeo-
morphic.

3. There exists a T1-space X such that the spaces Y and wX ~ X are homeo-
morphic.

Proof. Let X be a Tp- space and Y = wX ~ X. Any ultrafilter of closed sets &
represents a point £ € wX for which the set {£} is closed in wX. Thus Y is a T}-
space. Implication 2 — 1 is proved. Implication 3 — 2 is obvious.

Let Y be a non-empty Ti-space. If Y is compact, then we put Z = Y. Let
Y be a non-compact space. Consider a point b ¢ Y. In this case Y is an open
subspace of the space Z = Y U {b}, where the base of the space Z at the point b
is the family {Z \ ® : ® is a closed compact subset of Y}. By construction Z is a
compact Tj-space. Fix an infinite cardinal number 7 > w(Z). Denote by W (77) the
space of all ordinal numbers of the cardinality < 7 in the topology generated by the
linear order. Then W (r™) is a normal initial 7-compact space and wW (1) \ (771)
= {c} is a singleton.

If the space Y is compact, we consider the space X = W (7T) x Y as a subspace
of the compact space wW (77) x Z. Further, if the space Y is not compact, then we
consider the space X = (W(77) x Y)U {(c,b)} as a subspace of the compact space
wW(rt) x Z.

Since the space X is initial 7-compact and sx(Z) < 7, the mapping g : X — Z,
where g(z,y) = y for any (z,y) € X, is continuous and open-and-closed. Hence
wX = wW(r") x Z. By construction, the spaces wX \ X = {¢} x Y and Y are
homeomorphic. The proof is complete.

Any Hausdorff locally compact space is a Wallman remainder of some normal
space.

Question 1. Under which conditions a completely regular space is a Wallman
remainder of some normal space?

Question 2. Under which conditions a T1-space is a Wallman remainder of some
completely reqular (regular, Hausdorff) space?

Other problems about remainders of spaces have been examined recently in [2—4].
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