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On Wallman compactifications of T0-spaces

and related questions

L. I. Calmuţchi, M.M.Choban

Abstract. We study the compactification of the Wallman-Shanin type of T0-spaces.
We have introduced the notion of compressed compactification and proved that any
compressed compactification is of the Wallman-Shanin type. The problem of the
validity of the equality ω(X × Y ) = ωX ×ωY is examined. Two open questions have
arisen.
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1 Introduction. Preliminaries

Any space is considered to be a T0-space. We use the terminology from [6, 9].
By |A| we denote the cardinality of a set A, w(X) be the weight of a space X,
N = {1, 2, ...}. The intersection of τ open sets is called a Gτ -set. For any space
X denote by PτX the set X with the topology generated by the Gτ -sets of the
space X.

Let τ be an infinite cardinal. A space X is called τ -subtle if on X the closed
Gτ -sets form a closed base.

Let X be a dense subspace of a space Y . The space Y is called a compressed
extension of the space X if for some infinite cardinal τ the set X is dense in the
space PτY and Y is τ -subtle. The cardinal τ is called the index of compressing of
the extension Y of X and put ic(X ⊂ Y ) ≤ τ .

Any completely regular space is ℵ0-subtle, i.e. is τ -subtle for any infinite
cardinal τ .

Example 1.1. Let τ be an uncountable cardinal, I = [0, 1] and L be a dense subset
of Iτ of the cardinality ≤ τ . Denote by T1 the topology of the Tychonoff cube Iτ

and T is the topology generated by the open base T1 ∪ {U \ L : U ∈ T1}. Denote
by X the set Iτ with the topology T . The set L is closed in X. If m < τ , H is a
Gm-set of X and L ⊆ H, then the set H is dense in X. Thus X is a Hausdorff space
which is not m-subtle for any m < τ .

Example 1.2. A space X is called feebly compact if any locally finite family of
open non-empty sets is finite. Let Y be an ℵ0-subtle extension of the feebly compact
space X. Then Y is a compressed extension of the space X and ic(X ⊂ Y ) ≤ τ .
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Example 1.3. A completely regular space X is feebly compact if and only if it
is pseudocompact. Thus any completely regular extension Y of a pseudocompact
space X is compressed and ic(X ⊆ Y ) = ℵ0.

Example 1.4. Let Y be the one-point Alexandroff compactification of an uncount-
able discrete space X. Then ic(X ⊆ Y ) = ℵ0.

Definition 1.5. A family L of subsets of a space X is called a WS-ring if L is a
family of closed subsets of X and F ∩ H,F ∪ H ∈ L for any F,H ∈ L.

Definition 1.6. A family L of subsets of a space X is called a WF -ring if L is a
WS-ring and X \ F = ∪{H ∈ L : H ∩ F = ∅} for any F ∈ L.

The family F(X) of closed subsets of a space X is a WS-ring. The family F(X)
is a WF -ring if and only if X is a T1-space.

Definition 1.7. A g-compactification of a space X is a pair (Y, f), where Y is a
compact T0-space, f : X → Y is a continuous mapping, the set f(X) is dense in Y
and for any point y ∈ Y \f(X) the set {y} is closed in Y . If f is an embedding, then
we say that Y is a compactification of X and consider that X ⊆ Y , where f(x) = x
for any x ∈ X.

Fix a WS-ring L of a space X. For any x ∈ X we put ξ(x,L) = {F ∈ L : x ∈ F}.
Denote by M(L,X) the family of all ultrafilters ξ ∈ L. Let ωLX = M(L,X)∪ {ξ ⊆
L : ξ = ξ(x, y) for some x ∈ X}. Consider the mapping ωL : X → ωLX, where
ωLX = ξ(x,L) for any x ∈ X. On ωLX consider the topology generated by the
closed base < L >= {< H >= {ξ ∈ ωLX : H ∈ ξ} : H ∈ L}.

Theorem 1.8 (M. Choban, L. Calmuţchi [5]). If L is a WS-ring of a space X,
then:

1. (ωLX,ωL) is a g-compactification of the space X.

2. < H >= clωLXωL(H), H = ω−1
L

(< H >) and < H > ∩ωL(X) = ωL(H) for
any H ∈ L.

3. L is a WF -ring if and only if ωLX is a T1-space.

Definition 1.9. A g-compactification (Y, f) of a space X is called a Wallman-
Shanin g-compactification of the space X if (X, f) = (ωLX,ωL) for some WS-ring
L.

Definition 1.10. A g-compactification (Y, f) of a space X is called a Wallman-
Frink g-compactification of the space X if (X, f) = (ωLX,ωL) for some WF -ring
L.

The compactifications of the Wallman-Shanin type were introduced by N. A.
Shanin [10] and studied by many authors (see [1, 5, 7, 11–14] and the references
in these articles). Any Wallman-Frink g-compactification is a Wallman-Shanin g-
compactification. The Wallman compactification ωX = ωF(X)X is a Wallman-
Shanin compactification of X. The compactification ωX is a Wallman-Frink com-
pactification if and only if X is a T1-space. There exists Hausdorff compactifications
of discrete spaces which are not Wallman-Shanin compactifications [11,13].
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2 Comparison of the WS-rings

Following [7] and [14] on the family F(X) of closed subsets of a space X consider
the binary relation ∼: A ∼ B if and only if the set A△B = (A \ B) ∪ (B \ A) is
relatively compact in X, i.e. its closure in X is compact.

For any family L ⊆ F(X) we put mL = {F ∈ F(X) : F ∼ A for some A ∈ L}.
A family L is called maximal if L = mL.

Lemma 2.1. If L is a WS-ring of subsets of a space X, then mL is a WS-ring
too.

Proof. Follows from the relations (A ∩ B)△(F ∩ H) ⊆ (A△F ) ∪ (B△H) and (A ∪
B)△(F ∪ H) ⊆ (A△F ) ∪ (B△H).

Let L and M be WS-rings of closed subsets of a space X. We put L ≤ M if
L ⊆ M and for each ξ ∈ ωMX we have ξ ∩ L ∈ ωLX.

Lemma 2.2. Let L and M be WS-rings of closed subsets of a space X and L ≤
M. Then there exists a unique continuous mapping ϕ : ωMX → ωLX such that
ωL(x) = ϕ(ωM(x)) for any x ∈ X, i.e. ωL = ϕ ◦ ωM.

Proof. By definition for any ξ ∈ ωMX we have ξ ∩L ∈ ωLX. We put ϕ(ξ) = ξ ∩ L.
Thus ϕ is a mapping of ωMX into ωLX. Obviously, ϕ(ωMX) = ωLX.

If x ∈ X, then ξ(x,L) = ξ(x,M)∩L. Hence ωL(x) = ϕ(ωM(x)). For any F ∈ L
we have ϕ−1({ξ ∈ ωLX : F ∈ ξ}) = {η ∈ ωLX : F ∈ η}. Thus the mapping ϕ is
continuous.

If f : ωMX → ωLX is a continuous mapping and ωL = f ◦ ωM, then f−1({ξ ∈
ωLX : F ∈ ξ}) = {η ∈ ωLX : F ∈ η} for any F ∈ L. Thus f = ϕ. The proof is
complete.

Theorem 2.3. Let L be a WS-ring and a closed base of a space X and F ∈ L
for any closed compact subset F of X. Then (ωLX,ωL) = (ωmLX,ωmL). Moreover,
ωLX is a compactification of the space X.

Proof. For any ξ ∈ ωLX we put ϕ(ξ) = ξ ∩ L.

Claim 1. ϕ(ξ) ∈ ωLX.

Let F ∈ L and F 6∈ ξ. Then there exists H ∈ ξ such that F ∩ H = ∅. Since
H ∈ mL, we have H ∼ Φ for some Φ ∈ L. Hence, there exists a closed compact
subset Φ1 ∈ L such that H△Φ△Φ1.

Case 1. Φ1 ∈ ξ.

In this case ∩ξ 6= ∅ and there exists a point x ∈ Φ1 ⊆ X such that ξ = ξ(x,mL).
In this case ϕ(ξ) = ξ(x,L) ∈ ωLX.

Case 2. Φ1 6∈ ξ.

In this case there exists H1 ∈ ξ such that H1 ⊆ H and H1 ∩ Φ1 = ∅. Since L is
a base, there exists H2 ∈ L such that H1 ⊆ H2 and H2 ∩ Φ1 = ∅. Then H2 ∈ ξ and
H2 ∩ F = ∅. Thus H2 ∈ ϕ(ξ) and H2 ∩ F = ∅. Hense ϕ(ξ) is a maximal filter in L,
i.e. ϕ(ξ) ∈ ωLX. Claim 1 is proved.

By virtue of Lemma 2.2, ϕ : ωmLX → ωLX is the unique continuous mapping
for which ωL = ϕ ◦ ωmL.

Claim 2. If ξ ∈ ωLX, F ∈ ξ, H ∈ L, ∩ξ = ∅ and F ∼ H, then H ∈ ξ.
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There exists a compact subset Φ ∈ L such that F△H ⊆ Φ. Let H 6∈ ξ. Then
there exists L ∈ ξ such that L ⊆ F,L∩H = ∅ and L∩Φ = ∅. Then F ⊆ H ∪Φ and
L ∩ (H ∪ Φ) = ∅, a contradiction.

Claim 3. ϕ : ωmLX → ωLX is a homeomorphism.

Let ξ1, ξ2 ∈ ωmLX, ξ1 6= ξ2 and η = ϕ(ξ1) = ϕ(ξ2). In this case ∩η = ∅.
Thus there exist H1 ∈ ξ1 \ ξ2 and H2 ∈ ξ2 \ ξ1 such that H1 ∩ H2 = ∅. Since
H1 ∩ H2 ∈ mL, there exist F1, F2 ∈ L and a compact subset Φ ∈ L such that
F1 ∼ H1, F2 ∼ H2, F1△H1 ⊆ Φ, F2△H2 ⊆ Φ. By virtue of Claim 2, we have F1 ∈ ξ1

and F2 ∈ ξ2. Then F1, F2 ∈ η and F1∩F2 ⊆ Φ, i.e. Φ ∈ η, a contradiction. Therefore
ϕ is a one-to-one mapping. Let H ∈ mL and H1 = {ξ ∈ ωmLX : H ∈ ξ}. Assume
that η ∈ ωmLX and H 6∈ η.

Case 1. ∩η 6= ∅.
In this case η = ξ(x,mL) for some x ∈ X and x 6∈ H. Since L is a base of X,

there exists F ∈ L such that x 6∈ F and H ⊆ F . Thus ϕ(η) 6∈ clωLXϕ(H1).

Case 2. ∩η = ∅.
In this case there exists F ∈ L such that H ∼ F . We can assume that H ⊆ F .

Then F 6∈ η and ϕ(η) 6∈ clωLXϕ(H1) ⊆ {ξ ∈ ωLX : F ∈ ξ}. Therefore the set ϕ(H1)
is closed for any H ∈ mM. Since {H1 : H ∈ mM is a closed base of ωLX, the
mapping ϕ is closed. Hence ϕ is a homeomorphism. The proof is complete.

Let L and M be WS-rings of closed subsets of a space X. We put L << M
if for any two sets F1, F2 ∈ L, with the empty intersection F1 ∩ F2 = ∅, there exist
two sets H1,H2 ∈ M such that H1 ∩ H2 is a compact subset of X, F1 ⊆ H1 and
F2 ⊆ H2. If L << M and M << L, then we put L ≈ M.

Proposition 2.4. Let L, M be two WS-rings and closed bases of a space X and
F ∈ L∩M for any closed compact subset F of X. The next assertions are equivalent:

1. L << M.

2. mL << mM.

3. mL << M.

Proof. Let L << M. Assume that F1, F2 ∈ mL and F1 ∩ F2 = ∅. By virtue of
Theorem 2.3, we have clωLXF1 ∩ clωLXF1 = ∅. Then there exist two sets L1, L2 ∈ L
such that L1 ∩ L2 = ∅, F1 ⊆ L1 and F2 ⊆ L2. Since L << M, there exist two
sets H1,H2 ∈ M such that H1 ∩ H2 is a compact subset of X, F1 ⊆ L1 ⊆ H1

and F2 ⊆ L2 ⊆ H2. Therefore mL << M and mL << mM. The implications
1 → 3 → 2 → 3 are proved. Theorem 2.3 completes the proof.

Proposition 2.5. Let ωLX and ωMX be Hausdorff compactifications of a space X
and F ∈ M for any compact subset F of X. The next assertions are equivalent:

1. There exists a continuous mapping ϕ : ωMX → ωLX such that ϕ(x) = x for
any x ∈ X.

2. L << M.

3. mL << M.

4. mL << mM.

Proof. Let ϕ : ωMX → ωLX be a continuous mapping and ϕ(x) = x for any x ∈ X.
Fix F1, F2 ∈ L such that F1 ∩ F2 = ∅. Then clωLXF1 ∩ clωLXF2 = ∅. Since ϕ is a
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continuous mapping, then clωLXF1 ∩ clωLXF2 = ∅ . The family {clωMXH : H ∈ M}
is a closed base of a compact space ωMX. Thus there exists H1,H2 ∈ M such that
H1 ∩ H2 = ∅, F1 ⊆ H1, F2 ⊆ H2. Implication 1 → 2 is proved.

Assume that L << M. There exist two continuous mappings f : βX → ωLX
and g : βX → ωMX of the Stone-Čech compactification βX of X such that f(x) =
g(x) = x for any x ∈ X. It is sufficient to prove that ϕ(x) = f(g−1(x)) is a singleton
for any x ∈ ωMX. Let y ∈ ωLX and x1, x2 ∈ ϕ(y) be two distinct points of ωLX.
Obviously, y ∈ ωMX \ X and ϕ(y) ⊆ ωLX. There exists F1, F2 ∈ L such that
x1 ∈ clωL

F1, x2 ∈ clωL
F2 and F1 ∩ F2 = ∅. Let H1,H2 ∈ M, H = H1 ∩ H2 be a

compact subset of X, F1 ⊆ H1, F2 ⊆ H2. Then H = clωMXH1 ∩ clωMXH2. Let
Φ1 = f−1(x1) and Φ2 = f−1(x2). Then y ∈ g(Φ1) ∩ g(Φ2). Since Φ1 ⊆ clβXF1

and g(clβXF1) = clωMXF1 we have g(Φ1) ⊆ clωMXF1 ⊆ clωMXH1 and g(Φ2) ⊆
clωMXF2 ⊆ clωMXH2. Hence Y ∈ H ⊆ X, a contradiction. Implication 2 → 1 is
proved. Proposition 2.4 completes the proof.

Corollary 2.6. Let ωLX and ωMX be Hausdorff compactifications of a space X.
Then ωLX = ωMX if and only if L ≈ M.

3 On compressed compactification

Teorem 3.1. If (Y, f) is a compressed g-compactification of a space X, then (Y, f)
is a Wallman-Shanin g-compactification of the space X.

Proof. Let τ be a cardinal number for which:
– f(X) is dense in PτY ;
– the closed Gτ -subsets of Y form a closed base of the space Y .
We put Z = f(X). Denote by Fτ (Y ) the family of all closed Gτ -subsets of Y .

By construction, L = {f−1(H) : H ∈ Fτ (Y )} is a WS-ring of closed subsets of the
space X.

Claim 1. If H ∈ Fτ (Y ), then H = clY (H ∩ Z).
Obviously, clY (H ∩ Z) ⊆ H. Let y ∈ H, U be an open subset of Y and y ∈ U .

Then Y = U ∩H is a Gτ -subset of Y . Since Z is Gτ -dense in Y , we have V ∩Z 6= ∅.
Hence U ∩ (H ∩ Z) ⊇ V ∩ Z 6= ∅ and y ∈ clY (H ∩ Z). Claim is proved.

Claim 2. (Y, f) = (ωLX,ωL).
Let ξ ∈ ωLX.
Case 1. ∩ξ 6= ∅.
There exists x ∈ X such that ξ = ξ(x,L). In this case we put ϕ(ξ) = f(x)
Case 2. ∩ξ = ∅.
In this case ξ is an L-ultrafilter. Let ξ = {Lα : α ∈ A}. For each α ∈ A

there exists a unique Hα ∈ Fτ (Y ) such that Lα = f−1(Hα). By construction,
η = {Hα : α ∈ A} is an Fτ (Y )-ultrafilter and ∩η = ∅. There exists a unique point
y ∈ Y \ Z such that y ∈ ∩η. We put ϕ(ξ) = y.

The mapping ϕ : ωLX → Y of ωLX onto Y is constructed. Obviously, the
mapping ϕ is one-to-one. By construction, ϕ(ωL(x)) = f(x) for any x ∈ X and
ϕ({ξ ∈ ωLX : f−1(H) ∈ ξ} = H for each H ∈ Fτ (Y ). Hence the mapping ϕ is a
homeomorphism. The proof is complete.
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Corollary 3.2. Let Y be a Hausdorff compactification of a space X and the space
X is Gτ -dense in Y . Then Y is a Wallman-Frink compactification of the space X.

Corollary 3.3 (R. A. Alo, H. L. Shapiro [1], E. Wajch [14]). Let X be a pseudo-
compact space. Then any Hausdorff compactification Y of X is a Wallman-Frink
compactification.

Corollary 3.4. Let (Y, f) be a Hausdorff g-compactification of a feebly compact
space X. Then (Y, f) is a Wallman-Frink g-compactification of the space X.

For any discrete uncountable space the family of compressed Hausdorff com-
pactifications is large. Moreover, this fact is valid for Hausdorff paracompact locally
compact non-Lindelöf spaces.

Theorem 3.5. Let X be a Hausdorff locally compact space which contains an
uncountable discrete family of open non-empty subsets. Assume that dimX = 0.
Then the family B of all compressed Hausdorff compactifications of X is uncountable
and βX = supB.

Proof. Fix n ≥ 2. There exists a family {Xµ : µ ∈ M} of open-and-closed subsets of
X such that for any µ ∈ M the set Xµ is compact and there exist n distinct points
b1µ, b2µ, ..., bnµ ∈ Xµ. The sets {Bi = {biµ : µ ∈ M} : i ≤ n} are closed and disjoint.
Fix n distinct points b1, b2, ..., bn ∈ βX \ X. Since the sets {clβXBi : i ≤ n} are
disjoint we can assume that bim 6∈ ∪{clβXBj : j ≤ n, j 6= i} for any i ≤ n. Fix n
open-and-closed subsets {Hi : i ≤ n} of βX \ X such that bi ∈ Hi,Hi ∩ Hj = ∅,
Hi ∩ clβXBj = ∅ for any i 6= j and βX \ X = ∪{Hi : i ≤ n}. Then there exists a
compactification Y of X and a continuous mapping f : βX → Y such that f(x) = x
for any x ∈ X and f−1(f(bi)) = Hi for any i ≤ n. The compactification Y is
compressed. By construction, the compressed compactifications B of X separate
the points of βX. Thus βX = supB. The proof is complete.

4 Cartesian products of compactifications

Let A be a non-empty set, {Xα : α ∈ A} be a family of non-empty spaces,
X = Π{Xα : α ∈ A}, (bαXα, ϕα) be a family of g-compactifications of given spaces
Xα. Then bX = Π{bαXα : α ∈ A} and the mapping ϕ : X → bX, where ϕ((xα :
α ∈ A)) = (ϕα(xα) : α ∈ A) for any (xα : α ∈ A) ∈ X, is a g-compactification
of the space X. If each bαXα is a compactification of the space Xα, then bX is a
compactification of the space X. Let Lα be a WS-ring of closed sets of the space
Xα. We put L′ = {Π{Hα : α ∈ A} : Hα ∈ Lα, α ∈ A}, L = {H1 ∪ H2 ∪ ... ∪ Hn :
H1,H2, ...,Hn ∈ L′, n ∈ N}.

Now we put L = ⊗{Lα : α ∈ A}.

Theorem 4.1. The family L of closed subsets of the space X is a WS-ring and
ωLX = Π{ωLαXα : α ∈ A}.

Proof. Obviously, L is a WS-ring of closed subsets of the space X.

Let ξ be an L′-filter. Obviously e(ξ) = {H ∪ F : H ∈ ξ, F ∈ L} is a L-filter.
Moreover, ξ is an L′-ultrafilter if and only if e(ξ) is an L-ultrafilter.
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Let x = (xα : α ∈ A}, ξα ⊆ Lα and ξ = {Π{Hα : αA} : Hα ∈ ξα, α ∈ A}. Then:

– if any ξα is an Lα-filter, then ξ is an L′-filter;

– ξα is an Lα-ultrafilter if and only if ξ is an L′-ultrafilter;

– ξα = ξ(xα,Lα) for any α ∈ A if and only if ξ = ξ(x,L′) and e(ξ) = ξ(x,L).

These facts complete the proof.

Theorem 4.2. If |A| ≥ 2, ωX = Π{ωXα : α ∈ A} and any Xα is an infinite
T1-space, then any space Xα is countably compact.

Proof. Fix β ∈ A. Assume that the space Xβ is not countably compact. Then Xβ

contains an infinite, discrete and closed subset F = {bn : n ∈ N}.

Since ωZ1 = clωZZ1 for any closed subspace Z1 of a T0-space Z, we can assume
that XβF .

We put Yβ = Π{ωXα : α ∈ A r {β}}. Obviously, X = Xβ × Yβ and ωX =
ωXβ × ωYβ.

If the space Yβ is not countably compact, then Yβ contains a discrete infinite
space Z and ω(Xβ × Z) = clωX(Xβ × Z) = (ωXβ × ωZ), a contradiction with the
Glicksberg’s theorem ([6], Problem 3.12.20(d)). Thus we can assume that the space
Yβ is countably compact.

In the space Yβ fix a set L = {cn : n ∈ N}, where cn 6= cm for distinct n,m ∈ N.
The set Φ = {(bn, cn) : n ∈ N} is closed and discrete in X. Projection p : Xβ ×Yβ →
Xβ is a continuous closed mapping. Fix an ultrafilter ξ of closed subsets of the
space X for which Φ ∈ ξ and ∩ξ = ∅. Then p(ξ) = {p(H) : H ∈ ξ} is an ultrafilter
of closed subsets of the space Xβ. If ∩p(ξ) 6= ∅, then there exists a unique point
b ∈ Xβ for which {b} = ∩p(ξ). In this case {b} × Yβ ∈ ξ and ∩ξ = ∅. Since Φ ∈ ξ,
there exists a unique n ∈ N such that b = bn and (bn, cn) ∈ H ∩ ({b} × Yβ) for each
H ∈ ξ, a contradiction with ∩ξ = ∅. Thus ∩p(ξ) = ∅. Hence there exists a unique
b ∈ ωXβ r Xβ for which {b} = ∩{clXβ

H : H ∈ p(ξ)}.

Since ωX = ωXβ × ωYβ, there exists a unique c ∈ ωYβ \ Yβ such that (b, c) ∈
∩{clωXH : H ∈ ξ}. In this case Xβ × {c} ∈ ξ. There exists a unque n ∈ N and
some H ∈ ξ such that (bn, cn) ∈ Φ ∩ (Xβ × {c}) and H ∩ (Xβ × {c}) = ∅. Then
(b, c) ∈ clωXH ∩ clωX(Xβ ×{c}) and clωXH ∩ clωX(Xβ ×{c}), a contradiction. The
proof is complete.

Theorem 4.3. Let f : X → Y be a continuous closed mapping of a space X onto a
space Y. Then there exists a unique continuous mapping ωf : ωX → ωY such that
f = ωf |X. Moreover, the mapping ωf is closed.

Proof. If ξ is an ultrafilter of closed subsets of X, then ωf(ξ) = {f(H) : H ∈ ξ} is
an ultrafilter of closed subsets of Y . The mapping ωf is constructed.

Let τ be an infinite cardinal number. A space X is called initial τ -compact if
any open cover γ of X of the cardinality ≤ τ contains a finite subcover.

We say that the sequential character sχ(X) < τ if for any non-closed subset
H of X there exist a subset Y ⊆ X and a point x ∈ X \ H such that x ∈ Y ,
x ∈ clX(H ∩Y ) and χ(Y, x) < τ . A space X is sequential if and only if sχ(X) ≤ ℵ0.
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Theorem 4.4. Let τ be an infinite cardinal number, X be an initial τ -compact
space, Y be a compact space and sχ(Y ) ≤ τ . Then:

1. The projection p : X × Y → Y , where p(x, y) = y for each (x, y) ∈ X × Y, is
a continuous closed-and-open mapping.

2. There exists a continuous bijection ϕ : ω(X × Y ) → ωX × Y such that
ϕ(x, y) = (x, y) for all (x, y) ∈ X × Y .

Proof. It is well known that the projection p is continuous and open.

Let y0 ∈ Y , W be an open subset of X × Y and p−1(y0) = X × {y0} ⊆ W .
We put V = {y ∈ Y : p−1(y) ⊆ W}. Obviously, y0 ∈ V . We affirm that the set
V is open in Y . Suppose that the set V is not open in Y . Then the set Y r V is
not closed in Y . Thus there exist a point z ∈ V and a subspace Z ⊆ Y such that
z ∈ Z, z ∈ clZ(Z ∩ (Y r V )) and χ(Z, z) ≤ τ . We fix an open base {Vα : α ∈ A}
of the space Z at the point z such that |A| ≤ τ . For any α ∈ A consider the
set Uα = ∪{U : U is open X, U × Vα ⊆ W}. Obviously X = ∪{Uα : α ∈ A}.
Since X is τ -compact and |A| ≤ τ , there exists a finite set B ⊆ A such that
X = ∪{Uα : α ∈ B}. There exists an element β ∈ A for which Vβ ⊆ ∩{Vα : α ∈ B}.
Then Uβ ⊇ ∪{Uα : α ∈ B} = X. Hence Uβ = X and X × Vβ = Uβ × Vβ ⊆ W .
Therefore z ∈ Vβ ⊆ V and z /∈ clY (Y r V ), a contradiction. Assertion 1 is proved.

Consider the projection f : X × Y → X. The mappings f and p are continuous
open-and-closed. Then there exist two continuous closed mappings ωf : ω(X×Y ) →
ωX and ωp : ω(X × Y ) → ωY such thatf = ωf |X ×Y and p = ωp|X ×Y. Consider
the continuous mapping ϕ : ω(X×Y ) → ωX×Y for which ϕ(z) = (ωf(z), ωp(z)) for
each z ∈ ω(X × Y ). By construction, we have ϕ(z) = (f(x, y), p(x, y)) = (x, y) = z
for each z = (x, y) ∈ X × Y ⊆ ω(X × Y ). Fix z ∈ ω(X × Y ) r (X × Y ). Then there
exists a unique ultrafilter ξ of closed subsets of X×Y for which {z} = ∩{clω(X×Y )H :
H ∈ ξ}. The family p(ξ) = {g(H) : H ∈ ξ} is an ultrafilter of closed subsets of the
space Y . There exists a unique point y(z) = ωg(z) ∈ ∩{clY g(H) : H ∈ ξ}. In this
case X(ξ) = X × {y(z)} ∈ ξ. Thus ξ = {H ∩ X(ξ) : H ∈ ξ} ⊆ ξ is an ultrafilter of
closed subsets of the subspace X(ξ) of X × Y.

Let ξ, η be two ultrafilters of closed subsets of the space X×Y , z ∈ ∩{clω(X×Y )H :
H ∈ ξ} and z′ ∈ ∩{clω(X×Y )H : H ∈ η}. Assume that y(z) = y(z′). Then

X(ξ) = X(η) and there there exist H ∈ ξ and L ∈ η such that H ∩ L = ∅.
Since f |X(ξ) : X(ξ) → X is a homeomorphism, f(ξ) = f(ξ), f(η) = f(η) and
f(H) ∩ f(L) = ∅. Thus f(ξ) 6= f(η) and ωf(z) = ∩{clωXf(M) : M ∈ ξ} 6=
∩{clωXf(P ) : P ∈ ξη} = ωf(z′). Therefore ϕ is a bijection. The proof is complete.

Corollary 4.6. Let τ be an infinite cardinal number, X be an initial τ -compact
normal space, Y be a compact Hausdorff space and sχ(Y ) ≤ τ . Then:

1. ω(X × Y ) = ωX × Y.

2. X × Y is an initial τ -compact normal space.

Remark 4.7. Let X be a first countable normal countably compact not paracom-
pact space and Y = βX. By virtue of Tamano’s Theorem (see [6], Theorem 5.1.38),
the space X×Y is not normal. Then ωX = βX and ω(X×Y ) 6= β(X×Y ) = ωX×Y .
Thus the restriction sχ(Y ) ≤ τ in the above assertions is essential.
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5 Remainders of compactifications

The main result of the section is the following theorem.

Theorem 5.1 For any space Y the following assertions are equivalent:

1. Y is a T1-space.

2. There exists a T0-space X such that the spaces Y and ωX r X are homeo-
morphic.

3. There exists a T1-space X such that the spaces Y and ωX r X are homeo-
morphic.

Proof. Let X be a T0- space and Y = ωX r X. Any ultrafilter of closed sets ξ
represents a point ξ ∈ ωX for which the set {ξ} is closed in ωX. Thus Y is a T1-
space. Implication 2 → 1 is proved. Implication 3 → 2 is obvious.

Let Y be a non-empty T1-space. If Y is compact, then we put Z = Y . Let
Y be a non-compact space. Consider a point b /∈ Y . In this case Y is an open
subspace of the space Z = Y ∪ {b}, where the base of the space Z at the point b
is the family {Z \ Φ : Φ is a closed compact subset of Y }. By construction Z is a
compact T1-space. Fix an infinite cardinal number τ ≥ w(Z). Denote by W (τ+) the
space of all ordinal numbers of the cardinality ≤ τ in the topology generated by the
linear order. Then W (τ+) is a normal initial τ -compact space and ωW (τ+) \ (τ+)
= {c} is a singleton.

If the space Y is compact, we consider the space X = W (τ+)× Y as a subspace
of the compact space ωW (τ+)×Z. Further, if the space Y is not compact, then we
consider the space X = (W (τ+) × Y ) ∪ {(c, b)} as a subspace of the compact space
ωW (τ+) × Z.

Since the space X is initial τ -compact and sχ(Z) ≤ τ , the mapping g : X −→ Z,
where g(z, y) = y for any (z, y) ∈ X, is continuous and open-and-closed. Hence
ωX = ωW (τ+) × Z. By construction, the spaces ωX \ X = {c} × Y and Y are
homeomorphic. The proof is complete.

Any Hausdorff locally compact space is a Wallman remainder of some normal
space.

Question 1. Under which conditions a completely regular space is a Wallman
remainder of some normal space?

Question 2. Under which conditions a T1-space is a Wallman remainder of some
completely regular (regular, Hausdorff) space?

Other problems about remainders of spaces have been examined recently in [2–4].
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