
BULETINUL ACADEMIEI DE ŞTIINŢE
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Abstract. New calculation procedures for finding the probabilities of state transi-
tions of the system in Markov chains based on dynamic programming are developed
and polynomial time algorithms for determining the limit state matrix in such pro-
cesses are proposed. Computational complexity aspects and possible applications of
the proposed algorithms for the stochastic optimization problems are characterized.
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1 Introduction and Preliminary Results

In this paper we develop a dynamic programming approach for finite Markov
processes and propose polynomial time algorithms for determining the limit state
matrix in Markov chains. A characterization of a simple Markov process and the
basic definitions related to determining the probabilities of state transitions of the
system in such processes can be found in [3–5, 9, 10]. Here, for the finite Markov
processes, we consider the problem of determining the probability of system’s tran-
sition from a starting state to a final one when the final state is reached at the
time-moment which belongs to a given interval of time. For such a specific case, we
develop dynamic programming algorithms. Furthermore, the asymptotic behavior
of the proposed algorithms are analyzed. Such a characterization of the problem
allows us to apply a new approach for studying Markov chains and to elaborate
polynomial time algorithms for determining the limit state probabilities of the dy-
namical system in such processes. We show that for non-ergodic Markov chains the
limit probability matrix can be found in polynomial time. Therefore, we propose two
polynomial time algorithms. The computational complexity of the first algorithm is
O(n4) and of the second one is O(n3). Note that the well-known algorithm from [9]
(see also [4, 5, 10]) in the worst case uses O(n4) elementary operations. Comparing
this algorithm with proposed ones we can conclude that the approach described
below allows us to ground new efficient algorithms for determining the limit state
matrix in Markov chains. Additionally, we develop dynamic programming proce-
dures for the calculation of the state probability transitions in the non-stationary
discrete Markov processes. The proposed calculation procedures and algorithms can
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be used for studying and solving the stochastic version of classical discrete optimal
control problems [2–9].

In this paper we consider discrete Markov processes with a finite set of states
[3, 5, 7]. We denote the set of states of the dynamical system in such processes
by X = {x1, x2, . . . , xn}. At the moment of time t = 0 the state of the system
is xi0 . For an arbitrary state x ∈ X the probabilities px,y of system’s transitions
from x to another states y ∈ X such that

∑
y∈X

px,y = 1 are given. So, we assume

that the Markov process is determined by the stochastic matrix of probabilities
P = (px,y) and the starting state xi0 of the dynamical system. The probability
Pxi0

(x, t) of system’s transitions from the state xi0 to an arbitrary state x ∈ X by
using t transitions is defined and calculated on the basis of the following recursive
formula [3]

Pxi0
(x, τ + 1) =

∑

y∈X

Pxi0
(y, τ)py,x, τ = 0, 1, 2, . . . , t− 1,

where Pxi0
(xi0 , 0) = 1 and Pxi0

,0(x, 0) = 0 for x ∈ X \ {xi0}. This formula can be
represented in the matrix form by

π(τ + 1) = π(τ)P, τ = 0, 1, 2, . . . , t− 1. (1)

Here π(τ) = (π1(τ), π2(τ), . . . , πn(τ)) is the vector, where the component i expresses
the probability of the system L to reach from xxi0

the state xi at the moment of time
τ , i.e. πi(τ) = Pxi0

(xi, τ). At the starting moment of time τ = 0 the vector π(τ)
is given and its components are defined by πi0(0) = 1 and πi(0) = 0 for arbitrary
i 6= i0. If for given starting vector π(0) we apply our formula for t = 0, 1, 2, . . . , t−1,
then we obtain

π(t) = π(0)P (t)

where P (t) = P ×P ×· · ·×P . So, an arbitrary element p
(t)
x,y of this matrix expresses

the probability of system L to reach the state y from x by using t units of times.
Formula (1) can be applied for the calculation of the state probabilities of the

system in finite Markov processes. In the case τ → ∞ this formula leads to the

relation π = πP which together with the condition
n∑

i=1
πi = 1 allows us to determine

the limit state probabilities in ergodic Markov chains.

2 The Main Results

To solve our main problem we need to develop special calculation procedures for
determining the probability of system’s transitions from a starting state to a final
one when the final state is reached at the time-moment from given interval of time.
We describe such calculation procedures which will allow us to ground polynomial
time algorithms for finding the limit state matrix in aperiodic Markov chains.
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2.1 Calculation of the Probabilities of States Transition of the
System with a Given Restriction on the Number of Stages

In this subsection we show how to calculate the probability of system’s transitions
from the state xi0 to the state x when x is reached at the time moment T (x) such
that T1 ≤ T (x) ≤ T2 where T1 and T2 are given. So, we consider the problem of
determining the probability of the system L to reach the state x at least at one of
the moments of time T1, T1 + 1, . . . , T2. We denote this probability by Pxi0

(x, T1 ≤
T (x) ≤ T2). Some reflections on this definition allow us to write the following
formula

Pxi0
(x, T1 ≤ T (x) ≤ T2) =

= Pxi0
(x, 0 ≤ T (x) ≤ T2)− Pxi0

(x, 0 ≤ T (x) ≤ T1 − 1).

Further we describe some results which allow to calculate the probability
Px(y, 0 ≤ T (y) ≤ t) for x, y ∈ X and t = 1, 2, . . . . For this reason we shall give
the graphical interpretation of the Markov processes using the graph of state tran-
sitions GR = (X, ER) [1, 3, 7, 10]. In this graph each vertex x ∈ X corresponds to
a state of the dynamical system and a possible system passage from one state x to
another state y with positive probability px,y is represented by the directed edge
e = (x, y) ∈ ER from x to y; to directed edges (x, y) ∈ ER in GR the corresponding
probabilities px,y are associated. It is evident that in the graph GR each vertex
x contains at least one leaving edge (x, y) and

∑
y∈X

px,y = 1. As an example the

graph of state transitions GR = (X, ER) for the Markov process with the stochastic
matrix of probabilities

P =




0.3 0.3 0.4 0
0.5 0 0.5 0
0 0.4 0 0.6
0 0.3 0.5 0.2




is represented in Fig. 1.
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In general we will consider also the stochastic process which may stop if one of
the states from a given subset of states of dynamical system is reached. This means
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that the graph of such a process may contain the so-called deadlock vertices. So,
we consider the stochastic process for which the graph of transition probabilities
may contain the deadlock vertices y ∈ X and

∑
z∈X

px,z = 1 for the vertices x ∈ X

which contain at least one leaving directed edge. As an example in Fig. 2 a graph
GR = (X, ER) which contains a deadlock vertex is represented.
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This graph corresponds to the stochastic process with the following matrix of state
transitions

P =




0.3 0.3 0.4 0
0.5 0 0.3 0.2
0 0.6 0 0.4
0 0 0 0


.

Such graphs do not correspond to a Markov process and the matrix of probability
P contains a row with zero components. Nevertheless the probabilities Px0(x, t) in
this case can be calculated on the basis of the recursive formula given above. Note
that the matrix P can be easily transformed into a stochastic matrix changing the
probabilities py,y = 0 for deadlock states y ∈ X by the probabilities py,y = 1.
This transformation leads to a new graph which corresponds to a Markov process
because the obtained graph contains a new directed edge e = (y, y) with pe = 1
for y ∈ X. We call the vertices y ∈ X in this graph the absorbing vertices and
the corresponding states of the dynamical system in Markov process the absorbing
states. So, the stochastic process which may stop in a given set of states can be
represented either by a graph with deadlock vertices or by a graph with absorbing
vertices. In Fig. 3 represents the graph with absorbing vertex y = 4 for the Markov
process defined by the matrix P given below.

P =




0.3 0.3 0.4 0
0.5 0 0.3 0.2
0 0.6 0 0.4
0 0 0 1.0


.

It is easy to see that the stochastic matrix P in this example is obtained from
the previous one by changing p4,4 = 0 with p4,4 = 1. The corresponding graph with
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the absorbing vertex y = 4 in this case is obtained from the graph on Fig. 2 by
adding the directed edge e = (4, 4) with p4,4 = 1.

We shall calculate the probabilities Px(y, 0 ≤ T (y) ≤ t) by using the graph with
absorbing vertices.

Lemma 1. Let a Markov process be given for which the graph GR = (X, ER)
contains an absorbing vertex y ∈ X. Then for an arbitrary state x ∈ X the following
recursive formula holds:

Px(y, 0 ≤ T (y) ≤ τ + 1) =
∑

z∈X

px,zPz(y, 0 ≤ T (z) ≤ τ), τ = 0, 1, 2, . . . ,

where Px(y,0 ≤ T (y) ≤ 0) = 0 if x 6= y and Py(y, 0 ≤ T (y) ≤ 0) = 1.

Proof. It is easy to observe that for τ = 0 the theorem holds. Moreover, we can
see that here the condition that y is an absorbing state is essential; otherwise for
x = y the recursive formula from lemma fails to hold. For τ ≥ 1 the correctness
of this formula follows from the definition of the probabilities Px(y, 0 ≤ T (y) ≤
τ + 1), Pz(y, 0 ≤ T (z) ≤ τ) and from the induction principle on τ .

The recursive formula from this lemma can be written in matrix form by

π′(τ + 1) = Pπ′(τ), τ = 0, 1, 2, . . . .

Here P is the stochastic matrix of the Markov process with the absorbing state
y ∈ X and

π′(τ) =




π′1(τ)
π′2(τ)

...
π′n(τ)


 , τ = 0, 1, 2, . . .

are the column vectors, where an arbitrary component π′i(τ) expresses the probabil-
ity of the dynamical system to reach the state y from xi by using not more than τ
unites of times, i.e. π′i(τ) = Pxi(y, 0 ≤ T (y) ≤ τ). At the starting moment of time
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τ = 0 the vector π′(0) is given: All components are equal to zero except for the
component corresponding to the absorbing vertex which is equal to one, i.e.

π′i(0) =
{

0, if xi 6= y;
1, if xi = y.

If we apply this formula for τ = 0, 1, 2, . . . , t− 1, then we obtain

π′(t) = P (t)π′(0), t = 1, 2, . . . .

So, if we denote by jy the column of the matrix P (t) which corresponds to the absorb-
ing state y then an arbitrary element p

(t)
i,jy

of this column expresses the probability
of the system L to reach the state y from xi by using not more than t units of time,
i.e. p

(t)
i,jy

= Pxi(y, 0 ≤ T (x) ≤ t). This allows us to formulate the following lemma:

Lemma 2. Let a finite Markov process with the absorbing state y ∈ X be given.
Then:

a) Pxi(y, τ) = Pxi(y, 0 ≤ T (y) ≤ τ), for xi ∈ X \ {y}, τ = 1, 2, . . . ;

b) Pxi(y, T1 ≤ T (y) ≤ T2) = p
(T2)
i,jy

− p
(T1−1)
i,jy

.

Proof. The condition a) in this lemma holds because

Pxi(y, τ) = p
(τ)
i,jy

= Pxi(y, 0 ≤ T (y) ≤ τ).

The condition b) we obtain from Lemma 1 and the following properties

Pxi(y, 0 ≤ T (y) ≤ T2) = p
(T2)
i,jy

, Pxi(y, 0 ≤ T (y) ≤ T1 − 1) = p
(T1−1)
i,jy

.

So, to calculate Pxi(y, T1 ≤ T (y) ≤ T2) it is sufficient to find the matrices
P (T1−1), P (T2) and then to apply the formula from Lemma 2.

The procedure of the calculation of the probabilities Px(y, 0 ≤ T (y) ≤ t) in the
case of the Markov process without absorbing states can be easily reduced to the
procedure of the calculation of the probabilities in the Markov process with the
absorbing state y by using the following transformation of the stochastic matrix P .
We put piy ,j = 0 if j 6= iy and piy ,iy = 1. It is easy to see that such a transformation
of the matrix P does not change the probabilities Px(y, 0 ≤ T (y) ≤ t). After
such a transformation we obtain a new stochastic matrix for which the recursive
formula from the Lemma 21 can be applied. In general for the Markov processes
with absorbing state these probabilities can be calculated by using the algorithm
which works with the original matrix P without changing its elements. Below such
an algorithm is described.
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Algorithm 1: Determining the state probabilities of the system with
a restriction on number of transitions (stationary case)

Preliminary step (Step 0): Put Px(y, 0 ≤ T (y) ≤ 0) = 0 for every x ∈ X \ {y}
and Py(y, 0 ≤ T (x) ≤ 0) = 1.

General step (Step τ + 1, τ ≥ 0): For every x ∈ X \ {y} calculate

Px(y, 0 ≤ T (x) ≤ τ + 1) =
∑

z∈X

px,zPz(y, 0 ≤ T (y) ≤ τ) (2)

and then put
Py(y, 0 ≤ T (y) ≤ τ + 1) = 1. (3)

If τ < t− 1 then go to next step; otherwise STOP.

Theorem 1. Algorithm 1 correctly finds the probabilities Px(y, 0 ≤ T (x) ≤ τ) for
x ∈ X, τ = 0, 1, 2, . . . , t− 1.

Proof. It is easy to see that the probabilities Px(y, 0 ≤ T (x) ≤ τ + 1) at the general
step of the algorithm are calculated on the basis of formula (2) which takes into
account condition (3). This calculation procedure is equivalent with the calculation
of the probabilities Px(y, 0 ≤ T (x) ≤ τ + 1) with the condition that the state y is
an absorbing state. So, the algorithm is correct.

If in Algorithm 1 we use the notation π′i(τ) = Pxi(y, 0 ≤ T (y) ≤ τ), πiy(τ) =
Py(y, 0 ≤ T (y) ≤ τ) then we obtain the following description of the algorithm in a
matrix form:

Algorithm 2: Calculation of the state probabilities of the system in
the matrix form (stationary case)

Preliminary step (Step 0): Fix the vector π′(0) = (π′1(0), π′2(0), . . . , π′n(0)), where
π′i(0) = 0 for i 6= iy and π′iy(0) = 1.

General step (Step τ + 1, τ ≥ 0): For given τ calculate

π′(τ + 1) = Pπ′(τ)

and then put
π′iy(τ + 1) = 1.

If τ < t− 1 then go to next step; otherwise STOP.

Note that the condition π′iy(τ +1) = 1 in the algorithm allows us to preserve the
value π′iy(t) = 1 at every moment of time t in the calculation process. This condition
reflects the property that the system remains in the state y at every time-step t if
the state y is reached. We can modify this algorithm for determining the probability
Px(y, 0 ≤ T (y) ≤ 0) in a more general case if we assume that the system will remain
at every time step t in the state y with the probability π′iy(t) = q(y), where q(y)
may differ from 1, i.e, q(y) ≤ 1. In the following we can see that this modification



ALGORITHMS FOR DETERMINING THE STATE-TIME PROBABILITIES . . . 73

is very important for determining the matrix of limit probabilities in finite Markov
processes. So, q(y) ≤ 1, and we can use the following algorithm:

Algorithm 3: Calculation of the state probabilities of the system with
a given probability of its remaining in the final state (stationary case)

Preliminary step (Step 0): Fix the vector π′(0) = (π′1(0), π′2(0), . . . , π′n(0)),
where π′i(0) = 0 for i 6= iy and π′iy(0) = q(y).

Genrral step (Step τ + 1, τ ≥ 0): For given τ calculate

π′(τ + 1) = Pπ′(τ)

and then put
π′iy(τ + 1) = q(y).

If τ < t− 1 then go to next step; otherwise STOP.

Remark 1. All results and algorithms described above are also valid for the stochastic
processes in the case when

∑
z∈X

px,z = r(x) ≤ 1 for x ∈ X.

2.2 Polynomial time algorithms for determining the limit state
matrix in Markov chains

Denote by S = (si,j) the limit matrix of probabilities for the Markov chain
induced by stochastic matrix P = (px,y). We denote the vector columns of the
matrix S by

Sj =




s1,j

s2,j
...

sn,j


 , j = 0, 1, 2, . . . , n,

and the row vectors of the matrix S we denote by Si = (si,1, si,2, . . . , si,n), i =
1, 2, . . . , n. To describe the algorithms for finding the limit matrix S for non-ergodic
Markov process we need to analyze the structure of the graph of transition proba-
bilities and to study the behavior of the algorithms from the previous subsection in
the case t → ∞. First of all we note that for the ergodic Markov chain the graph
GR is strongly connected and all vector rows Si, i = 1, 2, . . . , n, are the same. In
this case the limit state probabilities can be found by solving the system of linear
equations

π = πP,
n∑

J=1

πj = 1,

i.e. Si = π, i = 1, 2, . . . , n. In general, such an approach can be used for an
arbitrary ergodic Markov process if the limit state probabilities exist.

In the multichain Markov processes the graph GR = (X, ER) consists of several
strongly connected components G1 = (X1, E1), G2 = (X2, E2), . . . , Gk = (Xk, Ek)

where
k⋃

i=1
Xi = X. Additionally, among these components, there are such strongly
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connected components Gip = (Xip , Eip), p = 1, 2, . . . , q, which do not contain a
leaving directed edge e = (x, y) where x ∈ Xip and y ∈ X \ Xip . We call such
components Gip deadlock components in GR. A characterization of the ergodic
classes (recurrence classes) in the Markov process can be made in terms of a graph
of transition probabilities using the deadlock components.

Lemma 3. If Gip = (Xip , Eip) is a strongly connected deadlock component in GR
then Xip is an ergodic class (recurrence chain) of the Markov process; if x ∈ X \

q⋃
p=1

Xip then x is a transient state of the system in the Markov process.

Lemma [3] reflects the well known properties of the Markov chains from [3–5,10]
in the terms of graphs of transition probabilities. The proof of the lemma follows
from [3–5,10].

Below we give some auxiliary results which can be obtained from the algorithmic
procedure from the previous subsection in the case t → ∞. Let a Markov process
with a finite set of states X be given. For an arbitrary state xj ∈ X we denote by
Xj the subset of states xk ∈ X for which in GR there exists at least a directed path
from xk to xj . Additionally, we denote N = {1, 2, . . . , n}, I(Xj) = {k|xk ∈ Xj}.
Lemma 4. Let a Markov process with a finite set of states X be given and assume
that xj is an absorbing state. Let πj be a solution of the following system of linear
equations

πj = Pπj ; πj,j = 1; πi,j = 0 for i ∈ N \ I(Xj), (4)

where

πj =




π1,j

π2,j
...

πn,j


 .

Then πj = Sj, i.e. πi,j = si,j , i = 1, 2, . . . , n. If xj is a unique absorbing state of
the Markov process and if xj in GR is attainable from every xi ∈ X (i.e. I(Xj) =
N) then πi,j = si,j = 1, i = 1, 2, . . . , n.

Proof. We apply Algorithm 2 with respect to a given absorbing state xj (yj = xj)
when t → ∞. Then π(t)′ → πj and therefore we obtain πj = Pπj where πj,j = 1
and πi,j = 0 for i ∈ N \ I(Y +

j ). The correctness of the second part of the lemma
corresponds to the case when I(Xj) = N and therefore we obtain that the vector
πj with the components πi,j = 1, i = 1, 2, . . . , n is the solution of the system
πj = Pπj , πj,j = 1. So, Lemma 4 holds.

Remark 2. If xj is not an absorbing state then Lemma 4 may fail to hold.

Remark 3. Lemma 4 can be extended for the case when
∑

y∈X

pxi,y = r(xi) ≤ 1 for

some states xi ∈ X. The solution of the system (4) in this case also coincides
with the vector of limit probabilities Sj if such a vector of limit probabilities exists.
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However, if N = I(Xj) then some components πi,j of the solution πij may be less
than 1.

Let us show that the result formulated above allows us to find the vector of limit
probabilities Sj of the matrix S if the diagonal element sj,j of S is known. We
consider the subset of the states Y + = {xj |sj,j ≥ 0}. It is easy to observe that

Y + =
q⋃

p=1
Xip ; we denote the corresponding set of indexes of this set by I(Y +). For

each j ∈ I(Y +) we define the set Xj in the same way as we introduced it above.

Lemma 5. If a non-zero diagonal element sj,j of the limit matrix S in the non-
ergodic Markov process is known, i.e. sj,j = q(xj), then the corresponding vector Sj

of the matrix S can be found by solving the following systems of linear equations:

Sj = PSj ; sj,j = q(xj); si,j = 0 for i ∈ N \ I(Xj)

Proof. We apply Algorithm 3 with respect to the fixed final state yj = xj ∈ X with
q(yj) = sj,j when t →∞. Then for a given yj = x we have π(t)′ → Sj and therefore
we obtain Sj = PSj where q(yj) = sj,j and si,j = 0 for i ∈ N \ I(Xj). So, Lemma
5 holds.

Basing on this lemma and Algorithm 3 we can prove the following result.

Theorem 2. The limit state matrix S for aperiodic Markov chains can be found by
using the following algorithm:

1) For each ergodic class Xip solve the system of linear equations

πip = πipP ip ,
∑

j∈I(Xip)

π
ip
j = 1,

where πip is the row vector with components π
ip
j for j ∈ I(Xip) and P ip is the

submatrix of P induced by the class Xip. Then for every j ∈ I(Xip) put sj,j = π
ip
j ;

for each j ∈ I(X \
q⋃

p=1
Xip) set sj,j = 0;

2) For every j ∈ I(Y +), Y + =
q⋃

p=1
Xip solve the system of linear equations

Sj = PSj ; sj,j = πj,j ; si,j = 0 for i ∈ N \ I(Xj)

and determine the vector Sj. For every j ∈ I(X \ Y +) set Sj = 0, where 0 is the
vector row with zero components.

The algorithm finds the matrix S using O(n4) elementary operations.

Proof. Let us show that the algorithm finds correctly the limit matrix S. Item 1) of
the algorithm finds the limit probabilities sj,j . This item is based on Lemma 3 and
on the conditions which each ergodic class Xip and each transient state x∈X \ Y +
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should satisfy. So, item 1) correctly finds the limit probabilities si,j for j ∈ N .
Item 2) of the algorithm is based on Lemma 5 and therefore determines correctly
the vectors Sj of the matrix S when the diagonal elements sj,j are known. So, the
algorithm finds correctly the limit matrix S of the non-ergodic Markov processes
if such a limit matrix exists. The computational complexity of the algorithm is
determined by the computational complexity of solving q ≤ n equations for each
ergodic class Xip(item 1) and the computational complexity of solving not more
than n systems of linear equations for determining the vectors Sj (item 2). So, the
running time of the algorithm is O(n4).

Basing on this theorem we can find the limit matrix S using algorithm from
Theorem 2. In the worst case the running time of the algorithm is O(n4) however
intuitively it is clear that the upper bound of this estimation couldn’t be reached.
Practically this algorithm efficiently finds the limit matrix S. In the following we
show that for determining the limit matrix in aperiodoc Markov chains there exists
an algorithm with computational complexity O(n3).

2.3 An algorithm for the calculation of the limit matrix in aperiodic
Markov chains with running time O(n3)

We describe another algorithm for finding the limit matrix for aperiodic Marcov
chains which in the most part takes into account the structure properties of the
random graph of the Markov process. We can see that such an approach allows us
to ground an algorithm with computational complexity O(n3).

Algorithm 4: Determining the limit state matrix for non-ergodic
Markov processes

The algorithm consists of two parts: The first part determines the limit proba-

bilities sx,y for x ∈
q⋃

p=1
Xip and y ∈ X. The second procedure calculates the limit

probabilities sx,y for x ∈ X \
q⋃

p=1
Xip and y ∈ X.

Procedure 1:

1. For each ergodic class Xip we solve the system of linear equations:

πip = πipP ip ,
∑

y∈Xip

π
ip
y = 1,

where P ip is the matrix of probability transitions corresponding to the ergodic
class Xip , i.e. P ip is a submatrix of P , and πip is a row vector with the com-
ponents π

ip
y for y ∈ Xip . If π

ip
y are known then sx,y for x ∈ Xip and y ∈ X can

be calculated as follows:

Set sx,y = π
ip
y if x, y ∈ Xip and sx,y = 0 if x ∈ Xip , y ∈ X \Xip .
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Procedure 2:

1. We construct an auxiliary acyclic directed graph GA = (XA,EA) which is ob-
tained from the graph GR = (X,ER) by using the following transformations:

We contract each set of vertices Xip into one vertex zip where Xip is a set
of vertices of a strongly connected deadlock component Gip = (Xip , Eip) in
GR. If the obtained graph contains parallel directed edges e1 = (x, z), e2 =
(x, z), . . . , er = (x, z) with the corresponding probabilities p1

x,z, p2
x,z, . . . , pr

x,z

then we change them by one directed edge e = (x, z) with the probability

px,z =
r∑

i=1
pi

x,z; after this transformation of each vertex zi
p we put equivalently

a directed edge of the form e = (zp, zp) with the probability p′zp,zp = 1.

2. We fix the directed graph GA = (XA, EA) obtained by the construction prin-

ciple from step 1 where XA =
(
X \ (

q⋃
p=1

Xip)
)
∪ Zp, Zp = (z1, z2, . . . , zq).

Additionally, we fix the new probability matrix P ′ = (p′x,y) which corresponds
to this random graph GA.

3. For each x ∈ XA and every zi ∈ Zp we find the probability π′x(zi) of the
system transaction from the state x to the state zp. The probabilities π′x(zi)
can be found by solving the following p systems of linear equations:

P ′π′(z1) = π′(z1), π′z1(z1) = 1, π′z2(z1) = 0, . . . , π′zq(z1) = 0;

P ′π′(z2) = π′(z2), π′z1(z2) = 0, π′z2(z2) = 1, . . . , π′zq(z2) = 0;

.........................................................................................................

P ′π′(zq) = π′(zq), π′z1(zq) = 0, π′z2(zq) = 0, . . . , π′zq(zq) = 1,

where π′(zi), i = 1, 2 . . . , p are the column vectors with components π′x(zi)
for x ∈ XA. So, each vector π′x(zi) defines probabilities of system transitions
from states x ∈ XA to the ergodic class Xi.

4. We put sx,y = 0 for every x, y ∈ X \
q⋃

p=1
Xip and sx,y = π′x(zp)πip

y for every

x ∈ X \
q⋃

p=1
Xip and y ∈ Xip , Xip ⊂ X. If x ∈ Xip and y ∈ X \Xip then we

fix sx,y = 0.

Theorem 3. The algorithm correctly finds the limit state matrix S and the running
time of the algorithm is O(|X|3).
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Proof. The correctness of Procedure 1 of the algorithm follows from the definition of
the ergodic Markov class (recurrence chain). So, Procedure 1 finds the probabilities

sx,y for x ∈
q⋃

p=1
Xip and y ∈ X. Let us show that Procedure 2 correctly finds

the rest elements sx,y of the matrix S. Indeed, each vertex x ∈ X \
q⋃

p=1
Xip in

GA corresponds to a transient state of the Markov chain and therefore we have

sx,y = 0 for every x, y ∈ X \
q⋃

p=1
Xip . If x ∈ Xip then the system couldn’t reach

a state y ∈ X \ Xip and therefore for arbitrary two states x, y we have sx,y = 0.
Finally, we show that the algorithm correctly determines the limit probability sx,y

if x ∈ X \
q⋃

p=1
Xip and y ∈ Xip . In this case the limit probability sx,y is equal to

the limit probability of the system to reach the ergodic class Xip multiplied by the
limit probability of the system to remain in the state y ∈ Xip , i.e. sx,y = π′x(zp)πip

y .
Here π

ip
y is the probability of the system to remain in the state y ∈ Xip and πx(zip)

is the limit probability of the system to reach the absorbing state zip in GA. The
value πx(zip) according to the construction of auxiliary graph GA coincides with
the limit probability of the system to reach the ergodic class Xip . The correctness
of this fact can easily be obtained from Lemma 3 and Theorem 2. According to

Lemma 3 the probabilities πx(zp) for x ∈ X \
q⋃

p=1
Xip can be found by solving the

following system of linear equations

P ′π′(zp) = π′(zp), π′z1(zp) = 0, π′z2(zp) = 0, . . . , π′zp(zp) = 1,

which determined them correctly. So, the algorithm correctly finds the limit state
matrix S.

Now let us show that the running time of the algorithm is O(n3). We obtain this
estimation in the item 4 solving q ≤ n systems of linear equations. Each of these
systems contains no more than n variables. All these systems have the same left part
and therefore they can be solved simultaneously applying Gaussian method. The
simultaneous solution of these q systems with the same left part by using Gaussian
method uses O(n3) elementary operations.

3 Determining the State Probabilities of the Dynamical System
in Non-Stationary Markov Processes

In the case when the probabilities of system’s transitions from one state to an-
other depend on time we have a non-stationary process defined by a dynamic matrix
P (t) = (px,y(t)) which describes this process. If this matrix is stochastic for every
moment of time t = 1, 2, . . . , then the state probabilities Pxi0

(x, t) can be defined
and calculated by using a similar formula obtained from Section 1 changing px,y by
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px,y(τ), i.e.

Pxi0
(x, τ + 1) =

∑

y∈X

Pxi0
(y, τ)py,x(τ), τ = 0, 1, 2, . . . , t− 1

where Pxi0
(xi0 , 0) = 1 and Pxi0

(x, 0) = 0 for x ∈ X \ {xi0}. In the matrix form this

formula can be represented as follows

π(τ + 1) = π(τ)P, τ = 0, 1, 2, . . . , t− 1

where π(τ) = (π1(τ), π(τ), . . . , πn(τ)) is the vector with the components πi(τ) =
Pxi0

(xi, τ). At the starting moment of time τ = 0 the vector π(τ) is given in the
same way as for the stationary process, i.e. πi0(0) = 1 and πi(0) = 0 for arbitrary
i 6= i0. If for a given starting vector π(0) and τ = 0, 1, 2, . . . , t − 1 we apply this
formula then we obtain

π(t) = π(0)P (0)P (1)P (2) . . . P (t− 1).

So, an arbitrary element qxi,xj (t) of the matrix

Q(t) = P (0)P (1)P (2) . . . P (t− 1)

expresses the probability of system L to reach the state xj from xi by using t units
of times.

Now let us show how to calculate the probability Pxi0
(y, T1 ≤ T (y) ≤ T2) in

the case of non-stationary Markov processes. In the same way as for the stationary
case we consider the non-stationary Markov process with given absorbing state y ∈
X. So, we assume that the dynamic matrix P (t) is given which is stochastic for
every t = 0, 1, 2, . . . and py,y(t) = 1 for arbitrary t is given. Then the probabilities
Px(y, 0 ≤ T (y) ≤ t) for x ∈ X can be determined if we tabulate the values Px(y, t−
τ ≤ T (y) ≤ t), τ = 0, 1, 2 . . . , t, using the following recursive formula:

Px(y, t− τ − 1 ≤ T (y) ≤ t) = px,z(t− τ − 1)Pz(y, t− τ ≤ T (y) ≤ t)

where for τ = 0 we fix

Px(y, t ≤ T (y) ≤ t) = 0 if x 6= y and Py(y, t ≤ T (y) ≤ t) = 1.

This recursive formula can be represented in the following matrix form

π′′(t− τ − 1) = P (t− τ − 1)π′′(τ), t = 0, 1, 2, . . . t− 1.

At the starting moment of time t = 0 the vector π′′(0) is given: All components are
equal to zero except the component corresponding to the absorbing vertex which is
equal to one, i.e.

π′′i (0) =
{

0, if xi 6= y;
1, if xi = y.
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If we apply this formula for τ = 0, 1, 2, . . . , t− 1 then we obtain

π′′(t) = P (0)P (1)P (2) · · ·P (t− 1)π′′(0), t = 1, 2, . . . .

So, if we consider the matrix Q = P (0)P (1)P (2) . . . P (t − 1) then an arbitrary
element qi,jy of the column jy in the matrix Q expresses the probability of the
system L to reach the state y from xi by using not more than t units of time, i.e.
qi,jy = Pxi(y, 0 ≤ T (x) ≤ t).

Here the matrix P (t) is stochastic matrix for t = 0, 1, 2, . . . where py,y(t) = 1 for
every t and

π′′(τ) =




π′′1(τ)
π′′2(τ)

...
π′′n(τ)


 , τ = 0, 1, 2, . . .

is the column vector, where an arbitrary component π′′i (τ) expresses the probability
of the dynamical system to reach the state y from xi by using not more than τ unites
of times when the system start transitions in the sate x at the moment of time t−τ ,
i.e. π′′i (τ) = Pxi(y, t − τ ≤ T (y) ≤ t). This means that in the case when y is an
absorbing state the probability Px(y, T1 ≤ T (y) ≤ T2) can be found in the following
way:

a) find the matrices

Q1 = P (0)P (1)P (2) · · ·P (T1 − 1) and Q2 = P (0)P (1)P (2) · · ·P (T2 − 1);

b) calculate
Px(y, T1 ≤ T (y) ≤ T2) =

= Px(y, 0 ≤ T (y) ≤ T2)− Px(y, 0 ≤ T (y) ≤ T1 − 1) = q2
ixjy

− q2
ixjy

.

The results described above allows to develop algorithms for calculation the
probabilities Px(y, 0 ≤ T (y) ≤ t) for an arbitrary non-stationary Markov process.
Such algorithms can be obtained if in the general steps of the algorithms we change
the matrix P by the matrix P (t− τ − 1) and π′(τ) by π′′(τ).

Below we describe these algorithms which can be grounded in an analogues way
as the algorithms in Section 2.

Calculation of the state probabilities of the system in the matrix form
(non-stationary case)

Preliminary step (Step 0): Fix the vector π′′(0) = (π′′1(0), π′′2(0), . . . , π′′n(0)),
where π′′i (0) = 0 for i 6= iy and π′′iy(0) = 1.

General step (Step τ + 1, τ ≥ 0): For given τ calculate

π′′(τ + 1) = P (t− τ − 1)π′′(τ)
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and then put
π′′iy(τ + 1) = 1.

If τ < t− 1 then go to next step; otherwise STOP.

Calculation of the state probabilities of the system with given proba-
bility of its remaining in the final state (non-stationary case)

Preliminary step (Step 0): Fix the vector π′′(0) = (π′′1(0), π′′2(0), . . . , π′′n(0)),
where π′′i (0) = 0 for i 6= iy and π′′iy(0) = 1.

General step (Step τ + 1, τ ≥ 0): For given τ calculate

π′′(τ + 1) = P (t− τ − 1)π′′(τ)

and then put
π′′iy(τ + 1) = q(y).

If τ < t− 1 then go to next step; otherwise STOP.

Note that the algorithm finds the probabilities Px(y, 0 ≤ T (y) ≤ t) when the
value q(y) is given. We treat this value as the probability of the system to remain
in the state y; for the case q(y) = 1 this algorithm coincides with previous one.

4 Conclusion

A new approach for studying finite Marcov processes and determining the limit
matrix of probability transitions in Markov chains is proposed. The proposed ap-
proach allows us to develop new algorithms for determining the states probability
in the considered Markov processes. Polynomial time algorithms for finding the
limit matrix of probability transitions of the system in Markov chains are elabo-
rated. These algorithms can be used for determining the average cost per trans-
action of dynamical system in decision Markov processes (Markov processes with
rewards) [3, 5, 9] and and stochastic discrete optimal control problems [2, 6–8].

References

[1] Bollobas B. Random Graphs. Second Edition, Cambridge University Press, 2001.

[2] Bellman R., Kalaba R. Dynamic programming and modern control theory. Academic Press,
New York and London, 1965.

[3] Howard R.A. Dynamic Programming and Markov Processes. Wiley, 1960.

[4] Karlin S., Howard E.M. A First Course in Stochastic Processes. Academic Press, New
York, 1975.

[5] Kemeny J.G, Snell J. L., Knapp A.W. Denumarable Markov Chains. New York, Springer
Verlag, 1976.

[6] Lozovanu D., Pickl. S. Optimization and Multiobjective Control of Time-Discrete Systems.
Springer Verlag, 2009.



82 DMITRII LOZOVANU, STEFAN PICKL

[7] Lozovanu D., Pickl. S. Dynamic Programming Algorithms for Solving Stochastic Discrete
Control Problems. Bulletin of the Academy of Sciences of Moldova. Mathematics, 2009,
No. 2(60), 73–90.

[8] Lozovanu D., Pickl S. Algorithmic Solutions of Discrete Control Problems on Stochastic
Networks. Procceedings of CTW09 Workshop on Graphs and Combinatorial Optimization,
Paris, 2009, 221–224.

[9] Puterman M. Markov Decision Processes: Stochastic Dynamic Programming. John Wiley,
New Jersey, 2005.

[10] Stewart W. J. Introduction to the Numerical Solution of Markov Chains. Princeton Univer-
sity Press, 1995.

Dmitrii Lozovanu
Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
5 Academiei str., Chişinău, MD−2028
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