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Abstract. We prove that for a complete quasivariety IC of topological E-algebras
of countable discrete signature E and each submetrizable ANR(k,)-space X its free
topological E-algebra Fic(X) in the class K is a submetrizable ANR(k.,)-space.
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1 Introduction

In this paper we study the construction of a free topological universal algebra and
show that this construction preserves the class of submetrizable ANR(k,,)-spaces.

To give a precise formulation of our main result, we need to recall some definitions
related to topological universal algebras. For more detailed information, see [5-7].

Definition 1. Let (E,),c, be a sequence of pairwise disjoint topological spaces.
The topological sum E = @, ., Ey is called a continuous signature. The signature
is called discrete (countable) if so is the space E.

A topological universal algebra of signature E or briefly, a topological E-algebra is
a topological space X endowed with a family of continuous maps e, x : £, x X" —
X, new.

A topological E-algebra (X, {en x}new) is called Tychonoff if the underlying
topological space X is Tychonoff.

Homomorphisms between E-algebras are defined as follows.

Definition 2. A function h : X — Y between two topological E-algebras
(X, {en x tnew) and (Y, {eny }new) is called an E-homomorphism if

eny (2, h(z1),...,h(zyn)) = hien x (2, 21,...,2n))

for any n € w, z € E,, and z1,...,z, € X.

Such a function h is called an algebraic isomorphism (topological isomorphism)
if h is bijective and both functions h and h~! are (continuous) E-homomorphisms
of the F-algebras.
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Next, we define some operations over F-algebras.

Definition 3. For topological FE-algebras X,, a € A, the Tychonoff product
X =[I,ca Xa is a topological E-algebra endowed with the structure mappings

enx(z,21,...,2p) = (en,Xa(z,pra(acl), .. ,pra(azn)))aeA

where n € w, z € Ey,, x1,...,2, € X, and pr,, : [[,c 4 Xa — X4 is the a-coordinate
projection.

Definition 4. A subset A C X of a topological E-algebra (X, {e,}new) is called a
subalgebra if e, (E, x A™) C A for all n € w.

Since for any subalgebras A; C X, i € Z, of a topological E-algebra X the
intersection A = (,c7 A; is a subalgebra of X, for each subset Z C X there is a
minimal subalgebra (Z) of X that contains Z. This is the subalgebra generated by
the set Z. The structure of this subalgebra (Z) can be described as follows.

Given a subset L C E and a subset Z of a topological E-algebra (X, {e,}new),
let

(2)5 =2,

(205 =25 U | exx (Br N L) x ((Z)5)F) for n € w, and
kew

2)5=U@n

By induction, one can check that for compact subspaces L C E and Z C X the
subset (Z)X of X is compact for every n € w. Consequently, (Z)
subset of X.

Writing the signature E and the space Z as the unions E = |J

Z = U, ew Zn of non-decreasing sequences of subsets, we see that

(2)= U <Zn>£n

new

is a o-compact

L, and

new

is the subalgebra of X, generated by Z. If the spaces Z,, and L,, n € w, are
compact (finite), then each subset (Z,).» n € w, of X is compact (finite) and hence

the algebraic hull (Z) of Z in X is o-compact (at most countable).
Definition 5. A class K of topological F-algebras is called a complete quasivariety
if

1) for each topological E-algebra X € K, each E-subalgebra of X belongs to the

class KC;

2) for any topological E-algebras X, € K, a € A, their Tychonoff product
[Ioca Xa belongs to the class K;

3) a Tychonoff E-algebra belongs to K if it is algebraically isomorphic to a topo-
logical E-algebra Y € K.
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A complete quasivariety K is non-trivial if it contains a topological E-algebra X
that contains more than one point.

Finally, we recall the notion of a free topological E-algebra.

Definition 6. Let I be a complete quasivariety of topological F-algebras. A free
topological E-algebra in K over a topological space X is a pair (Fj(X),n) consisting
of a topological E-algebra Fic(X) € K and a continuous map 7 : X — Fi(X) such
that for any continuous map f : X — Y to a topological F-algebra Y € K there is
a unique continuous E-homomorphism A : Fic(X) — Y such that f = hon.

The construction Fi(X) of a free topological E-algebra has been intensively
studied by M. M. Choban [6,7]. In particular, he proved that for each complete qua-
sivariety K of topological E-algebras and any topological space X a free topological
E-algebra (Fic(X),n) exists and is unique up to a topological isomorphism. Also he
proved the following important result, see [6, 2.4]:

Theorem 1 (Choban). If K is a non-trivial complete quasivariety of topological
E-algebras, then for each Tychonoff space X the canonical map n: X — Fy(X) is
a topological embedding and Fic(X) coincides with the subalgebra (n(X)) generated
by the image n(X) of X in F(X,K).

Since 1 : X — Fy(X) is a topological embedding, we can identify a Tychonoff
space X with its image n(X) in Fx(X) and say that the free E-algebra Fic(X) is
algebraically generated by X.

In fact, the construction of a free topological F-algebra Fi(X) determines a
functor Fix : Top — K from the category Top of topological spaces and their
continuous maps to the category whose objects are topological E-algebras from the
class JC and morphisms are continuous F-homomorphisms.

In [5-7] a lot of attention was paid to the problem of preservation of various topo-
logical properties by the functor Fi. In particular, it was shown that the functor Fi
preserves (submetrizable) k,-spaces provided the signature E is a (submetrizable)
k.-space, see 7, 4.1.2].

A Hausdorff topological space X is called a k,-space if X = li_n)an is the direct
limit of a non-decreasing sequence of compact subsets (X, )ncw of X in the sense
that X = J,,c,, X» and a subset U C X is open if and only if U N X, is open in X,
for each n € w. Such a sequence (X,,)new is called a ki, -sequence for X.

An s,,-space is a direct limit li_I)an of a k,-sequence (X, )ne. consisting of second
countable compact subspaces of X. It is easy to see that a k,-space X is an s,-space
if and only if it is submetrizable in the sense that X admits a continuous metric.

Theorem 2 (Choban). Let K be a complete quasivariety of topological E-algebras
whose signature E is a (submetrizable) k. -space. Then for each (submetrizable) k.-
space X the free topological E-algebra Fy(X) is a (submetrizable) k,,-space. More-
over, if B = li_I)nLn and X = h_n)an for some k,,-sequences (Lp)new and (Xp)new,
then ((N(Xn))En)pew is a ky-sequence for Fx X and thus FiX = lil>n<n(Xn)>L".

n
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The principal result of this paper asserts that the functor Fic preserves ANR(k,,)-
spaces.

Definition 7. A k. -space X is called an absolute neighborhood retract in the class
of k,-spaces (briefly, an ANR(k,)) if X is a neighborhood retract in each k,-space
that contains X as a closed subspace.

In Theorem 10 we shall show that a submetrizable k,-space X is an ANR(k,,)-
space if and only if each map f : B — X defined on a closed subspace of a (metriz-
able) compact space A extends to a continuous map f : N(B) — X defined on a
neighborhood N(B) of B in A.

A topological space X is called compactly finite-dimensional if each compact
subset of X is finite-dimensional.

The following theorem is the main result of this paper.

Theorem 3. If K is a complete quasivariety of topological E-algebras of count-
able discrete signature E, then for each submetrizable (compactly finite-dimensional)
ANR(k,)-space X so is its free topological E-algebra Fic X in the quasivariety K.

2  ANR(k,)-spaces

In this section we collect some information about ANR(k,,)-spaces. Such spaces
are tightly connected with ANE-spaces.

Following [11] we define a topological space X to be an absolute neighborhood
extensor for a class C of topological spaces (briefly, an ANE(C)-space) if each map
f + B — X defined on a closed subspace B of a topological space C' € C has a
continuous extension f : N(B) — X defined on some neighborhood N(B) of B in
C. If any such f can be extended to the whole space C, then X is called an absolute
extensor for the class C.

By the Dugundji-Borsuk Theorem [8],[4] each convex subset of a locally convex
linear topological space, is an absolute extensor for the class of metrizable spaces.
This theorem was generalized by Borges [3] who proved that a convex subset of a
locally convex space is an absolute extensor for the class of stratifiable spaces. This
class contains all metrizable spaces and all submetrizable k,-spaces, and is closed
with respect to many countable topological operations, see [3],[10].

An important example of an ANR(k,,)-space is the space

Q% = {(wi)icw € R™ 1 sup |z < oo}
1€W

of bounded sequences, endowed with the direct limit topology li_n)l[—n, n]* generated
by the k,-sequence ([—n,n|*),en consisting of the Hilbert cubes. Being a locally
convex linear topological space, Q°° is an absolute extensor for the class of stratifiable
spaces.

A topological space X is called a Q*°-manifold if X is Lindel6f and each point
x € X has a neighborhood homeomorphic to an open subset of . The theory
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of Q*°-manifolds was developed by K.Sakai [12],[13] who established the following
fundamental results:

Theorem 4 (Characterization). A topological space X is homeomorphic to (a man-
ifold modeled on) the space Q° if and only if X is a submetrizable k,-space such
that each embedding f : B — X of a closed subset B of a compact metrizable space
A can be extended to a topological embedding of (an open neighborhood of B in) the
space A into X.

Theorem 5 (Open Embedding). Each Q°°-manifold is homeomorphic to an open
subset of Q°°.

Theorem 6 (Closed Embedding). FEach submetrizable k-space is homeomorphic
to a closed subspace of Q°°.

Theorem 7 (Classification). Two Q°°-manifolds are homeomorphic if and only if
they are homotopically equivalent.

Theorem 8 (Triangulation). Fach Q°°-manifold X is homeomorphic to K x Q>
for some countable locally finite simplicial complex K.

Theorem 9 (ANR-Theorem). For each submetrizable ANR(k,,)-space X the product
X X Q* is a Q°-manifold.

We shall use these theorems in the proof of the following (probably known as a
folklore) characterization of submetrizable ANR(k,,)-spaces.

Theorem 10. For a submetrizable k,,-space X the following conditions are equiva-
lent:

1) X is an ANR(k,)-space;

2) X is an ANE for the class of k,-spaces;

3) X is an ANE for the class of compact metrizable spaces;
4) X is an ANE for the class of stratifiable spaces;

5) X is a retract of a Q°°-manifold.

The equivalent conditions (1)-(5) hold if X = lim X, is the direct limit of a k.-
sequence consisting of compact ANR’s.

Proof. (1) = (5) Assume that X is an ANR(k,)-space. By the Closed Embedding
Theorem 6, we can identify the submetrizable k, -space X with a closed subspace
of @>°. Being an ANR(k,,), X is a retract of an open neighborhood N(X) C Q°°.
Since N(X) is a Q°°-manifold, X is a retract of a @*°-manifold.

(5) = (4) Assume that X is a retract of a @Q°°-manifold M. By the Open
Embedding Theorem 5, M can be identified with an open subspace of Q*°. By the
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Borges’ Theorem [3], the locally convex space Q° is an absolute extensor for the
class of stratifiable spaces. Then the open subspace M of Q°° is an ANE for this
class and so is its retract X.

The implication (4) = (3) is trivial since each metrizable space is stratifiable.

(3) = (2) Assume that X is an ANE for the class of compact metrizable spaces.
First we prove that X is an ANE for the class of compact Hausdorff spaces. Let
f : B — X be a continuous map defined on a closed subspace B of a compact
Hausdorff space A. Embed the compact space A into a Tychonoff cube I”. The
image f(B), being a compact subspace of the submetrizable space X, is metrizable.
By [9, 2.7.12], the function f depends on countably many coordinates, which means
that there is a countable subset C' C & such that f = fc o pro where pre : I* — I¢
is the projection onto the face I¢ of the cube I and f¢ : pro(B) — f(B) C X is
a suitable continuous map. Since X is an ANE for compact metrizable spaces, the
map fc has a continuous extension fc : U — X defined on an open neighborhood U
of pre(B) in the cube I€. Tt follows that V = pr;'(U) N A is an open neighborhood
of Bin Aand f = foo pra|V ¢V — X is a continuous extension of the map f,
witnessing that X is an ANE for the class of compact Hausdorff spaces.

Next, we show that X is an ANE for the class of k,-spaces. Let f: B — X be
a continuous map defined on a closed subset B of a k,-space A. Then A = li_rr}An
for some k,-sequence (A, )necw of compact subsets of A. Let A_; = (). By induction,

for each n € w we can construct a continuous map f, : Ny (A4, N B) — X defined on
a closed neighborhood N(B N A,,) of BN A,, in A, and such that

e N, (BNA,) D Ny_1(BN A1),
e fu|BNA,=f|BNnA,and
d fn|Nn—1(B N An) = fn-1.

The inductive step can be done because X is an ANE for the class of compact
Hausdorff spaces. After completing the inductive construction, consider the set
N(B) = U, Na(B N A4,) and the map f = U,c, fn : N(B) — X, which is a
desired continuous extension of f onto the open neighborhood N(B) of B in A.

The implication (2) = (1) trivially follows from the definitions of ANR(k,,) and
ANE(k,,)-spaces.

Now assume that X = liiQXn is the direct limit of a k,-sequence (Xp)new
consisting of compact ANR’s. We claim that X is an ANE for the class of compact
metrizable spaces. Let f : B — X be a continuous map defined on a closed subspace
B of a compact metrizable space A. Since X carries the direct limit topology lim X,,,
the compact subset f(B) lies in some set X,, n € w. Since X, is an ANR, the
map f : B — X, has a continuous extension f : N(B) — X, C X defined on a
neighborhood N(B) of B in A. O
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3 Some subfunctors of the functor Fi

In the proof of Theorem 3 we shall apply a deep Basmanov’s result on the
preservation of compact ANR’s by monomorphic functors of finite degree in the
category Comp of compact Hausdorff spaces and their continuous maps. Let C be
a full subcategory of the category Top, containing all finite discrete spaces.

We say that a functor F': C — Top

e is monomorphic if F' preserves monomorphisms (which coincide with injective
continuous maps in the category Top and its full subcategory C);

e has finite supports (degree deg F' < n) if for each object X of the category C
and each element a € F X there is a map f: A — X of a finite discrete space
A (of cardinality |A| < n) such that a € Ff(FA);

The smallest number n € w such that deg F' < n is called the degree of F' and is
denoted by deg F'. If no such number n € w exists, then we put deg F' = oo.

The following improvement of the classical Basmanov’s theorem [2] was recently
proved in [1].

Theorem 11. Let F' : Comp — Comp be a monomorphic functor of finite degree
n = deg F' such that the space F'n is finite. Then the functor F preserves the class
of compact finite-dimensional ANR-spaces.

We shall apply this theorem to the subfunctors (-)% of the functor Fc. We recall
that IC is a non-trivial complete quasivariety of topological F-algebras of countable
discrete signature . By Theorem 2, Fic can be thought as a functor Fi : K, — K,
in the category K,, of k,-spaces and their continuous maps. By Theorem 2.4 of [6],
for each Tychonoff space X the free topological E-algebra Fy(X) is algebraically
free in the sense that any bijective map ¢ : Xy — X from a discrete topological space
X4 induces an algebraic isomorphism Fii : Fxx Xy — FxX. This fact implies:

Lemma 1. The functor Fi : Tych — Top is monomorphic.

Proof. Let f : X — Y be an injective continuous map between Tychonoft spaces
and fy: X4 — Yy be the same map between these spaces endowed with the discrete
topologies. Let ix : Xy — X and iy : Yy — Y be the identity maps. Let r : Y; — Xy
be any (automatically continuous) map such that o f; = idx,. Thus we obtain the
commutative diagram:

X4f>

Y
ix Tiy
Y

fa
Xdr<:>
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Applying the functor Fi to this diagram we get the diagram

X 2 pey

FKZ’XT TF)CiY
Ficfa

FeXy——=FY
Fxr

The “vertical” maps Ficix : FxXq — FxcX and Fiiy : FxYy; — FxY in this diagram
are bijective because the algebras Fixc X and FY are algebraically free. Taking into
account that FicroFy fqg = Fx(ro fg) = Fxidx, = idp x,, we conclude that the map
Fi fq is injective and so is the map Ficf : FxX — FxY because of the bijectivity of
the maps Fiix and Fiiy. O

Now for every compact subset L C E and every n € w consider the functor ()% :
Comp — Comp which assigns to each compact Hausdorff space X the subspace
(X)L of FixX. The functor (-)L assigns to each continuous map f : X — Y between
compact Hausdorff spaces the restriction (f)% = Fic f[(X)E of the homomorphism
Fxf: FxX — FxY.

Lemma 2. For everyn € N, (-)£: Comp — Comp is a well-defined monomorphic
functor of finite degree in the category Comp.

Proof. First we check that for each continuous map f : X — Y between compact
Hausdorff spaces, the morphism ()L = Fic f|(X)L is well-defined, which means that
Ficf((X)E) c (Y)E. This will be done by induction on n € w.

For n = 0 the inclusion Fic((X)§) = F(X) = f(X) C Y = (V)& follows from
the fact that the homomorphism Fy extends the map f (here we identify X and YV
with the subspaces n(X) and n(Y) in Fx(X) and Fx(Y'), respectively).

Assume that the inclusion Fi f({X)%) C (Y)E has been proved for some n € w.
By definition,

(X)rer = (X0 U erx((Brn L) x ((X)0)").
kew

Fix any element z € (X)%,,. If z € (X)%, then
Fie(x) € Fie((X)z) € (V) € (V)i

by the inductive assumption.
If € (X)L |\ (X)E, then z = ej x (2, 21,...,2)) for some k € w, z € B, N L,
and points z1,. ..,z € (X)X Since Fi f is an E-homomorphism, we get

Fif(z) = Ficf(ex,x (2,71, .., 2k)) = exy (2, Fic f(w1), ..., Ficf (k) €
€ery(BxNL) x (V)M c (k.

Thus for every n € w the functor ()% is well-defined. It is monomorphic as a

subfunctor of the monomorphic functor Fi.
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Next, we show that the functor (-) has finite degree. This will be done by
induction on n € w. Since (X)§ = X, deg(-)§ = 1.

Assume that for some n € w the functor (-)Z has finite degree d. Since L is a
compact subset of E, there is m € w such that LN E, = 0 for all k > m. We
claim that deg(-)%,; < m-d. Take any element z € (X)X . If z € (X)L, then by
the inductive assumption there is a subset A C X of cardinality |A| < d such that
z € (A)L and we are done. If z € (X)L \ (X)L, then = = eg x(z,21,...,z) for
some k € w, z € Ep N L, and points x1,...,7; € (X)L, Since L N Ej, > z is not
empty, £k < m. By the inductive assumption, for every ¢ < k there is a finite subset
A; C X of cardinality |A;| < d such that x; € (4;)%. Then the union A = Ule A;
has cardinality |A| < k-d <m-d and

= epx (2,01, 2x) € e x (LN Eg) x ((A))") € (A
witnessing that the functor (-)%,; has finite degree deg(-)L, | < m - d. O

Lemma 3. If L C E is finite, then for each n € w the functor {-)% preserves finite
spaces.

Proof. Let X be a finite space. By induction on n € w we shall show that the space
(X)L is finite. This is clear for n = 0. Assume that for some n € w the space (X)L
is finite. Since L C FE is finite there is m € w such that L N E,, = 0 for all £ > m.
Then

(X = (X)EU | enx((Ben L) x (X)5))

k<m

is finite as the finite union of finite sets. O
Combining Lemmas 2, 3 with Theorem 11, we get

Corollary 1. For any finite subset L C E and everyn € w the functor (-)L preserves
(finite-dimensional) compact ANR'’s.

4 Proof of Theorem 3

Without loss of generality, the quasivariety K is non-trivial (otherwise, Fy(X)
is a singleton and hence is an ANR(k,,)-space for each non-empty space X).

Let X be a submetrizable ANR(k,,)-space. By the ANR-Theorem 9, the product
X x Q% is a Q*-manifold. By the Triangulation Theorem 8, X x Q*° is homeo-
morphic to T x Q° for a countable locally finite simplicial complex T". This implies
that X x QQ°° can be written as the direct limit X x Q> = lim X, of a k,-sequence
(X1 )new of compact ANR's.

Write the countable discrete space E as the direct limit £ = liL>nLn of a k-
sequence (L, )new of finite subsets of E. By Choban’s Theorem 2, the space Fjc(X X
Q) is the direct limit 11_1’I>1<Xn>£” of the k,-sequence (X, )., By Corollary 1, each

space (X,)En n € w, is a compact metrizable ANR. Consequently, Fic(X x Q) =
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h_r)n(Xn>£” is a submetrizable ANR(k,)-space by Theorem 10. Since X is a retract
of X x Q°°, the space FxX is a retract of Fic(X x Q) and hence FxX is a
submetrizable ANR(k,,)-space.

Now assume that X is a compactly finite-dimensional s,-space. Then X =
li_rr)an is the direct limit of finite-dimensional compact metrizable spaces. By the
Choban’s Theorem 2, the space Fic(X x Q) is the direct limit h_rr)l(Xn)ﬁn of the k-
sequence (X, )L, Corollary 1 implies that each compact space (X,,)En is metrizable
and finite-dimensional. Then the space FiX = hL>n<Xn>,LL" is compactly finite-
dimensional, being the direct limit of finite-dimensional compact spaces.
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