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On 2-primal Ore extensions over Noetherian o (*)-rings

Vijay Kumar Bhat

Abstract. In this article, we discuss the prime radical of skew polynomial rings over
Noetherian rings. We recall o(x) property on a ring R (i.e. ac(a) € P(R) implies
a € P(R) for a € R, where P(R) is the prime radical of R, and ¢ an automorphism of
R). Let now ¢ be a o-derivation of R such that §(o(a)) = 0(d(a)) for all @ € R. Then
we show that for a Noetherian o(*)-ring, which is also an algebra over Q, the Ore
extension R[z;0,d] is 2-primal Noetherian (i.e. the nil radical and the prime radical
of R[z;0,d] coincide).

Mathematics subject classification: 16536, 16N40, 16P40, 16532, 16 W20, 16 W25.
Keywords and phrases: Minimal prime, 2-primal, prime radical, automorphism,
derivation.

1 Introduction

A ring R always means an associative ring with identity 1 # 0. The fields of
complex numbers, real numbers, rational numbers, the ring of integers and the set
of natural numbers are denoted by C, R, Q, Z and N respectively unless otherwise
stated. The set of prime ideals of R is denoted by Spec(R). The set of minimal
prime ideals of R is denoted by Min.Spec(R). The prime radical and the nil radical
of R are denoted by P(R) and N(R) respectively. Let R be a ring and o an auto-
morphism of R. Let I be an ideal of R such that ¢™(I) = I for some m € N. We
denote N, 0%(I) by I°. For any two ideals I, J of R, I C .J means that I is strictly
contained in J.

This article concerns the study of skew polynomial rings (Ore extensions) in
terms of 2-primal rings. Recall that the skew polynomial ring R[z; o, d] is the set of
polynomials

{>iyz'ai, a; € R, n € N}

with usual addition of polynomials and multiplication subject to the relation
ax = xzo(a) + d(a) for all a € R. We take any f(x) € R|[x;0,0] to be of the form
f(z) = Y% y2%a;, a; € R as in McConnell and Robson [15]. We denote R[z;a, ]
by O(R). In case 0 is the zero map, we denote R[z;o] by S and in case o is the
identity map, we denote R[z;d] by D. The study of Ore-extension O(R) = R|x; 0, 0]
and its special cases S and D have been of interest to many authors. For exam-
ple [6-8,10,13,14,16].
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2-primal rings have been studied in recent years and are being treated by authors
for different structures. In [14], Greg Marks discusses the 2-primal property of
R[z;0,0], where R is a local ring, o an automorphism of R and ¢ a o-derivation of
R. In Greg Marks [14], it has been shown that for a local ring R with a nilpotent
maximal ideal, the Ore extension R[x; o, d] will or will not be 2-primal depending on
the d-stability of the maximal ideal of R. In the case where R|x;0,d] is 2-primal, it
will satisfy an even stronger condition; in the case where R[z;0,d] is not 2-primal,
it will fail to satisfy an even weaker condition.

Minimal prime ideals of 2-primal rings have been discussed by Kim and Kwak
in [11]. 2-primal near rings have been discussed by Argac and Groenewald in [1].
Recall that a ring R is 2-primal if and only if N(R) = P(R), i.e. if the prime
radical is a completely semiprime ideal. An ideal I of a ring R is called completely
semiprime if a® € I implies a € I for a € R. We also note that a reduced ring is
2-primal and a commutative ring is also 2-primal. For further details on 2-primal
rings, we refer the reader to [1-3,11,14].

Before proving the main result, we find a relation between the minimal prime ide-
als of R and those of the Ore extension R[z;0,d], where R is a Noetherian Q-algebra,
o an automorphism of R and § a o-derivation of R such that 6(c(a)) = o(d(a)) for
all a € R. This is proved in Theorem 3.

o(x)-rings: Let R be a ring and o an endomorphism of R. Then o is said to be
a rigid endomorphism if ao(a) = 0 implies that a = 0, for a € R, and R is said to
be a o-rigid ring (Krempa [12]).

For example let R = C, and o : C — C be the map defined by o(a+ib) = a —ib,
a, b € R. Then it can be seen that ¢ is a rigid endomorphism of R.

In Theorem 3.3 of [12], Krempa has proved the following:
Let R be a ring, let ¢ be an endomorphism and § a o-derivation of R. If ¢ is a
monomorphism, then the skew polynomial ring R[x; o, d] is reduced if and only if R
is reduced and o is rigid. Under this conditions any minimal prime ideal (annihilator)
of R[x;0;0] is of the form P[z;o;d] where P is a minimal prime ideal (annihilator)
in R.

In [13], Kwak defines a o(*)-ring R to be a ring in which ao(a) € P(R) implies
a € P(R) for a € R.

F F

Example 1. Let R = < 0 F

), where F' is a field. Then P(R) = ( 8 IS’ ) Let

0:R—>Rbedeﬁnedbya< a b ): a 0 . Then it can be seen that o is
0 ¢ 0 ¢

an endomorphism of R and R is a o(x)-ring.

We note that the above ring is not o-rigid. For let 0 # a € F'. Then

(o) loo)=(oa)m (i) (o0)
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Kwak in [13] also establishes a relation between a 2-primal ring and a o (x)-ring.
The property is also extended to the skew-polynomial ring R[z;o]. It has been
proved in Theorem 5 of [13] that if R is a 2-primal ring and o is an automorphism
of R, then R is a o(x)-ring if and only if o(P) = P for all P € Min.Spec(R). In
Theorem 12 of [13] it has been proved that if R is a o(x)-ring with o(P(R)) = P(R),
then R[x;o] is 2-primal if and only if P(R)[z; 0] = P(R[z;0]).

It is known that if R is a 2-primal Noetherian QQ-algebra, and § is a derivation
of R, then R[x;d] is 2-primal Noetherian. (Theorem 2.4 of Bhat [3]).

Let now R be a ring, ¢ an automorphism of R and § a o-derivation of R. Recall
from Bhat [2] that R is said to be a d-ring if ad(a) € P(R) implies a € P(R) for
a € R. It is known that if R is a §-Noetherian Q-algebra, o an automorphism of R
and § a o-derivation of R such that §(o(a)) = o(d(a)) for all @« € R, o(P) = P for
all P € Min.Spec(R) and §(P(R)) C P(R), then Rx;0,d] is 2-primal Noetherian
(Theorem 2.4 of Bhat [2]).

In a sense we generalize the above results of Bhat [2,3] when o is an automor-
phism of R and ultimately investigate the 2-primal property of R[x; o, ] when R is
a o(x)-Noetherian Q-algebra and prove the following, even without the hypothesis
of R being a J-ring;:

Let R be a Noetherian o(*)-ring, which is also an algebra over Q. Further
P € Min.Spec(O(R)) imply that PN R € Min.Spec(R). Then Rx;0,0] is 2-primal
Noetherian, where §(o(a)) = o(d(a)) for all a € R.

This result is proved in Theorem 5. We note that for a Noetherian o(x)-ring,
o(P) = P for all P € Min.Spec(R) (Theorem 2), and this is crucial in proving
Theorem 4 and, therefore, the main result (Theorem 5).

We generalize Theorem 7 of [5] which states the following:

Theorem 7 of [5]. Let R be a Noetherian ring, which is also an algebra over Q.
Let o be an automorphism of R such that R is a o(*)-ring and § be a o-derivation
of R such that R is a é-ring and d(o(a)) = o(d(a)) for all @ € R. Further let
P € Min.Spec(O(R)) imply that PN R € Min.Spec(R). Then R[z;0,d] is 2-primal
Noetherian.

2 Ore extensions

Recall that an ideal I of a ring R is called o-invariant if o(I) = I. Also I is
called completely prime if ab € I implies a € I or b € [ for a,b € R. ([13])

In commutative case completely prime and prime have the same meaning. We
also note that every completely prime ideal of a ring R is a prime ideal, but the
converse need not be true.

The following example shows that a prime ideal need not be a completely prime
ideal.
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7 7
7 7
ideal P = M>s(pZ) is a prime ideal of R, but is not completely prime, since for

az(é 8>andb:<8 (1)>,wehaveabeP,eventhougha¢Pandb§éP.

Example 2. Let R = < ) = M>s(Z). If p is a prime number, then the

We also recall that an ideal J of a ring is called a o-prime ideal of R if J is
o-invariant and for any o-invariant ideals K and L with KL C J, we have K C J
or L CJ.

We also note that if R is a Noetherian ring, then Min.Spec(R) is finite (Theorem
2.4 of Goodearl and Warfield [10]) and for any automorphism o of R and for any
U € Min.Spec(R), we have o*(U) € Min.Spec(R) for all i € N, therefore, it follows
that there exists some m € N such that " (U) = U for all U € Min.Spec(R). As
mentioned earlier we denote N 0" (U) by U°.

We now prove the following Theorem. This Theorem has not been used to prove
the main Theorem, but gives an idea to find a relation between Min.Spec(R) and
Min.Spec(O(R)) (namely Theorem 3) which is crucial in proving the main result
(Theorem 5):

Theorem 1. Let R be a Noetherian ring and o an automorphism of R. Let S =
R[z; 0] be as usual. Then:

1. If P € Min.Spec(S), then P = (PN R)S and there exists U € Min.Spec(R)
such that PN R = U°.

2. If U € Min.Spec(R), then U°S € Min.Spec(S).
Proof. See Theorem 2.4 of Bhat [6]. O

Proposition 1. Let R be a ring and o an automorphism of R. Then R is a o(x)-ring
implies R is 2-primal.

Proof. Let a € R be such that a®> € P(R). Then ac(a)o(ac(a)) = ac(a)o(a)o?(a) €
o0(P(R)) = P(R). Therefore ac(a) € P(R) and hence a € P(R). O

A necessary and sufficient condition for a Noetherian ring to be a o(*)-ring is
given by Bhat in Theorem 2.4 of [4]:

Theorem 2. Let R be a Noetherian ring. Then R is a o(x)-ring if and only if for
each minimal prime U of R, o(U) =U and U is completely prime ideal of R.

Proof. Theorem 2.4 of [4]. O

We now give a relation between the minimal prime ideals of R and those of
R[z;0,6], where R is a Noetherian Q-algebra, o an automorphism of R and § a
o-derivation of R. This is proved in Theorem 3. Towards this we have the following;:
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Proposition 2. Let R be a Noetherian Q-algebra, o an automorphism and 0 a
o-derivation of R such that §(c(a)) = o(6(a)) for all a € R. Then € is an auto-
morphism of T = R|[t,0]], the skew power series ring.

Proof. The proof is on the same lines as in Seidenberg [16] and in the non-
commutative case on the same lines as provided by Blair and Small in [8]. O

Henceforth we denote R|[[t,o]] by T'. Let I be an ideal of R such that o(I) = I.
Then it is easy to see that T C IT and IT C TI. Hence TI = IT is an ideal of T.

Lemma 1. Let R be a Noetherian Q-algebra, o an automorphism and § a o-
derivation of R such that d6(o(a)) = o(d(a)) for all a € R. Let I be an ideal of
R such that o(I) = I. Then I is §-invariant if and only if IT is e -invariant.

Proof. Let IT be e-invariant. Let a € I. Then a € IT. So €”(a) € IT; ie.
a+té(a)+ (t26%/2")(a) + ... € IT. Therefore §(a) € I.

Conversely suppose that §(I) C I and let f = > t'a; € IT. Then e?(f) =
FA6(f) + (1252/20)(f) + ... € IT, as 6(a;) € I. Therefore ! (IT) C IT. Replacing
et by e we get that e (IT) = IT. O

Assumption A: Henceforth we assume that R is a ring and T as usual such
that for any U € Min.Spec(R) with o(U) = U, UT € Min.Spec(T).

Proposition 3. Let R be a Noetherian Q-algebra. Let o be an automorphism of
R and ¢ be a o-derivation of R such that §(o(a)) = o(d(a)) for all a € R. Then
P € Min.Spec(R) with o(P) = P implies §(P) C P.

Proof. Let T be as usual. Now by Proposition (2) €' is an automorphism of 7.
Let P € Min.Spec(R)). Then by assumption PT € Min.Spec(T). Therefore there
exists an integer n > 1 such that (e!®)*(PT) = PT, i.e. ¢™(PT) = PT. But R is
a Q-algebra, therefore, '9(PT) = PT and now Lemma 1 implies 6(P) C P. O

Proposition 4. Let R be a o(x)-ring, which is also an algebra over Q and U €
Min.Spec(R). Then U(O(R)) = Ulz;0,90] is a completely prime ideal of O(R) =
Rlx;0,0], where ¢ is a o-derivation of R such that §(o(a)) = o(d(a)) for all a € R.

Proof. Let U € Min.Spec(R). Then o(U) = U by Theorem 2, and 6(U) C U by
Proposition 3). Now R is 2-primal by Proposition 1 and furthermore U is completely
prime by Theorem 2. Now we note that o can be extended to an automorphism @ of
R/U and § can be extended to a o-derivation § of R/U. Now it is well known that
O(R)/U(O(R)) ~ (R/U)[x;7, ] and hence U(O(R)) is a completely prime ideal of
O(R). O

Theorem 3. Let R be a Noetherian Q-algebra. Consider O(R) as usual such that
R is a o(x)-ring and §(o(a)) = o(d(a)) for alla € R. Then P, € Min.Spec(R) with
o(Py) = Py implies that O(Py) € Min.Spec(O(R).
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Proof. Let Pi € Min.Spec(R). Now by Theorem 2 o(P;) = Py, and by Proposition 3
0(P1) C Pi. Now Proposition (3.3) of [9] implies that O(P;) € Spec(O(R)). Suppose
O(P1) ¢ Min.Spec(O(R)) and P» C O(P;) be a minimal prime ideal of O(R). Then
P, =O(PoNR) C O(P1) C Min.Spec(O(R)). Therefore (P, N R) C P; which is a
contradiction, as (P> N R) € Spec(R). Hence O(P;) € Min.Spec(O(R)). O

We now prove the following Theorem, which is crucial in proving Theorem 5.

Theorem 4. Let R be a Noetherian o(x)-ring, which is also an algebra over Q, o
an automorphism of R and ¢ a o-derivation of R such that §(c(a)) = o(d(a)) for
all a € R. Then R[x;0,0] is 2-primal if and only if P(R)[z;0,0] = P(R[z;0,0]).

Proof. Let R[x;0,d] be 2-primal. Now by Proposition 4 P(R[z;0,d]) C P(R)[x;0,0].
Let

@) =377 2'aj € P(R)[z;0,0).
Now R is a 2-primal subring of R[z; o, ] by Proposition 1, which implies that a; is
nilpotent and thus

aj € N(R[z;0,0]) = P(R[x;0,0]).

So we have z/a; € P(R[z;0,6]) for each j, 0 < j < n, which implies that
f(z) € P(R|x;0,6]). Hence P(R)[z;0,0] = P(R[z;0,0]).

Conversely suppose that P(R)[z;0,0] = P(R[x;0,0]). We will show that
R[z;0,0] is 2-primal. Let

g(x) = > x'b; € Rlx;0,6], by, # 0
be such that

(9(x))? € P(R[z;0,0]) = P(R)[;0,0].
We will show that g(x) € P(R[z;0,6]). Now leading coefficient 02"~ 1(b,)b, €
P(R) C P, for all P € Min.Spec(R). Also o(P) = P and P is completely prime by

Theorem 2. Therefore we have b, € P, for all P € Min.Spec(R), i.e. b, € P(R).
Now §(P) C P for all P € Min.Spec(R) by Proposition 3, we get

(27 2'b;)? € P(R[z;0,6]) = P(R)[x; 0,9]

and as above we get b,_1 € P(R). With the same process in a finite number of
steps we get b; € P(R) for all 4, 0 < i < n. Thus we have g(z) € P(R)[z;0,0],
ie. g(r) € P(R[x;0,0]). Therefore, P(R[x;0,d]) is completely semiprime. Hence
Rz;0,6] is 2-primal. O

Theorem 5. Let R be a Noetherian, which is also an algebra over Q. Let o be
an automorphism of R such that R is a o(x)-ring and § a o-derivation of R such
that §(o(a)) = o(d(a)) for all a € R. Further let P € Min.Spec(O(R)) imply that
PN R e Min.Spec(R). Then O(R) = Rx;0,0] is 2-primal Noetherian.
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Proof. R[x;o,0]is Noetherian by Hilbert Basis Theorem (Theorem 1.12 of Goodearl
and Warfield [10]). We now use Theorem 3 to get that P(R)[x;0,0] = P(R[z;0,0]),
and the result now follows from Theorem 4. O]

We note that the hypothesis that R is a o(x)-ring can not be deleted as can be
seen below:

Example 3. Let R = K & K, where K is a field. Then the Ore extension O(R) =
R[z;0,0], where o is an automorphism of R defined by o((a;b)) = (b;a), is a prime
ring. Thus P = 0 is a minimal prime of O(R). But PN R = 0 is not a prime ideal
of R.

The following example shows that if R is a Noetherian ring, then R[x; 0, ] need
not be 2-primal.

Example 4. Let R = Q & Q with o(a,b) = (b,a). Then the only c-invariant
ideals of R are {0} and R, and so R is o-prime. Let § : R — R be defined by
d(r) = ra—ao(r), where a = (0, ) € R. Then ¢ is a o-derivation of R and R|x; 0, 0]
is prime and P(R[x;0,d]) = 0. But (z(1,0))?> = 0 as §(1,0) = —(0, ). Therefore
R[z;0,0] is not 2-primal. If § is taken to be the zero map, then even R[z;0o] is not
2-primal.

The following example shows that if R is a Noetherian ring , then even R[x] need
not be 2-primal.

Example 5. Let R = M5(Q), the set of 2 x 2 matrices over Q. Then R|x] is a prime
ring with non-zero nilpotent elements, and so can not be 2-primal.

From these examples we conclude that if R is a Noetherian ring, then even R[]
need not be 2-primal. But it is known that if R is a 2-primal Noetherian Q-algebra
and ¢ is a derivation of R, then R[x;d] is 2-primal Noetherian (Theorem 2.4 of
Bhat [3]), and therefore, we have the following question:

Question: If R is a 2-primal ring, is R[z; 0, §] 2-primal (even if R is commutative
or the special case when R is Noetherian)?
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