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On 2-primal Ore extensions over Noetherian σ(∗)-rings

Vijay Kumar Bhat

Abstract. In this article, we discuss the prime radical of skew polynomial rings over
Noetherian rings. We recall σ(∗) property on a ring R (i. e. aσ(a) ∈ P (R) implies
a ∈ P (R) for a ∈ R, where P (R) is the prime radical of R, and σ an automorphism of
R). Let now δ be a σ-derivation of R such that δ(σ(a)) = σ(δ(a)) for all a ∈ R. Then
we show that for a Noetherian σ(∗)-ring, which is also an algebra over Q, the Ore
extension R[x; σ, δ] is 2-primal Noetherian (i. e. the nil radical and the prime radical
of R[x; σ, δ] coincide).

Mathematics subject classification: 16S36, 16N40, 16P40, 16S32, 16W20, 16W25.
Keywords and phrases: Minimal prime, 2-primal, prime radical, automorphism,
derivation.

1 Introduction

A ring R always means an associative ring with identity 1 6= 0. The fields of
complex numbers, real numbers, rational numbers, the ring of integers and the set
of natural numbers are denoted by C, R, Q, Z and N respectively unless otherwise
stated. The set of prime ideals of R is denoted by Spec(R). The set of minimal
prime ideals of R is denoted by Min.Spec(R). The prime radical and the nil radical
of R are denoted by P (R) and N(R) respectively. Let R be a ring and σ an auto-
morphism of R. Let I be an ideal of R such that σm(I) = I for some m ∈ N. We
denote ∩m

i=1σ
i(I) by I0. For any two ideals I, J of R, I ⊂ J means that I is strictly

contained in J .

This article concerns the study of skew polynomial rings (Ore extensions) in
terms of 2-primal rings. Recall that the skew polynomial ring R[x; σ, δ] is the set of
polynomials

{∑n
i=0 xiai, ai ∈ R, n ∈ N}

with usual addition of polynomials and multiplication subject to the relation
ax = xσ(a) + δ(a) for all a ∈ R. We take any f(x) ∈ R[x; σ, δ] to be of the form
f(x) =

∑n
i=0 xiai, ai ∈ R as in McConnell and Robson [15]. We denote R[x; σ, δ]

by O(R). In case δ is the zero map, we denote R[x;σ] by S and in case σ is the
identity map, we denote R[x; δ] by D. The study of Ore-extension O(R) = R[x;σ, δ]
and its special cases S and D have been of interest to many authors. For exam-
ple [6–8,10,13,14,16].
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2-primal rings have been studied in recent years and are being treated by authors
for different structures. In [14], Greg Marks discusses the 2-primal property of
R[x; σ, δ], where R is a local ring, σ an automorphism of R and δ a σ-derivation of
R. In Greg Marks [14], it has been shown that for a local ring R with a nilpotent
maximal ideal, the Ore extension R[x; σ, δ] will or will not be 2-primal depending on
the δ-stability of the maximal ideal of R. In the case where R[x; σ, δ] is 2-primal, it
will satisfy an even stronger condition; in the case where R[x; σ, δ] is not 2-primal,
it will fail to satisfy an even weaker condition.

Minimal prime ideals of 2-primal rings have been discussed by Kim and Kwak
in [11]. 2-primal near rings have been discussed by Argac and Groenewald in [1].
Recall that a ring R is 2-primal if and only if N(R) = P (R), i.e. if the prime
radical is a completely semiprime ideal. An ideal I of a ring R is called completely
semiprime if a2 ∈ I implies a ∈ I for a ∈ R. We also note that a reduced ring is
2-primal and a commutative ring is also 2-primal. For further details on 2-primal
rings, we refer the reader to [1–3,11,14].

Before proving the main result, we find a relation between the minimal prime ide-
als of R and those of the Ore extension R[x; σ, δ], where R is a Noetherian Q-algebra,
σ an automorphism of R and δ a σ-derivation of R such that δ(σ(a)) = σ(δ(a)) for
all a ∈ R. This is proved in Theorem 3.

σ(∗)-rings: Let R be a ring and σ an endomorphism of R. Then σ is said to be
a rigid endomorphism if aσ(a) = 0 implies that a = 0, for a ∈ R, and R is said to
be a σ-rigid ring (Krempa [12]).

For example let R = C, and σ : C→ C be the map defined by σ(a+ ib) = a− ib,
a, b ∈ R. Then it can be seen that σ is a rigid endomorphism of R.

In Theorem 3.3 of [12], Krempa has proved the following:
Let R be a ring, let σ be an endomorphism and δ a σ-derivation of R. If σ is a
monomorphism, then the skew polynomial ring R[x; σ, δ] is reduced if and only if R
is reduced and σ is rigid. Under this conditions any minimal prime ideal (annihilator)
of R[x; σ; δ] is of the form P [x; σ; δ] where P is a minimal prime ideal (annihilator)
in R.

In [13], Kwak defines a σ(∗)-ring R to be a ring in which aσ(a) ∈ P (R) implies
a ∈ P (R) for a ∈ R.

Example 1. Let R =
(

F F
0 F

)
, where F is a field. Then P (R) =

(
0 F
0 0

)
Let

σ : R → R be defined by σ
((

a b
0 c

) )
=

(
a 0
0 c

)
. Then it can be seen that σ is

an endomorphism of R and R is a σ(∗)-ring.

We note that the above ring is not σ-rigid. For let 0 6= a ∈ F . Then(
0 a
0 0

)
σ

(
0 a
0 0

)
=

(
0 0
0 0

)
, but

(
0 a
0 0

)
6=

(
0 0
0 0

)
.
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Kwak in [13] also establishes a relation between a 2-primal ring and a σ(∗)-ring.
The property is also extended to the skew-polynomial ring R[x; σ]. It has been
proved in Theorem 5 of [13] that if R is a 2-primal ring and σ is an automorphism
of R, then R is a σ(∗)-ring if and only if σ(P ) = P for all P ∈ Min.Spec(R). In
Theorem 12 of [13] it has been proved that if R is a σ(∗)-ring with σ(P (R)) = P (R),
then R[x; σ] is 2-primal if and only if P (R)[x; σ] = P (R[x; σ]).

It is known that if R is a 2-primal Noetherian Q-algebra, and δ is a derivation
of R, then R[x; δ] is 2-primal Noetherian. (Theorem 2.4 of Bhat [3]).

Let now R be a ring, σ an automorphism of R and δ a σ-derivation of R. Recall
from Bhat [2] that R is said to be a δ-ring if aδ(a) ∈ P (R) implies a ∈ P (R) for
a ∈ R. It is known that if R is a δ-Noetherian Q-algebra, σ an automorphism of R
and δ a σ-derivation of R such that δ(σ(a)) = σ(δ(a)) for all a ∈ R, σ(P ) = P for
all P ∈ Min.Spec(R) and δ(P (R)) ⊆ P (R), then R[x;σ, δ] is 2-primal Noetherian
(Theorem 2.4 of Bhat [2]).

In a sense we generalize the above results of Bhat [2, 3] when σ is an automor-
phism of R and ultimately investigate the 2-primal property of R[x;σ, δ] when R is
a σ(∗)-Noetherian Q-algebra and prove the following, even without the hypothesis
of R being a δ-ring:

Let R be a Noetherian σ(∗)-ring, which is also an algebra over Q. Further
P ∈ Min.Spec(O(R)) imply that P ∩R ∈ Min.Spec(R). Then R[x; σ, δ] is 2-primal
Noetherian, where δ(σ(a)) = σ(δ(a)) for all a ∈ R.

This result is proved in Theorem 5. We note that for a Noetherian σ(∗)-ring,
σ(P ) = P for all P ∈ Min.Spec(R) (Theorem 2), and this is crucial in proving
Theorem 4 and, therefore, the main result (Theorem 5).

We generalize Theorem 7 of [5] which states the following:
Theorem 7 of [5]. Let R be a Noetherian ring, which is also an algebra over Q.

Let σ be an automorphism of R such that R is a σ(∗)-ring and δ be a σ-derivation
of R such that R is a δ-ring and δ(σ(a)) = σ(δ(a)) for all a ∈ R. Further let
P ∈ Min.Spec(O(R)) imply that P ∩R ∈ Min.Spec(R). Then R[x; σ, δ] is 2-primal
Noetherian.

2 Ore extensions

Recall that an ideal I of a ring R is called σ-invariant if σ(I) = I. Also I is
called completely prime if ab ∈ I implies a ∈ I or b ∈ I for a, b ∈ R. ([13])

In commutative case completely prime and prime have the same meaning. We
also note that every completely prime ideal of a ring R is a prime ideal, but the
converse need not be true.

The following example shows that a prime ideal need not be a completely prime
ideal.
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Example 2. Let R =
(
Z Z
Z Z

)
= M2(Z). If p is a prime number, then the

ideal P = M2(pZ) is a prime ideal of R, but is not completely prime, since for

a =
(

1 0
0 0

)
and b =

(
0 0
0 1

)
, we have ab ∈ P , even though a /∈ P and b /∈ P .

We also recall that an ideal J of a ring is called a σ-prime ideal of R if J is
σ-invariant and for any σ-invariant ideals K and L with KL ⊆ J , we have K ⊆ J
or L ⊆ J .

We also note that if R is a Noetherian ring, then Min.Spec(R) is finite (Theorem
2.4 of Goodearl and Warfield [10]) and for any automorphism σ of R and for any
U ∈ Min.Spec(R), we have σi(U) ∈ Min.Spec(R) for all i ∈ N, therefore, it follows
that there exists some m ∈ N such that σm(U) = U for all U ∈ Min.Spec(R). As
mentioned earlier we denote ∩m

i=0σ
i(U) by U0.

We now prove the following Theorem. This Theorem has not been used to prove
the main Theorem, but gives an idea to find a relation between Min.Spec(R) and
Min.Spec(O(R)) (namely Theorem 3) which is crucial in proving the main result
(Theorem 5):

Theorem 1. Let R be a Noetherian ring and σ an automorphism of R. Let S =
R[x; σ] be as usual. Then:

1. If P ∈ Min.Spec(S), then P = (P ∩ R)S and there exists U ∈ Min.Spec(R)
such that P ∩R = U0.

2. If U ∈ Min.Spec(R), then U0S ∈ Min.Spec(S).

Proof. See Theorem 2.4 of Bhat [6].

Proposition 1. Let R be a ring and σ an automorphism of R. Then R is a σ(∗)-ring
implies R is 2-primal.

Proof. Let a ∈ R be such that a2 ∈ P (R). Then aσ(a)σ(aσ(a)) = aσ(a)σ(a)σ2(a) ∈
σ(P (R)) = P (R). Therefore aσ(a) ∈ P (R) and hence a ∈ P (R).

A necessary and sufficient condition for a Noetherian ring to be a σ(∗)-ring is
given by Bhat in Theorem 2.4 of [4]:

Theorem 2. Let R be a Noetherian ring. Then R is a σ(∗)-ring if and only if for
each minimal prime U of R, σ(U) = U and U is completely prime ideal of R.

Proof. Theorem 2.4 of [4].

We now give a relation between the minimal prime ideals of R and those of
R[x; σ, δ], where R is a Noetherian Q-algebra, σ an automorphism of R and δ a
σ-derivation of R. This is proved in Theorem 3. Towards this we have the following:
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Proposition 2. Let R be a Noetherian Q-algebra, σ an automorphism and δ a
σ-derivation of R such that δ(σ(a)) = σ(δ(a)) for all a ∈ R. Then etδ is an auto-
morphism of T = R[[t, σ]], the skew power series ring.

Proof. The proof is on the same lines as in Seidenberg [16] and in the non-
commutative case on the same lines as provided by Blair and Small in [8].

Henceforth we denote R[[t, σ]] by T . Let I be an ideal of R such that σ(I) = I.
Then it is easy to see that TI ⊆ IT and IT ⊆ TI. Hence TI = IT is an ideal of T .

Lemma 1. Let R be a Noetherian Q-algebra, σ an automorphism and δ a σ-
derivation of R such that δ(σ(a)) = σ(δ(a)) for all a ∈ R. Let I be an ideal of
R such that σ(I) = I. Then I is δ-invariant if and only if IT is etδ-invariant.

Proof. Let IT be etδ-invariant. Let a ∈ I. Then a ∈ IT . So etδ(a) ∈ IT ; i.e.
a + tδ(a) + (t2δ2/2!)(a) + ... ∈ IT . Therefore δ(a) ∈ I.

Conversely suppose that δ(I) ⊆ I and let f =
∑

tiai ∈ IT . Then etδ(f) =
f + tδ(f) + (t2δ2/2!)(f) + ... ∈ IT , as δ(ai) ∈ I. Therefore etδ(IT ) ⊆ IT . Replacing
etδ by e−tδ, we get that etδ(IT ) = IT .

Assumption A: Henceforth we assume that R is a ring and T as usual such
that for any U ∈ Min.Spec(R) with σ(U) = U , UT ∈ Min.Spec(T ).

Proposition 3. Let R be a Noetherian Q-algebra. Let σ be an automorphism of
R and δ be a σ-derivation of R such that δ(σ(a)) = σ(δ(a)) for all a ∈ R. Then
P ∈ Min.Spec(R) with σ(P ) = P implies δ(P ) ⊆ P .

Proof. Let T be as usual. Now by Proposition (2) etδ is an automorphism of T .
Let P ∈ Min.Spec(R)). Then by assumption PT ∈ Min.Spec(T ). Therefore there
exists an integer n ≥ 1 such that (etδ)n(PT ) = PT , i.e. entδ(PT ) = PT . But R is
a Q-algebra, therefore, etδ(PT ) = PT and now Lemma 1 implies δ(P ) ⊆ P .

Proposition 4. Let R be a σ(∗)-ring, which is also an algebra over Q and U ∈
Min.Spec(R). Then U(O(R)) = U [x; σ, δ] is a completely prime ideal of O(R) =
R[x; σ, δ], where δ is a σ-derivation of R such that δ(σ(a)) = σ(δ(a)) for all a ∈ R.

Proof. Let U ∈ Min.Spec(R). Then σ(U) = U by Theorem 2, and δ(U) ⊆ U by
Proposition 3). Now R is 2-primal by Proposition 1 and furthermore U is completely
prime by Theorem 2. Now we note that σ can be extended to an automorphism σ of
R/U and δ can be extended to a σ-derivation δ of R/U . Now it is well known that
O(R)/U(O(R)) ' (R/U)[x; σ, δ] and hence U(O(R)) is a completely prime ideal of
O(R).

Theorem 3. Let R be a Noetherian Q-algebra. Consider O(R) as usual such that
R is a σ(∗)-ring and δ(σ(a)) = σ(δ(a)) for all a ∈ R. Then P1 ∈ Min.Spec(R) with
σ(P1) = P1 implies that O(P1) ∈ Min.Spec(O(R).
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Proof. Let P1 ∈ Min.Spec(R). Now by Theorem 2 σ(P1) = P1, and by Proposition 3
δ(P1) ⊆ P1. Now Proposition (3.3) of [9] implies that O(P1) ∈ Spec(O(R)). Suppose
O(P1) /∈ Min.Spec(O(R)) and P2 ⊂ O(P1) be a minimal prime ideal of O(R). Then
P2 = O(P2 ∩ R) ⊂ O(P1) ⊆ Min.Spec(O(R)). Therefore (P2 ∩ R) ⊂ P1 which is a
contradiction, as (P2 ∩R) ∈ Spec(R). Hence O(P1) ∈ Min.Spec(O(R)).

We now prove the following Theorem, which is crucial in proving Theorem 5.

Theorem 4. Let R be a Noetherian σ(∗)-ring, which is also an algebra over Q, σ
an automorphism of R and δ a σ-derivation of R such that δ(σ(a)) = σ(δ(a)) for
all a ∈ R. Then R[x; σ, δ] is 2-primal if and only if P (R)[x; σ, δ] = P (R[x; σ, δ]).

Proof. Let R[x; σ, δ] be 2-primal. Now by Proposition 4 P (R[x;σ, δ]) ⊆ P (R)[x;σ, δ].
Let

f(x) =
∑n

j=0 xjaj ∈ P (R)[x;σ, δ].

Now R is a 2-primal subring of R[x; σ, δ] by Proposition 1, which implies that aj is
nilpotent and thus

aj ∈ N(R[x; σ, δ]) = P (R[x; σ, δ]).

So we have xjaj ∈ P (R[x; σ, δ]) for each j, 0 ≤ j ≤ n, which implies that
f(x) ∈ P (R[x; σ, δ]). Hence P (R)[x; σ, δ] = P (R[x;σ, δ]).

Conversely suppose that P (R)[x;σ, δ] = P (R[x; σ, δ]). We will show that
R[x; σ, δ] is 2-primal. Let

g(x) =
∑n

i=0 xibi ∈ R[x; σ, δ], bn 6= 0

be such that

(g(x))2 ∈ P (R[x; σ, δ]) = P (R)[x; σ, δ].

We will show that g(x) ∈ P (R[x; σ, δ]). Now leading coefficient σ2n−1(bn)bn ∈
P (R) ⊆ P , for all P ∈ Min.Spec(R). Also σ(P ) = P and P is completely prime by
Theorem 2. Therefore we have bn ∈ P , for all P ∈ Min.Spec(R), i.e. bn ∈ P (R).
Now δ(P ) ⊆ P for all P ∈ Min.Spec(R) by Proposition 3, we get

(
∑n−1

i=0 xibi)2 ∈ P (R[x; σ, δ]) = P (R)[x; σ, δ]

and as above we get bn−1 ∈ P (R). With the same process in a finite number of
steps we get bi ∈ P (R) for all i, 0 ≤ i ≤ n. Thus we have g(x) ∈ P (R)[x;σ, δ],
i.e. g(x) ∈ P (R[x; σ, δ]). Therefore, P (R[x; σ, δ]) is completely semiprime. Hence
R[x; σ, δ] is 2-primal.

Theorem 5. Let R be a Noetherian, which is also an algebra over Q. Let σ be
an automorphism of R such that R is a σ(∗)-ring and δ a σ-derivation of R such
that δ(σ(a)) = σ(δ(a)) for all a ∈ R. Further let P ∈ Min.Spec(O(R)) imply that
P ∩R ∈ Min.Spec(R). Then O(R) = R[x; σ, δ] is 2-primal Noetherian.
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Proof. R[x; σ, δ] is Noetherian by Hilbert Basis Theorem (Theorem 1.12 of Goodearl
and Warfield [10]). We now use Theorem 3 to get that P (R)[x;σ, δ] = P (R[x; σ, δ]),
and the result now follows from Theorem 4.

We note that the hypothesis that R is a σ(∗)-ring can not be deleted as can be
seen below:

Example 3. Let R = K ⊕K, where K is a field. Then the Ore extension O(R) =
R[x; σ, 0], where σ is an automorphism of R defined by σ((a; b)) = (b; a), is a prime
ring. Thus P = 0 is a minimal prime of O(R). But P ∩ R = 0 is not a prime ideal
of R.

The following example shows that if R is a Noetherian ring, then R[x;σ, δ] need
not be 2-primal.

Example 4. Let R = Q ⊕ Q with σ(a, b) = (b, a). Then the only σ-invariant
ideals of R are {0} and R, and so R is σ-prime. Let δ : R → R be defined by
δ(r) = ra−aσ(r), where a = (0, α) ∈ R. Then δ is a σ-derivation of R and R[x;σ, δ]
is prime and P (R[x;σ, δ]) = 0. But (x(1, 0))2 = 0 as δ(1, 0) = −(0, α). Therefore
R[x; σ, δ] is not 2-primal. If δ is taken to be the zero map, then even R[x;σ] is not
2-primal.

The following example shows that if R is a Noetherian ring , then even R[x] need
not be 2-primal.

Example 5. Let R = M2(Q), the set of 2×2 matrices over Q. Then R[x] is a prime
ring with non-zero nilpotent elements, and so can not be 2-primal.

From these examples we conclude that if R is a Noetherian ring, then even R[x]
need not be 2-primal. But it is known that if R is a 2-primal Noetherian Q-algebra
and δ is a derivation of R, then R[x; δ] is 2-primal Noetherian (Theorem 2.4 of
Bhat [3]), and therefore, we have the following question:

Question: If R is a 2-primal ring, is R[x; σ, δ] 2-primal (even if R is commutative
or the special case when R is Noetherian)?
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