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On the structure of maximal non-finitely generated

ideals of ring and Cohen’s theorem

S. I. Bilavska, B.V. Zabavsky

Abstract. In this paper we consider analogues of Cohen’s theorem. We introduce
new notions of almost prime left (right) submodule and dr-prime left (right) ideal, this
allows us to extend Cohen’s theorem for modular and non-commutative analogues. We
prove that if every almost prime submodule of a finitely generated module is a finitely
generated submodule, then any submodule of this module is finitely generated.
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1 Introduction

The aim of this paper is to generalize Cohen’s theorem for wider class of rings.
In 1950 studying the structure of a commutative ring I. Cohen showed that if an
arbitrary prime ideal in a commutative ring with 1 6= 0 is finitely generated (prin-
cipal), then any ideal in R is finitely generated (principal) [1]. This theorem has a
rich history. In particular, R.Chandran proved it for duo-ring [2]. G.Mihler showed
that if an arbitrary left (right) prime ideal is finitely generated in an associative
ring, then an arbitrary left (right) ideal in a ring is finitely generated [3]. Another
non-commutative analogue of Cohen’s theorem was proved by B. Zabavsky [6] using
a weakly prime left (right) ideal. Also in [4−5] some attempts were made to extend
this theorem for module, but with some restrictions on this module.

In this paper we prove analogues of Cohen’s theorem for module over arbitrary
associative ring with 1 6= 0, for this we introduce a new notion of almost prime
left (right) submodule. So if every almost prime submodule of a finitely generated
module is a finitely generated, then any submodule of the module is finitely gener-
ated. Notice that in a commutative ring and duo-ring the notions of almost prime
submodule and prime submodule coincide.

In the next section we consider the commutative ring with 1 6= 0 which is not
a noetherian ring, the notion of a maximal non-finitely generated ideal and a finite
element are investigated here. Also some important corollaries are considered in this
section.

The last section deals with non-commutative analogue of Cohen’s theorem. A
new notion of dr-prime left (right) ideal is introduced. Thus if any dr-prime left
(right) ideal of a ring R is principal, then any left (right) ideal in R is principal.
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2 Preliminaries

Let M be a finitely generated left module considered over an associative ring
R with 1 6= 0. Suppose that there is at least one submodule which is not finitely
generated, we call it a non-finitely generated submodule. We denote by S the set of
all non-finitely generated submodules and by {Ni}i∈Λ any chain of submodules of a
module M which belong to the set S, moreover N =

⋃
i∈Λ

Ni.

We show that N ∈ S. Suppose that N /∈ S, then there exist elements
n1, n2, . . . nk ∈ N such that

N = Rn1 + Rn2 + . . . + Rnk.

Since N =
⋃

i∈Λ

Ni for every nj, j = 1, 2, . . . , k, there exists s such that nj ∈ Nis .

Since {Ni}i∈Λ is a chain of submodules, there exists t such that n1, n2, . . . , nk ∈ Nt.
Then Rn1 + Rn2 + . . . + Rnk ⊂ Nt. Since

Nt ⊂ N =
⋃

i∈Λ

Ni = Rn1 + Rn2 + . . . + Rnk,

this is a contradiction to Nt ∈ S. This contradiction shows that N ∈ S, therefore
the set S is inductive with respect to the order of submodules inclusion as a set.

According to Zorn’s lemma there exists at least one maximal element in the set
S. Therefore we have a submodule which is contained in the maximal element of S,
we call it the maximal non-finitely generated submodule of the module M .

Definition 1. An element a of a ring R is called a duo-element if aR = Ra.

Definition 2. A left ideal P of a ring R is called an almost prime left ideal if from
the condition ab ∈ P , where a is a duo-element of the ring R it follows that either
a ∈ P or b ∈ P .

Definition 3. A submodule N of a module M is called an almost prime left sub-
module if

(N : M) = {r|r ∈ R, rM ⊂ N}

is an almost prime left ideal of a ring R.

Proposition 1. Any maximal left ideal of a ring R is an almost prime left ideal.

Proof. Let M be an arbitrary maximal ideal of a ring R and let M be not almost
prime. Then there exist elements a ∈ R\M , b ∈ R\M , where a is a duo-element
such that ab ∈ M . If M is maximal then we have M + bR = R and hence there
exist elements m ∈ M , r ∈ R such that m + br = 1. Hence am + abr = a ∈ M . But
this is a contradiction with the choice of the element a.

Remark that any maximal submodule of a module is an almost prime submodule
[5]. We consider just a finitely generated submodule, so it is obvious that maximal
submodules exist in it. It is easy to see that in module under consideration there
always exist almost prime submodules.
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3 Analogue of Cohen’s theorem for modules

Suppose that for a module M there exists at least one non-finitely generated
submodule. Then according to what was proved above there exists a maximal non-
finitely generated submodule. If there exists a maximal non-finitely generated sub-
module, then there exists an almost prime submodule.

Theorem 1. Every maximal non-finitely generated submodule of a finitely generated
module over a ring is an almost prime submodule.

Proof. Let M be a finitely generated module, N be a maximal non-finitely generated
submodule, N ⊂ M . According to restrictions on a ring R, N could not be an almost
prime ideal, that is there exist elements a, b ∈ R, where a is a duo-element such that

abN ⊂ M , but a /∈ N and b /∈ N . Then we assume that N + aM =
α∑

i=1

Rxi is a

finitely generated submodule of the module M . Notice that N + bM ⊆ (N : a),
where (N : a) = {m|am ∈ N}. Thus (N : a) is a finitely generated submodule of

a module M , and let (N : a) =
β∑

j=1

Ryj. Since N ⊂ N + aM =
α∑

i=1

Rxi, for any

n ∈ N there exist elements ri ∈ R, i = 1, 2, . . . α, such that n = r1x1 + . . . + rαxα.

As N + aM =
α∑

i=1

Rxi, there exist n0
i ∈ N and si ∈ M , where i = 1, 2, . . . α, such

that xi = n0
i + asi. We show that

n = r1n
0
1 + . . . + rαn0

α + r1as1 + . . . + rαasα.

As a is a duo-element, for every ri ∈ R, i = 1, 2, . . . α, there exists r′i ∈ R, i =
1, 2, . . . α, such that ria = ar′i. Hence

n = r1n
0
1 + . . . + rαn0

α + a(r′1s1 + . . . + r′αs1 + . . . + r′αsα).

Thus
n − r1n

0
1 − . . . − rαn0

α = a(r′1s1 + . . . + r′αsα) ∈ N.

If (N : a) =
β∑

j=1

Ryj, we obtain r′1s1 + . . . + r′αsα = t1y1 + . . . + tβyβ, for some

t1, . . . tβ ∈ R such that at1 = t′1a,. . . atβ = t′βa, and then

n = r1n
0
1 + . . . + rαn0

α + t1ay1 + . . . + tβayβ.

Since n is an arbitrary element, we proved that

N ⊆ Rn0
1 + . . . + Rn0

α + Ray1 + . . . + Rayβ.

If yi ∈ (N : a), i = 1, 2, . . . , β, then ay1 ∈ N, . . . , ayβ ∈ N , and if n0
1, . . . , n

0
α ∈ N ,

then Rn0
1 + . . . + Rn0

α + Ray1 + . . . + Rayβ ⊂ N . Thus

N = Rn0
1 + . . . + Rn0

α + Ray1 + . . . + Rayβ

is a finitely generated submodule N , but this is a contradiction with N ∈ S. Thus
N is an almost prime submodule.
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Remind that if R is a commutative ring or duo-ring, then the notion of almost
prime submodule coincides with the notion of a prime submodule [4-5].

Also from Theorem 1, as a consequence, we obtain the modular analogue of
Cohen’s theorem. This theorem is the main result of the section.

Theorem 2 (Modular analogue of Cohen’s theorem). If every almost prime
submodule of a finitely generated module is a finitely generated submodule, then any
submodule of this module is finitely generated.

Proof. Let M be a finitely generated module, and all almost prime submodules of
the module M are finitely generated. If M does not contain non-finitely generated
submodules, then everything is clear. In another case, for the module M there exists
at least one non-finitely generated submodule. Then, according to what was proved
above for M there exists at least one maximal non-finitely generated submodule.
According to Theorem 1, N is an almost prime submodule. But all almost prime
submodules of the module M are finitely generated, that is N is finitely generated
as an almost prime submodule and N is not finitely generated as a maximal non-
finitely generated submodule at the same time. But this is not possible, therefore
M does not contain non-finitely generated submodules.

4 Maximal non-finitely generated ideals of commutative ring

Let R be a commutative ring with 1 6= 0. Assume that R is not a noetherian
ring, that is there exist non-finitely generated ideals in R. Consider a ring R as a
module over itself, that is RR.

Definition 4. An ideal I in R which is maximal in a set of non-finitely generated
ideals is called maximal non-finitely generated ideal in R.

We can say that there exists at least one maximal non-finitely generated ideal
in R. Moreover, using the theorem for the module RR we obtain that all maximal
non-finitely generated ideals are prime ideals. Thus, the following theorem takes
place.

Theorem 3 (see [3]). Let R be a commutative ring which is not noetherian, then
any maximal non-finitely generated ideal of the ring R is a prime ideal.

Hence, as an obvious corollary we obtain the known Cohen’s theorem.

Theorem 4 (see [1]). If all prime ideals of a commutative ring R are finitely
generated, then R is a noetherian ring.

Consider the case when R is a commutative ring but is not a noetherian ring.
According to above there exists at least one maximal non-finitely generated ideal in
R. Denote by N(R) the intersection of all maximal non-finitely generated ideals of
the ring R.
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Definition 5. We say that a nonzero element a of a ring R is a finite element if any
chain of ideals which contain the element a is finite. That is for any chain of ideals
I1 ⊂ I2 ⊂ ... such that a ∈ I1, there exists a number n for which In = In+1 = ...

All invertible elements and all factorial elements are examples of the finite ele-
ment a [6]. Thus we obtain the following corollary.

Corollary 1. Let R be a commutative ring and a be an arbitrary element of the
ring R. Then the following statements are equivalent:

1) a is a finite element ;

2) any ideal which contains the element a is finitely generated;

Proof. 1) =⇒ 2). Let I be any ideal of a ring R which contains the element a.
If aR = I, everything is clear, but otherwise there exists an element i1 ∈ I such
that i1 /∈ aR. Consider the ideal aR + i1R, it is obvious that aR ⊂ aR + i1R. If
aR+ i1R 6= I, then there exists an element i2 ∈ I such that i2 /∈ aR+ i1R. Consider
the ideal aR + i1R+ i2R, it is obvious, that aR ⊂ aR + i1R ⊂ aR+ i1R + i2R. This
inclusion can be continued, but taking into account the definition of the element a,
this chain can not be infinite. This means that there exist elements i1, i2, . . . , in ∈ I
such that

aR + i1R + . . . + inR = I,

that is I is a finitely generated ideal.

2) =⇒ 1). Conversely, show that if any ideal which contains the element a is
finitely generated, then a is a finite element of the ring R.

Let {Iα}α∈Λ be any chain of ideals, and all ideals of such type of this chain
contain the element a. Show that this chain is finite. Let I =

⋃
α∈Λ

Iα. Obviously,

a ∈ I. As we assumed, I is a finitely generated ideal, that is there exist elements
i1, . . . , ik ∈ I such that I = i1R + . . . + ikR. Since I =

⋃
α∈Λ

Iα, there exist numbers

α1, . . . , αk such that i1 ∈ Iα1 , . . . , ik ∈ Iαk
. If {Iα}α∈Λ is a chain of ideals, there

exists a number t such that i1, . . . , ik ∈ Iαt
, that is i1R + . . . + ikR ⊂ Iαt

. As⋃
α∈Λ

Iα = i1R + . . . + ikR, then i1R + . . . + ikR = Iαt
, that is the chain {Iα}α∈Λ is

finite.

Corollary 2. Suppose that an element a does not belong to any maximal non-finitely
generated ideal of a ring R. Then a is a finite element in R.

Proof. Use Corollary 1 and the fact that the element a is not contained in any non-
finitely generated ideal. Thus, as it is proved above, the element a is contained in
at least one maximal non-finitely generated ideal.

Corollary 3. Let n be an arbitrary element from N(R). Then for any finite element
a ∈ R and any element x ∈ R, the element a + nx is finite.
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Proof. We will prove it by contradiction. Let the element a + nx be not finite, then
it belongs to some maximal non-finitely generated ideal N of the ring R. Since n
is an element from N(R), we see that n ∈ N and x is an arbitrary element of the
ring R, then nx ∈ N . From the definition of ideal we obtain (a + nx) − nx ∈ N ,
whence a ∈ N . However, the element a is finite and as proved above, the element a
belongs to a maximal non-finitely generated ideal, which is impossible, according to
Corollary 1. We obtain a contradiction.

Corollary 4. Let R be a commutative ring with only one maximal non-finitely
generated ideal N = N(R). Then the following statements hold:

a) all non-finite elements from R form an ideal which coincides with N ;
b) an arbitrary divisor of a finite element is a finite element of the ring R;
c) for an arbitrary non-finite element n and any finite element a, we obtain that

a + n is a finite element.

Proof. a) From Corollary 1 it is known that any finite element does not belong to N
and every element which does not belong to N is finite. Then all non-finite elements
form the ideal which coincides with N .

b) Let a be a finite element of the ring R such that a = bc, b /∈ U(R) and
c /∈ U(R), where U(R) is the group of units of the ring R. If b is not finite, then
b ∈ N . Hence we see that bc = a ∈ N , but this is impossible, because the element a
is finite. Corollary 1 completes the proof.

c) If n ∈ N and a is a finite element, then obviously a + n is not contained in N
(because there are only finite elements in N). Thus, a + n is a finite element.

5 Analogue of Cohen’s theorem for principal ideals of

noncommutative ring

In this section, we denote by R an associative ring with 1 6= 0.

Definition 6. A left (right) ideal in R which is maximal in the set of non-finitely
generated left(fight) ideals is called maximal non-finitely generated left (right) ideal
in the ring R.

Definition 7. A left (right) ideal in R which is maximal in the set of non-principal
left (right) ideals is called maximal non-principal left (right) ideal in the ring R.

Corollary 5. Any left (right) non-finitely generated ideal of ring R is contained in
at least one maximal non-finitely generated left (right) ideal.

Proof. Let I be an arbitrary non-finitely generated left ideal of a ring R. Denote
by S the set of all non-finitely generated left ideals of the ring R which contain the
ideal I. We show that the set S is inductive with respect to the order of ideals
inclusion. If {Iα}α∈Λ is any chain of left ideals from the set S, denote J =

⋃
α∈Λ

Iα.

It is obvious that J is an ideal of the ring R. Moreover, J ∈ S. Indeed, according to
the definition of a left ideal, I ∈ S. If J /∈ S, then there exist elements j1, . . . , jk ∈ J
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such that J = Rj1 + . . . + Rjk, and there exist elements α1, . . . , αk ∈ Λ such that
j1 ∈ Iα1 , . . . , jk ∈ Iαk

. Since {Iα}α∈Λ is a chain, there exists t such that j1, . . . , jk ∈
Iαt

. As Iαt
⊂

⋃
α∈Λ

Iα, then Iαt
= Rj1 + . . . + Rjk, but this is impossible, because

Iαt
∈ S. Zorn’s lemma completes the proof of the corollary.

In the same way we can consider the case of a right non-finitely generated ideal.
In the case of a principal left (right) ideals the following corollary takes place.

Corollary 6. Every left (right) non-principal ideal of a ring R is contained in at
least one maximal non-principal left (right) ideal.

Proof. Using the previous proof of Corollary 5 for any left (right) non-finitely gener-
ated ideal, we can prove in the same way for any left (right) non-principal ideal.

Definition 8. Remind that an ideal P of a ring R is called prime left (right) ideal
if the condition aRb ⊆ P implies that either a ∈ P or b ∈ P .

According to a result of [3] we have the following theorem.

Theorem 5. Any maximal non-finitely generated left (right) ideal of a ring is a
prime left (right) ideal.

In [6] a noncommutative analogue of Cohen’s theorem was proved, using weakly
prime ideals.

Definition 9. We say that left (right) ideal P of a rind R is a weakly prime left
(right) ideal, if from the condition (a + P )R(b + P ) ⊆ P if follows that either a ∈ P
or b ∈ P .

Using a result of the paper [7], the folowing theorem holds.

Theorem 6. Any maximal non-principal left (right) ideal of a ring R is a weakly
prime left (right) ideal.

Definition 10. Remind that an element of a ring R is called an atom if it is non-
inverse and non-zero and cannot be presented as the product of two noninvertible
elements [8].

Theorem 7. Let N be an arbitrary maximal non-principal left ideal for which there
exists a duo-element c such that N ⊂ Rc. Then for any n ∈ N , from n = cx it
always follows x ∈ N .

Proof. Consider the set J = {x|cx ∈ N}. Since c is a duo-element, J is a left ideal.
Obviously N ⊂ J . If there exists an element y such that cy ∈ N , but y /∈ N , this
means that N ⊂ J , but N 6= J . Using the definition of left ideal N we see that
J = Rd. We show that N = Rcd. Indeed, since N ⊂ Rc = cR, for any n ∈ R there
exists t ∈ R such that n = ct. Since t ∈ J , we have t = sd. Hence n = csd. As c
is a duo-element, then there exists s′ ∈ R such that cs = s′c. Thus n = s′cd, that
is N ⊂ Rcd. Since 1 ∈ R and d ∈ J , we obtain cd ∈ N . Hence dcR ⊂ N . Thus
N = dcR. We obtain a contradiction to the choice of the left ideal.
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Definition 11. A left (right) ideal P of an associative ring R with 1 6= 0 is a dr-
prime left (right) ideal if P ⊂ Rc(P ⊂ cR), where c is a duo-element, and for any
p ∈ P , the condition p = yc = cx(p = cx = yc) implies x ∈ P (y ∈ P ).

Proposition 2. Any maximal left (right) ideal M of a ring R is a dr-prime left
(right) ideal.

Proof. Let M be a maximal left ideal. Since there is only one two-sided ideal in R
which contains M , for arbitrary m ∈ M it always follows m = 1m.

A similar proof could be made for a maximal right ideal.

Theorem 8 (Non-commutative analogue of Cohen’s theorem). If any dr-
prime left (right) ideal of a ring R is principal, then any left (right) ideal from R is
principal.

Proof. Let R be a ring in which any dr-prime left ideal is principal, but R is not a
principal left ideal I. By Corollary 6, I is contained in a maximal non-principal left
ideal N . According to Theorem 9, N is a dr-prime left ideal, since any dr-prime left
ideal is principal. But this is a contradiction.

Definition 12. A two-sided ideal P is called a completely prime ideal if the condi-
tion ab ∈ P , where a, b ∈ R, implies either a ∈ P or b ∈ P [8].

Notice that in the case of a commutative ring the notion of completely prime
ideal coincides with the notion of prime ideal.

Theorem 9. If a maximal non-finitely generated left (right) ideal of a ring R is
two-sided, then it is a completely prime ideal.

Proof. Let N be a maximal non-finitely generated left ideal of a ring R which is
two-sided. If R/N is not a ring without zero divisors, then there exist elements
a /∈ N and b /∈ N such that ab ∈ N in R. Thus, the left ideal J = {x|x ∈ R,xb ∈ N}
contains the ideal N and the element a. Hence, the inclusion N ⊂ J is strict,
and according to the restriction on N , the left ideal J is finitely generated. Let
J = Rc1 + . . . + Rcn. Since b /∈ N , according to the definition of the maximal
non-finitely generated left ideal N , we obtain

N + Rb = Rd1 + . . . + Rdk

for some elements d1, . . . , dk ∈ R. Hence di = ni + rib, where ni ∈ N , ri ∈ R,
i = 1, 2, . . . , k. As N ⊂ Rd1+ . . .+Rdk, then any element m ∈ N can be represented
in the following form

m = s1d1 + . . . + skdk,

where s1, . . . , sk ∈ R.
Using what is written above, we obtain

m = s1d1 + . . . + skdk = s1(n1 + r1b) + . . . + sk(nk + rkb) =



ON THE STRUCTURE OF MAXIMAL NON-FINITELY GENERATED IDEALS . . . 41

= s1n1 + . . . + sknk + s1r1b + . . . + skrkb.

Since m ∈ N and n1, . . . , nk ∈ N , we have

m − s1n1 − . . . − sknk = (s1r1 + . . . + skrk)b ∈ N,

then according to the definition of left ideal J we have s1r1 + . . . + skrk ∈ J , that
is there exist elements t1, . . . , tn ∈ R such that s1r1 + . . . + skrk = t1c1 + . . . + tncn,
because J = Rc1 + . . . + Rcn. Hence

m = s1n1 + . . . + sknk + t1c1b + . . . + tncnb.

Using the fact that element m is arbitrary, we obtain

N ⊂ Rn1 + . . . + Rnk + Rc1b + . . . + Rcnb.

However, n1, . . . , nk ∈ N and c1, . . . , ck ∈ J , so this means that c1b ∈ N1, . . . ckb ∈ N ,
that is Rn1 + . . . + Rnk + Rc1b + . . . + Rcnb ⊂ N . Thus

N = Rn1 + . . . + Rnk + Rc1b + . . . + Rcnb,

but this is a contradiction to the choice of N .
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