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Reconstruction of centrally symmetric convex
bodies in Rn

R.H.Aramyan

Abstract. The article considers the problem of existence and uniqueness of a cen-
trally symmetric convex body in Rn for which the projection curvature radius function
coincides with given function. A necessary and sufficient condition is found that en-
sures a positive answer. Also we find a representation for the support function of a
centrally symmetric convex body.
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1 Introduction

Let F be a function defined on 2-dimensional unit sphere S2. The existence and
uniqueness of convex body B ⊂ R3 for which the mean curvature radius at the point
on ∂B with outer normal direction ω coincides with F (ω) was posed by Christoffel
(see [4]). The corresponding problem for Gauss curvature was posed and solved by
Minkowski. A. D. Aleksandrov and A. V.Pogorelov generalized these problems for
a class of symmetric functions G(R1(ω), R2(ω)) of principal radii of curvatures [4].

Let B ⊂ Rn be a convex body with sufficiently smooth boundary and let
R1(ω), . . . , Rn−1(ω) signify the principal radii of curvature of the boundary of B at
the point with outer normal direction ω ∈ Sn−1. In n-dimensional case a Christoffel–
Minkowski problem was posed and solved by Firay (see [6]) and Berg (see [8]): what
are necessary and sufficient conditions for a function F , defined on Sn−1 to be the
function

∑
Ri1(ω) · · ·Rip(ω) for a convex body, where 1 ≤ p ≤ n − 1 and the sum

is extended over all increasing sequences i1, · · · , ip of indices chosen from the set
i = 1, . . . , n− 1.

In this paper we consider a similar problem posed for the 2-dimensional pro-
jection curvature radii of centrally symmetric convex bodies in Rn. We use the
following notation. By Bo we denote the class of convex bodies B ⊂ Rn that have a
center of symmetry at the origin O ∈ Rn. For two different directions ω, ξ ∈ Sn−1,
ω 6= ξ we denote by B(ω, ξ) the projection of B ∈ Bo onto the 2-dimensional plane
e(ω, ξ) containing the origin and the directions ω and ξ.

We define R(ω, ξ) = curvature radius of ∂B(ω, ξ) at the point whose outer normal
direction is ω, and call it 2-dimensional projection curvature radius of the body.
Since R(ω, ξ1) = R(ω, ξ2), where ω, ξ1, ξ2 ∈ Sn−1, are linearly dependent vectors, we
assume where necessary that ξ is orthogonal to ω.
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Let F be a function defined on the space of ”flags” an ordered pairs of orthogonal
unit vectors {(ω, ψ) : ω ∈ Sn−1, ψ ∈ Sω}. By Sω we denote the great (n − 2)-
subsphere of Sn−1 with pole ω ∈ Sn−1. In integral geometry the concept of a flag
was first systematically employed by R. V. Ambartzumian in [1]. In this paper we
study:

Problem 1: what are necessary and sufficient conditions for a function F to
be the 2-dimensional projection curvature radius function of a centrally symmetric
convex body and

Problem 2: reconstruction of that centrally symmetric convex body.
In this paper we find a necessary and sufficient condition on F (ω, ψ) that ensures

a positive answer. Note that the uniqueness (up to parallel shifts) follows from the
classical uniqueness result on Christoffel problem.

Also we find a simple representation for the support function of a 2-smooth cen-
trally symmetrical convex body in Rn in terms of 2-dimensional projection curvature
radius function.

Now we describe the main result. Let F be a nonnegative function defined on
the ordered pairs of orthogonal unit vectors F = {(ω, ψ) : ω ∈ Sn−1, ψ ∈ Sω}.

Theorem 1. A nonnegative n times continuously differentiable function F defined
on F is the 2-dimensional projection curvature radius function of a centrally sym-
metric convex body if and only if there is an even continuous function f defined on
Sn−1 such that

F (ω, ψ) = 2
∫

Sω

| < ψ, u > |2 f(u) λn−2(du), (1)

for all ω ∈ Sn−1 and all ψ ∈ Sω, here λn−2 is the Lebesgue measure on Sn−2, < ·, · >
denotes the Euclidean scalar product.

Note that in [3] the same problem was considered in R3 and a different necessary
and sufficient condition was found.

Radon transform provide a technique for studying the Christoffel problem for
centrally symmetric convex bodies. The solution of that problem is of different
nature for even and odd values of n (see [8]).

To reconstruct the convex body we find (by means of another method) a simple
representation for the support function of a centrally symmetric convex body in
terms of 2-dimensional projection curvature radius function.

Theorem 2. The support function of 2-smooth centrally symmetric convex body
B ⊂ Rn has the following representation

H(ξ) =
1

2σn−2

∫

Sn−1

R(ω, ξ)

sinn−3(ω̂, ξ)
λn−1(dω), ξ ∈ Sn−1. (2)

Here ω̂, ξ is the angle between ω and ξ, σn−2 = λn−2(Sn−2).

We need the following results from the convexity theory.
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2 Preliminaries

It is well known (see [7]) that the support function of every sufficiently smooth
convex body B ∈ Bo has the unique representation

H(ξ) =
∫

Sn−1

|< ξ,Ω >| h(Ω)λn−1(dΩ), ξ ∈ Sn−1 (3)

with some unique even continuous function h(Ω) defined on Sn−1, not necessarily
nonnegative, called the generating density of the body.

R. Schneider (see [8]) has showed that the smoothness of order n yields the
representation with a continuous generating density.

Below we use the following result of N. F. Lindquist (see [8]).
An even continuous function h defined on Sn−1 is the generating density of a convex
body B ∈ Bo if and only if

∫

Sω

|< ψ, u >|2 h(u) λn−2(du) ≥ 0, (4)

for all ω ∈ Sn−1 and all ψ ∈ Sω.
The author of the present paper gave a clear geometrical interpretation for inte-

gral (4). In [2] has proved the following theorem (here we present a short version of
the proof for completeness).

Theorem 3. For any sufficiently smooth convex body B ∈ Bo

R(ω, ξ) = 2
∫

Sω

|< ξ, u >|2 h(u) λn−2(du), (5)

where ξ, ω ∈ Sn−1, ξ ⊥ ω, h(u) is the generating density of B.

Proof. We need some special representation for the element of Lebesgue measure on
Sn−1. Given an orthonormal system of unit vectors z1, z2, x1, x2, ..., xn−2 in Rn, we
represent ω ∈ Sn−1 as ω = (ν, ϕ, u), where ν is the angle between ω and e(z1, z2),
ϕ is the angle between z1 and the projection of ω onto e(z1, z2), while u is the
direction of the projection of ω onto the (n − 2)-dimensional subspace containing
x1, x2, ..., xn−2. The corresponding Jacobian for n ≥ 4 is (see [6])

λn−1(dω) = sinn−3 ν cos ν dν dϕλn−3(du). (6)

The support function of B(ω, ξ) is the restriction of H(ξ) (the support function
of the body) onto the circle Sn−1 ∩ e(ω, ξ). We consider some orthonormal system
of unit vectors z1, z2, x1, ..., xn−2, where z1 = ω, z2 = ξ. Let φ be the angle between
direction ω(φ) in e(ω, ξ) and ω. We have ω(φ) = (cosφ, sinφ, 0, ..., 0). According
to the formula for curvature radius in 2-dimensional case (see [5]) we have

R(ω, ξ) = H(0) + H ′′(φ) |φ=0, (7)
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where H(φ) = H(ω(φ)). Using (3) we get

H(φ) =
∫

Sn−1

|< ω(φ), Ω >| h(Ω) dΩ = 2
∫

{Ω (ω,Ω)≥0}
(Ω1 cosφ + Ω2 sinφ) h(Ω) dΩ,

(8)
where Ω = (Ω1, Ω2, ...,Ωn). Now we represent Ω as Ω = (ν, ϕ, δ), where δ ∈ Sn−3, ν
is the angle between Ω and e(ω, ξ), and ϕ is a direction in e(ϕ, ξ). Using (6) for the
second derivative we get

H ′′(φ) = 2
∫

{Ω (ω,Ω)≥0}
(−Ω1 cosφ− Ω2 sinφ) h(Ω) dΩ + (9)

+2
∫

Sω(φ)

(−Ω1 sinφ + Ω2 cosφ) h(ν, φ +
π

2
, δ) sinn−3 ν cos ν dνλn−3(dδ).

Substituting (9) into (7) and taking into account that sinn−3 ν dν λn−3(dδ) =
λn−2(du) where u = (ν, δ), u ∈ Sω and Ω2 = cos ν = cos(u, ξ) we get (5).

3 Proofs of Theorems 1 and 2

Proof of Theorem 1. Necessity: let R(ω, ψ) be the projection curvature radius of
a convex body B ∈ Bo. We have to prove that there is an even function f defined
on Sn−1 such that condition (1) satisfies for R(ω, ψ). It follows from (3) that for a
sufficiently smooth convex body the generating density exists. As a function f , we
take the generating density of centrally symmetric convex body B. It follows from
Theorem 3 that equation (1) is satisfied.

Sufficiency: let F be a nonnegative function defined on F for which there is an
even continuous function f defined on Sn−1 such that

F (ω, ψ) = 2
∫

Sω

| < ψ, u > |2 f(u) λn−2(du), (10)

for all ω ∈ Sn−1 and all ψ ∈ Sω. Since F is nonnegative the right hand side of (10)
is nonnegative. Hence according to Theorem 3 there exists a centrally symmetric
convex body B for which even function f is the generating density of B. It follows
from Theorem 3 that the right hand side of (10) is the 2-dimensional projection
curvature radius function of B. Hence F is the 2-dimensional projection curvature
radius of B. ¤

Proof of Theorem 2. Let u ∈ Sξ be a direction perpendicular to ξ ∈ Sn−1. We
approximate B(u, ξ) ⊂ e(ω, ξ) from inside by polygons that have their vertices on
∂B(u, ξ). We denote by ai sides of the approximation polygon, by νi (νi is the angle
between the normal direction and ξ) the direction normal to ai within e(u, ξ). Let
HB(u,ξ) be the support function of B(u, ξ). We have

4H(ξ) = 4HB(u,ξ)(ξ) = lim
∑

i

|ai| sin(ξ̂, νi) = (11)
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= lim
∑

i

Ru(νi)|νi+1 − νi| sin(ξ̂, νi) = 2
∫ π

0
Ru(ν) sin ν dν,

Ru(ν) is the radius of curvature of ∂B(u, ξ) at the point with normal ν. Integrating
both sides of (11) in λn−2(du) over Sξ, and using standard formula λn−1(dω) =
sinn−2 ν dν λn−2(du), where ω = (ν, u) we obtain

2σn−2H(ξ) =
∫

Sξ

∫ π

0
Ru(ν) sin ν dν λn−2(du) =

=
∫

Sξ

∫ π

0

Ru(ν)
sinn−3 ν

sinn−2 ν dν λn−2(du) =
∫

Sn−1

R(ω, ξ)

sinn−3(ω̂, ξ)
λn−1(dω). ¤

Note that replacing 2H(·) by the width function W (·) in (2) we get a formula
for the width function for all convex bodies (not only centrally symmetric).
I would like to express my gratitude to Professor R. V. Ambartzumian for helpful
discussions.
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