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Abstract. We give a survey of results on the theory of semiprime semidistributive
rings, in particular, serial rings. Besides this we prove that a serial ring is Artinian
if and only if some power of its Jacobson radical is zero. Also we prove that a serial
ring is Noetherian if and only if the intersection of all powers of Jacobson radical is
zero. These two theorems hold for semiperfect semidistributive rings.
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1 Introduction

Artinian uniserial, or primary decomposable serial rings were first introduced
and studied by G.Kothe in the paper [9], where he proved that any module over
such a ring is a direct sum of cyclic modules (he called such rings “Einreihige Rin-
gen”). This result was generalized for Artinian serial rings by T.Nakayama, who
called these rings “generalized uniserial rings” (see [16] and [17]). In these papers
T. Nakayama proved that any module over such a ring is a direct sum of unise-
rial submodules each of which is a homomorphic image of an ideal generated by
a primitive idempotent. T.Nakayama also showed that, conversely, these are the
only rings whose indecomposable finitely generated modules (both left and right)
are homomorphic images of ideals generated by primitive idempotents.

Artinian principal ideal rings were studied in papers of G. Ko6the and K. Asano
(see [1] and [2]), where it was proved that any Artinian principal right ideal ring
is right uniserial. In fact, K. Asano proved that an Artinian ring is uniserial if
and only if each ideal is a principal right ideal and a principal left ideal. The
classical proof of this theorem is given in the book [7]. For such rings K. Asano also
proved an analogue of the Wedderburn-Artin theorem, namely, he proved that any
Artinian uniserial ring can be decomposed into a direct sum of full matrix rings of
the form M, (A), where A is a local Artinian ring with a cyclic radical. A one-sided
characterization of Artinian principal ideal rings and its connection with primary
decomposable serial rings is given in theorem 2.1 of the paper [4]

L. A. Skornyakov studied serial rings, which he called “semi-chain rings”, in his
paper [18]. There he proved that A is a right and left Artinian serial ring if and only
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if every left A-module is a direct sum of uniserial modules. His result generalizes a
theorem proved by K. R. Fuller (see [5]), to the effect that if each left module over a
ring A is a direct sum of uniserial modules, then A is a serial left Artinian ring.

The first serial non-Artinian rings were studied and described by R.B. Warfield
and V. V. Kirichenko. In particular, they gave a full description of the structure of
serial Noetherian rings. We follow the papers [12] and [10], where the technique of
quivers was used systematically.

It is well known that many important classes of rings are naturally character-
ized by the properties of modules over them. As examples, we mention semisimple
Artinian rings, uniserial rings, semiprime hereditary semiperfect rings and semidis-
tributive rings.

There is the following chain of strict inclusions:

semisimple Artinian rings C generalized uniserial rings C serial rings C semidis-
tributive rings.

In this chain the first three classes of rings are semiperfect. The example of the
ring of integers Z shows that a distributive ring is not necessarily semiperfect.

The reduction theorem for SPSD-rings and decomposition theorem for semiprime
right Noetherian SPSD-rings were proved in the paper [14].

Quivers and prime quivers of SPSD-rings were studied in [13].

A semilocal ring A is called semiperfect if idempotents of the ring A can be
lifted modulo R.

Semiperfect rings were introduced by H. Bass in 1960.

To understand the definition of a semilocal ring we need some additional defini-
tions and propositions.

A nonzero ring A is called local if it has the unique maximal right ideal.

The intersection of all maximal right ideals of a ring A is called the Jacobson
radical of A. The Jacobson radical is denoted R = rad A.

The following theorem contains the list of properties which are equivalent for
any local ring.

Theorem 1.1. The following properties of a ring A with the Jacobson radical R are
equivalent:

1. A is local;

2. R is the unique maximal right ideal in A;

3. all non-invertible elements of A form a proper ideal;

4. R is the set of all non-invertible elements of A;

5. the quotient ring A/R is a division ring.

Proposition 1.2. Let ¢ = e € A. Then rad(eAe) = eRe, where R is the radical
of A.

Recall that a module M is called distributive if for any submodules K, L, N

KNn(L+N)=KnL+KnNN.
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Clearly, a submodule and a quotient module of a distributive module are dis-
tributive. A module is called semidistributive if it is a direct sum of distributive
modules. A ring A is called right (left) semidistributive if the right (left) regular
module A4 (4A) is semidistributive. A right and left semidistributive ring is called
semidistributive.

Obviously, every uniserial module is a distributive module and every serial mo-
dule is a semidistributive module.

Example 1.1. Let S = {aq,..., an} be a finite poset with ordering relation < and
let D be a division ring. Denote by A(S, D) the following subring of M,(D):

A(S, D) = Z dijeij| dij eD
a; <oy

It is not difficult to check that A(S, D) is a semidistributive Artinian ring.
In particular, the hereditary semidistributive ring

diy diz di3
A3 = 0 d22 0 |dij eD
0 0 ds3
s of the form:
As = A(Ps, D),

where P3 is the poset with the diagram

Qe o3

NS

le

It is also clear that As is a semidistributive ring which is left serial, but not right
serial.

Proposition 1.3. Let M be an A-module. Then M is a distributive module if and
only if all submodules of M with two generators are distributive modules.

Proof. Suppose that all two-generated submodules of M are distributive modules.
Let K,L,N be submodules of M and k =l+n € KN(L+ M);l € L,n € N.
Obviously, kA C IA+ nA and KA = kAN (IA+nA) = KANIA+ kAN nA.
Therefore, k€ KNL+ KNN,ie. KN(L+N)C KnNL+ KNN. The inclusion
KNL+KNNCKN(L+ N) is always valid. O

Lemma 1.4. Let M be a distributive module over a ring A. Then for anym, n € M
there exist a,b € A such that 1 = a+ b and maA + nbA C mANnA.
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Proof. Write t = m +n and H = mA N nA. Obviously, tA C mA + nA and
Tan (mA+nA) =tA=(tA+mA)N (tA+nA). So there exist b,d € A such that
tb € mA, td € nAand t = tb+td. Then nb = tb—mb € H and md = td—nd € H. Let
a=1-band g =1-b—d. Hehavetg = t—tb—td = 0and ng = tg—mg = —mg € H.
So ma = md + mg € H and maA 4+ nbA C mANnA. O

Lemma 1.5. Let M be an A-module. Then M is a distributive module if and only
if for any m,n € M there exist four elements a,b,c,d of A such that 1 =a+b and
ma = nc, nb = md.

Proof. Necessity follows from Lemma 1.4. Conversely, let £ € K N (L + N), where
K,L, N are submodules of M. Then kK = m + n, where m € L and n € N. By
assumption there exist a,b € A such that 1 = a+b and ma € mANNA, nb € mANnA.
Consequently, ka = ma +na € kAN nA and kb = mb+ nb € kAN mA. Therefore,
k=ka+kbe (EAnnA)+ (kAnmA) Cc KNL+KNN,ie, KN(L+N) =
KNL+KNN. O

Let M be an A-module. Given two elements m,n € M we set
(m:n) ={a € Alna € mA}.
Theorem 1.6 (W. Stephenson). A module M is distributive if and only if
(m:n)+(n:m)=A
for allm,n e M.
Proof. This immediately follows from Lemma 1.5. O

A module M has the square-free socle if its socle contains at most one copy
of each simple module.

Theorem 1.7 (V. Camillo). Let M be an A-module. Then M is a distributive
module if and only if M/N has the square-free socle for every submodule N .

Proof. Necessity. Every quotient and submodule of a distributive module are dis-
tributive, so that if M /N contains a submodule of the form U & U, then M is not a
distributive module. Simply because U @ U is not a distributive module. Indeed, for
the diagonal D(U & U) = {(u,u)ln € U} of U U we have D(U)N(U s U) = D(U)
and D(U)N (U & 0)=0and D{U)N (0 U) =0.

Conversely. Let m,n € M. We show that (m : n)+ (n : m) = A. Let K be
a maximal right ideal of A and U = A/K. Consider the quotient module mA +
nA/mK + nK. The socle of mA +nA/mK + nK doesn’t contain U @& U if one of
the following conditions holds:

(1) m e nA+mK +nK =nA+ mkK;

(2) menA+mK +nK =nA+mkK;

In the case (1) we have m = na+nK or m(1&k) = na. So (1&k) € (n : m). Since
(l®k) ¢ K, we have (n: m) Z K. In the case (2) analogously (m :n) Z K. O
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Theorem 1.8. A semiprimary right semidistributive ring A is right Artinian.

Proof. 1t is sufficient to show that each indecomposable projective A-module
P = eA is Artinian (e is a nonzero idempotent of A). Let m be the minimal natural
number with PR = 0. Since the module P is distributive, by Theorem 1.7, the
quotient module PR?/PR*! decomposes into a finite direct sum of simple modules
(¢t =1,...,m —1). Thus, the module P possesses a composition series and the
module P is Artinian. O

We write SPSDR-ring (SPSDL-ring) for a semiperfect right (left) semidis-
tributive ring and SPSD-ring for a semiperfect semidistributive ring.

Theorem 1.9 (A. Tuganbaev). A semiperfect ring A is right (left) semidistribu-
tive if and only if for any local idempotents e and f of the ring A the set eAf is a
uniserial right fAf-module (uniserial left e Ae-module) ([6], Theorem 14.2.1).

2 Q-lemma and Annihilation lemma

Recall the definition of the Gabriel quiver for a finite dimensional algebra A
over a field k. We can restrict ourselves to basic split algebras. (An algebra A
is called basic if A/R is isomorphic to a product of division algebras, where R is
the Jacobson radical of A. An algebra A over a field k is called split if A/R ~
My, (k) x My, (k) x ... x My (k).) All algebras over algebraically closed fields are
split.

Let Pi,..., Ps be all pairwise nonisomorphic principal right A-modules. Write
R, = PR (i =1,...,s) and W; = R;/R;R. Since W; is a semisimple module,

S
W, = @ U;ij, where U; = P;/R; are simple modules. It is equivalent to the
j=1

S P
isomorphism P(R;) ~ P;”. To each module P; assign a point ¢ in the plane and
j=1

join the point 7 with the point j by ¢;; arrows. The so constructed graph is called
the quiver of A in the sense of P.Gabriel and denoted by Q(A).

A semiperfect ring A is called reduced if its quotient ring by the Jacobson
radical R is a direct sum of division rings.

Let A be a semiperfect ring such that A/R? is a right Artinian ring. The quiver
of the ring A/R? is called the quiver of the ring A and is denoted by Q(A).

Theorem 2.1. Let A be an arbitrary ring with an idempotent > = e € A. Set
f=1—¢e,eAf =X, fAe=Y, and let

ede X
= (5 )
be the corresponding two-sided Peirce decomposition of the ring A. Then the ring
A is right Noetherian (Artinian) if and only if the rings eAe and fAf are right

Noetherian (Artinian), X is a finitely generated fAf-module and Y is a finitely
generated e Ae-module.
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For further reasonings we will need the following proposition.

Proposition 2.2. Let A be a ring. For an A-module P the following statements
are equivalent:

1) P is projective;

2) every short exact sequence 0 — N — M — P — 0 splits;

3) P is a direct summand of a free A-module F'.

Let Ay = P/"" & ... @ P be the decomposition of a semiperfect ring A into a
direct sum of principal right A-modules and let 1 = f;+...4 f5 be the corresponding
decomposition of the identity of A into a sum of pairwise orthogonal idempotents,
ie., fiA=P" . Then 4A=Afi®.. dAfs = Q' ®...®QY* is the decomposition of
the semiperfect ring A into a direct sum of principal left A-modules, i.e. Af; = Q" ,
where Q; is an indecomposable projective left A-module (i = 1,...,s). Now consider
the two-sided Peirce decomposition of the ring A

A A o Ay

Aoy Aoy - Ao,
oo e
Anl An2 e Ann

Consider also the two-sided Peirce decomposition of the Jacobson radical R of A :
R =@ fiRf;. Since R is a two-sided ideal, f;Rf; C R for all 4, j. By Proposition 1.2
i,j
we have R;; = fiRf; = rad(f;Af;) for i = 1,...,n. We shall show that f;Rf; =
fiAf; for ¢ # j. Indeed, multiplying on the left elements from f; A by an element
fiafj we obtain a homomorphism ¢j; of the module f;A to f;A. If Im(pj;) = fiA,
then ¢j; is an epimorphism. Since f; A = Pz."i, [iA= Pj”j are projective modules, by
Proposition 2.2, and P;** is isomorphic to a direct summand of the module ij . But
this is impossible, since the indecomposable modules P; and P; are non-isomorphic.
Therefore Im(yj;) C fiA. We can write the homomorphism ¢j; in the form of a
matrix ¢j; = (¢7;), where ¢7¥ : P; — P, are homomorphisms of indecomposable
non-isomorphic projective modules P; and P; for r =1,...,n;, s =1,...,n;. Since
Im(p}) # P, we have Im(¢}i) C PR. Therefore Im(¢}f) C fiAR = fiR, ie.,
fiAf; C fiR. Hence A;; = f;Af; = fiRf; for i # j. Thus, we obtain the following

result.

Proposition 2.3. Let A = P™" @ ... ® P’ be the decomposition of a semiperfect
ring A into a direct sum of principal right A-modules and let 1 = f1 + ...+ fs be a
corresponding decomposition of the identity of A into a sum of pairwise orthogonal
idempotents, i.e., f;A = P". Then the Jacobson radical of the ring A has a two-
sided Peirce decomposition of the following form:

Ri1 Rig -+ R
Ro1 Roo -+ Ray
R = ) . ]

Rnl Rn2 Rnn
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where Rii = rad(fiAfi), Az'j = fZAf] fOT i,j = 1, ey n.

Lemma 2.4. (Annihilation lemma) Let 1 = f1 + ...+ fs be a canonical decom-
position of 1 € A. For every simple right A-module U; and for each f; we have
Uifj = 60U, 1,5 = 1,...,s. Similarly, for every simple left A-module V; and for
each fj, f]V; = (Sij‘/i, i,j = 1, Lo, S,

Proof. We shall give the proof for the case of right modules. From the previous
proposition we obtain that f;Rf; = f;Af; for i # j. Hence P f; C f;R. But
fiA/ fiR ~ U.". Therefore U" f; = 0 and so U; f; = 0 for i # j.

We are going to show that U;f; = U;. Let u € U;. Thenu-1=u(fi+...+ fs) =
uf; since uf; = 0 for ¢ # j. The lemma is proved. O

Let A be a reduced semiperfect ring, and let 1 = e; +...+es be a decomposition
of 1 € A into a sum of mutually orthogonal local idempotents.
Set U; = ¢;A/e; R and V; = Ae;/Re;.

Lemma 2.5. (Q-Lemma) The simple module Uy, (resp. Vi) appears in the direct
sum decomposition of the module e;R/e;R* (resp. Re;/R%e;) if and only if e;R%ey,
(resp. epR%e;) is strictly contained in e;Rey (resp. epRe;).

Proof. If Uy is a direct summand of the module W; = ¢; R/e; R?, then by Lemma 2.4,
Wiey, # 0. Therefore e; Rej, does not equal e; R%ej, and the inclusion e; Rey, D e; R%ey,
is strict.

Conversely, suppose that e;R?ey, is strictly contained in e;Rej,. Consider a sub-
module X contained in e; R,

Xy =¢Re,;,®... De;Rep_1 D eiRQek DeRepir1®...Pe;Reg

(here the direct sum sign denotes a direct sum of Abelian groups).

From the inclusions e;R O X; DO e;R? it follows that e;iR/ X} is a semisim-
ple module. We have the equalities e;R/Xy = e;Rex/e;R%e;, = (e;R/X}))er. By
Lemma 2.4 the module e; R/ X} decomposes into a direct sum of some copies of the
module Uy. Since e; R/ X}, is isomorphic to a direct summand W;, the module Uy, is
contained in W; as a direct summand.

For left modules V; the statement is proved analogously. The lemma is
proved. ]

Lemma 2.6. Let A be a semiperfect ring, and e, f be nonzero idempotents of the
ring A such that @ = f € A. Then there exists an invertible element a € A such that
f=aea "'

The quiver Q(A) of a ring A is called connected if it cannot be represented in
the form of a union of two nonempty disjoint subsets J1 and Qs which are not
connected by any arrows.
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Theorem 2.7. The following conditions are equivalent for a semiperfect Noetherian
ring A:

(a) A is an indecomposable ring;

(b) A/R? is an indecomposable ring;

(c) the quiver of A is connected.

Proof. Obviously, the conditions of the theorem are preserved by passing to the
Morita equivalent rings. Therefore we can assume that the ring A is reduced.

(a) = (b). Let A= A/R? ~ A} x Ay and let T = P+1+ P3 be the corresponding
decomposition of the identity of the ring A/R? into a sum of orthogonal idempotents.
Let g1,92 € A be elements such that g, + R?> = f; and go + R? = f,. There are
idempotents fi, fo € A such that fi = g1 + 7 and fo = go + 79, where 7,79 € R2.
Since f;Afy =0 and foAf; = 0, we have giags € R? and goag; € R? for any a € A.
Clearly, fi = figifi + firifi (i = 1,2). Then the element fiafo = figifiafagafo +
figrfraforafo + firifiafagefo + fir1 frafora f2 belongs to R? for any a € A. This is
immediate from Proposition 2.3. Exactly in the same way foAf; € R2. Therefore
foAfi = faRafi and f1Afs = fiR?fo. By Proposition 2.3, the two-sided Peirce
f;l %22 > where R, — Rad(f,Af,)
(i =1,2) and A;j = f;Afj for i # j. Calculating R* we obtain

decomposition of R has the form: R = <

R2 = ( R% + A12A9 RiAys + A1oRs >
AgiRi + RoAy AnAin+ R3

From the above we have: Ajo = R1A1s + A1oRo and Ay = R Ao + As1 Ry. By
Theorem 2.1, taking into account Nakayama’s lemma, we obtain that A;53 = 0 and
A21 = 0 and therefore A = AH X AQQ, where A“ = szfz (7, = 1, 2)

(a) = (c). Let the quiver of the ring A be disconnected. Then Q(A) = Q1 U Q2
and @1 N Q2 = &, and the points of the sets )1 and Q)2 are not connected by any
arrows. Renumbering, if necessary, the principal right A-modules P, ..., Ps one
may assume that Q1 = {1,...,k} and Q2 = {k+1,...,s}. Let A=P&...®P; be
a decomposition of the ring A into a direct sum of principal right A-modules (where
P, =¢;A, 612 =e¢ €A, 1=e1+...4es) and 1 = fi + fo, where fLA=P ®...®F;
and foA= Py 1®...0 Ps. We set Aij = fiAij R; = radA;; (Z =1, 2) If Ao #0,
then by Theorem 2.1, taking into account Nakayama’s lemma, we obtain that the
inclusion A9 O RiA19 + AjaRy is strict. But Ry Ao + AjoRy = fi1R?fy. Therefore
there are local idempotents e; and e; such that e; is a summand of f; and e; is a
summand of f» and eiRer is strictly contained in e;Re;. By Lemma 2.5 we obtain
that there is an arrow which connects the point ¢ with the point j. A contradiction.
Analogously it can be proved that A = 0.

(c) = (a). If the ring A is decomposable then A/R? is also decomposable.
Clearly, in this case Q(A) is disconnected.

(b) = (a) is trivial.

The theorem is proved. O
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Remark. Theorem 2.7 is not true for semiperfect one-sided Noetherian rings. As
an example one can consider the ring A = ( Z(()p) g ) The quiver of this ring
consists of two points and one loop near one of them.

As R? = ( p 2%(7)) g ) then the ring A/R? decomposes into a direct product

of rings:
A/R? ~ Ty [9° Ly % Q.

However, the ring A itself is indecomposable into a direct product of rings.

Theorem 2.8. Let the ring A be a serial ring such that the intersection of all powers
of its radical N7 R™ = 0 is equal to zero. Then A is right and left Noetherian ring.

Proof. Let M € P and N2 R" = 0.

Then the inclusion MR C M is strong. If M = MR then M C R and the
equality M = M R™ gives that M C R for all n i.e. M = 0.

Let e be an arbitrary idempotent of the ring A. Then eRe = Rad eAe and
eAe C R, (eRe)™ C R™ and that is why N(eRe)™ = 0.

So for any local idempotent e the ring eAe is uniserial and the intersection of
natural powers of the radical R is equal to 0. That is why the ring eAe is discrete
valuated as it is Artinian. Assume that all rings eAe are Artinian. Then A is
also Artinian. Let at least one ring of the form e;Ae; be discrete valuated. Then
there exists a local idempotent e; such that the ring (e; + e;)A(ej + a;) is of the
form ( 1;1/3 g){ ), where X is an infinitely generated right O;-module. According

7
2
to Lemma 3.28 < R;/X }};2 ) = ( Y]})%ll—:—);}ng R}lf)‘g(t_);ib > and X Ry = X.
Consider the following module M = (XY, X), which belongs to (41 X). It is obviousl

that (XY, X) ( 1;1 1)%(
2

MR C M, whence X is a finitely generated right Os-module, and in the same way
Y is a finitely generated left O;-module.
So according to Theorem 2.1 the ring (e; + ) A(e; + e;) is right Noetherian.
O

) = (XY, X). This contradicts to the strong inclusion

3 Semiperfect semidistributive rings
Theorem 1.9 has the following corollary.

Corollary 3.1. Let A be a semiperfect ring, and let 1 = e1 4+ ...+ e, be a decompo-
sition of 1 € A into a sum of mutually orthogonal local idempotents. The ring A is
right (left) semidistributive if and only if for any idempotents e; and e; of the above
decomposition, the set e;Ae; is a uniserial right ejAej-module (left e;Ae;-module).
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Corollary 3.2. (Reduction Theorem for SPSD-rings) Let A be a semiperfect
ring, and let 1 = e1 + ... 4+ e, be a decomposition of 1 € A in a sum of mutually
orthogonal local idempotents. The ring A is right (left) semidistributive if and only
if for any idempotents e; and ej (i # j) of the above decomposition the ring (e; +
ej)A(e; + ej) is right (left) semidistributive.

Proof. 1t is sufficient to prove the corollary for a reduced ring A. If A is a right
semidistributive, then e;Ae; is right uniserial e;Aej-module (i # j) and the ring
ejAe; is right uniserial for ¢ = 1,...,n. By Corollary 3.1, the ring (e; + €;)A(e; +
ej) is right semidistributive. Conversely, if the ring (e; + e;)A(e; + €;) is right
semidistributive, then, by Theorem 1.9, the set e; Ae; is a uniserial right A;;-module
and, by Corollary 3.1, the ring A is right semidistributive. O

Corollary 3.3. Let A be a Noetherian SPSD-ring, and let 1 = e1 4+ ...+ e, be a
decomposition of the identity 1 € A into a sum of mutually orthogonal local idem-
potents, let A;; = e;Ae; and let R; be the Jacobson radical of the ring Ay. Then
RzAz] = Ainjj fOT i,j = 1, oo, n.

=5 ¢)

as an R-algebra (R is the field of real numbers, C is the field of complex numbers).
The Peirce decomposition of the Jacobson radical R = R(A) has the form

=(35)

and the R-algebra A is right serial, i.e., right semidistributive.

The left indecomposable projective Qo = ( E(C: ) has the socle < SC ), which

Example 3.1. Consider

is a direct sum of two copies of the left simple module Consequently, by

R
0
Proposition 1.3, the R-algebra A is an SPSDR-ring but it is not an SPSDL-ring.

3.1 Quivers of SPSD-rings

Recall that a quiver without multiple arrows and multiple loops is called a simply
laced quiver. Let A be an SPSD-ring. By Theorem 1.8, the quotient ring A/R? is
right Artinian and its quiver Q(A) is defined by Q(A4) = Q(A/R?).

Theorem 3.4. The quiver Q(A) of an SPSD-ring A is simply laced. Conversely,
for any simply laced quiver Q there exists an SPSD-ring A such that Q(A) = Q.

Proof. We may assume that A is reduced and R> = 0. Let Ay = P, ® ... ® P,
where Pi,..., P; are indecomposable. Then P;R is a semisimple A-module:

PR = @ U
j=1
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where U; = Pj/P;jR are simple. The A-module P;R is a submodule of a distributive
A-module and, therefore, P;R is distributive. By the definition of Q(A) we have
[Q(A)] = (ti;) and, by Theorem 1.7, 0 < t;; < 1. So Q(A) is a simply laced quiver.

Conversely, let kQ be the path k-algebra of a simply laced quiver @) and J be its
fundamental ideal, i.e., the ideal generated by all arrows of Q. Write B = kQ/J>
and m : kQQ — B for the natural epimorphism. Let w(g;) = e;, where €1,...,¢5
are all paths of length zero. Then B = e1B @® ... ® e;B, where e1B,...,e;B are
indecomposable. Let R be the Jacobson radical of B and AQ = {o;;} be the
set of all arrows of (). The elements m(0y,y), where o, € AQ, form a basis of
emR. Obviously, e,,R? =0 for m =1,...,s. So, e, R is a semisimple module and
emR = @®,U, for all those p, where 0,,, € AQ. Therefore Q(B) = @ and e, R is a
distributive module, by Theorem 3.27. Thus, B is a right semidistributive ring. The
analogous arguments show that B is a left semidistributive ring.

So B = kQ/J? is an SPSD-algebra over a field k and Q(B) = Q. O

Corollary 3.5. The link graph LG(A) of an SPSD-ring A coincides with Q(A).

Proof. For any SPSD-ring A the following equalities hold: LG(A) = Q(A,R) =
Q(A). O

Theorem 3.6. For an Artinian ring A with R?> = 0 the following conditions are
equivalent:

(a) A is semidistributive;

(b) Q(A) is simply laced and the left quiver Q'(A) can be obtained from Q(A) by
reversing all arrows.

Proof. (a) = (b). By Theorem 3.4 it is sufficient to show that @Q'(A) can be
obtained from Q(A) by reversing all arrows. One can assume that A is reduced.
Write A4 as a direct sum A4 = Py & ... & P,, where the P; are indecomposable
projective and let 1 = e; + ... + e be the corresponding decomposition of 1 € A
into a sum of mutually orthogonal local idempotents. If A;; = e;Ae; # 0, then, in
view of Corollary 3.3,

Al'jRj = RzAZJ and Aij C R for i 75 7.

Hence, Aj;R; = R;A;; = 0 for @ # j and, in view of the Q-Lemma, it follows
that there is a loop at the vertex i both in Q(A) and in @Q'(A). Thus the left quiver
Q'(A) can be obtained from Q(A) by reversing all arrows.

S
(b) = (a). By the Peirce decomposition for R we have: R = '@1 e;Rej,
1,)=
eiRe; = Ry and e;Re; = A, it # 54,5 =1,...,s.
It follows that

PR = (Ai,..., Aii—1,Ri, Ajiy1, ..., Ais)

fori = 1,...,s. If A;; # 0, for ¢ # j, then, in view of the Q-Lemma, A;; is a
simple right A;;-module and a simple left A;-module. If R; # 0, then R; is a simple
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Aj;-module and a simple left A;;-module. Thus, in view of Theorem 1.9, the ring A
is semidistributive. ]

Remark. The implication (b) = (a) isn’t true even in the case of finite dimensional
algebras as is shown by the following example.
Let A = kQ4 be the path k-algebra of the quiver Q4

A
N/

The basis of /ﬂQ4 is £1,€2,€3,&4, 012,013,024,034,012024,013034. The indecom-
posable projective A-modules are: P1 = {6170'12, 0'13,(7120'24,0'130'34}; Pg = {82, 0'24};
P3 = {e3,034}; Py = {e4}. Obviously, socP, ~ Py & P;. By Theorem 1.7, P; is not

distributive, but Q(A) = Q4 and
2
[ ]
N / \. 1
\. /
3

i.e., A satisfies condition (b) of Theorem 1.5.
Note that if we identify routes o12094 and o13034 then obtain the distributive
algebra, which is isomorphic to the matrix algebra My (k) of the following form

Q1=

Y

(

k k k k
0 kK 0 k
0 0 k k
00 0 k

A semiperfect ring A such that A/R? is Artinian will be called Q-symmetric
if the left quiver Q'(A) can be obtained from the right quiver Q(A) by reversing all
arrows.

Corollary 3.7. Every SPSD-ring is Q-symmetric.

Remark. Example 1.9 shows that an SPSDR-ring is not always Q-symmetric.
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Theorem 3.8. The intersection of all natural powers of Jacobson radical of SPSD-
ring is equal to zero.

Proof. Obviously we can consider the ring to be reducible. Denote

R ApRE - A RE

Ay RF RE ... Ay RE
Ik = P .« . .« . )
AgRY ApRE .. RE

Obviously [Ij is two-sided ideal of the ring A. It is easy to check that
1.1, = Ik+1 and RQ C I.

So, R** I}, whence
o o
(NR"c ()R
n=0 k=0

As all rings A;; are Noetherian chain rings then [12] it follows that they are either
discrete valuation rings or uniserial Artinian rings Kiote rings. The intersection of
all powers of the Jacobson radical of such rings is equal to zero [12]. According
to Theorem 1.9 the ring A;; is a cyclic chain Aj;-module and a cyclic left chain
Aj;-module. But in this case

(0.)
() ARy =0, ij=1,...,s
k=0

This means that the intersection of I} for all natural k is equal to zero. Whence,
the intersection of all natural powers of Jacobson radical is equal to zero. ]

3.2 Semiprime semiperfect rings

In this section we shall describe the minors of first and second order of right
Noetherian semiprime SPSD-rings.

The endomorphism ring of an indecomposable projective module over a semiper-
fect ring is called a principal endomorphism ring.

Proposition 3.9. An Artinian principal endomorphism ring of a semiprime semiper-
fect ring is a division ring.

Proof. This ring is an Artinian prime local ring and, consequently, is a division
ring. O

Lemma 3.10. Let Ay = P[" @ P)*&...® P be the decomposition of a semiprime
semiperfect ring A into principal modules and let End(Py) = D1 be a division ring.
Then A = M,,(D1) x End(Py? & ... & P).
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Proof. Let 1 = f1 + ...+ fs be a canonical decomposition of 1 € A into a sum of
pairwise orthogonal idempotents, i.e., f;A = P" for i = 1,...,s. Let fiAfi = Ay,
(1 — fl)A(l — fl) = AQ, X = flA(l - fl), Y = (1 — fl)Afl If either X 75 0 or

0 X
Y #0, then K = <Y VX
So X =0, Y =0, proving the lemma. O

> is a nilpotent ideal and we have the contradiction.

Theorem 3.11. (Decomposition theorem for semiprime semiperfect rings)
A semiprime semiperfect ring is a finite direct product of indecomposable rings. An
indecomposable semiprime semiperfect ring is either a simple Artinian ring or an
indecomposable semiprime semiperfect ring such that all its principal endomorphism
rings are non-Artinian.

A proof immediately follows from Lemma 3.10.

Let 1 = g1 4+ g2 be a decomposition of the identity of A into a sum of the
mutually orthogonal idempotents, and let A = (A;;) be the corresponding Peirce
decomposition of A, ie., A;; = ¢;Agj, 1,5 = 1,2. Similarly, if M is a two-sided
ideal of A, then M = (M;;) is the Peirce decomposition of M, where M;; = g;Mg;,
i,j=1,2.

Lemma 3.12. Let M = (M;;) be a two-sided ideal of a semiprime ring A. If
M;; # 0 for i # j, then Mj; # 0. Moreover, if M;; # 0 for i # j, then M;jMj; # 0
and MjiMij 75 0.

Proof. Let M;;M;; = 0. Clearly, Z = Ml‘jAji + Aiiji + M;; + Mj; is a two-sided
ideal and Z® = 0. The remaining cases are treated analogously. O

Corollary 3.13. Let 1 =ej +...+ e, be a decomposition of the identity of A into a
sum of the mutually orthogonal idempotents, A;; = e;Aej, i,j = 1,...,n, and let M
be a two sided ideal in A, M;; = e;Me;, i,5 =1,...,n. If M;; #0 for i # j, then
Mj; # 0 and M;jM;; # 0, Mj;M;; # 0. Moreover, from the equality A;;Aj; = 0 it
follows that A;; =0 and Aj; = 0.

Proposition 3.14. Let A be a prime (resp. semiprime) ring, e> = e € A. Then
the ring eAe is prime (resp. semiprime).

Theorem 3.15. For a semiprime semiperfect ring A the following conditions are
equivalent:

(1) A is a finite direct product of prime rings;

(2) all principal endomorphism rings of A are prime.

Proof. (1) = (2) follows from Proposition 3.14.

(2) = (1) Obviously, we can assume that A is indecomposable and reduced.
Let 1 =e;+...+e, be a decomposition of 1 € A into the sum of pairwise orthogonal
local idempotents. We shall prove the theorem by induction on n. The case n =1
is obvious. Suppose that A is not prime. Then there exist two-sided nonzero ideals
M, N such that MN = 0. Let hy = e1 + ...+ e,_1 and hy = e,. We have
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the equality hiMhiNh; = 0. By the induction hypothesis either hiMh; = 0 or
hiNhi = 0. Let hiMh; = 0, then by Corollary 3.13 hiMho = 0 and hoMhy, = 0.
If hoMhy = 0, then the theorem is proved, so hoMhs # 0 and haNhy = 0. We
have again hoNh; = 0 and hi{Nhy = 0. One can assume that e;Ne; # 0 for
i=1,...,tand ejNe; =0 for j =t+1,...,n. So NjA;; =0 fori=1,...,¢t and
Jj=t+1,...,n. Consequently, N;;A;;Aj; = 0 for the same 7 and j. Since the A;
are prime, it follows that A;;A; = 0. By Corollary 3.13, we obtain A;; = 0 and
Aj=0fori=1,...,tand j =t+1,...,n. Hence, the ring A is decomposable and
we obtain a contradiction, which proves the theorem. O

Let A be a ring, P a finitely generated projective A-module which can be de-
composed into a direct sum of n indecomposable modules. The endomorphism ring
B = End4(P) of the module P is called a minor of order n of the ring A.

Proposition 3.16. Every minor of an SPSD-ring is an SPSD-ring.
The proof follows from Theorem 1.9 and Corollary 3.1.

Corollary 3.17. Every minor of a right Noetherian semiprime SPSD-ring is a right
Noetherian semiprime SPSD-ring.

The proof follows from Theorem 2.1 and Proposition 3.14.
From Theorems 1.9 and 2.1 we obtain the following statement.

Corollary 3.18. FEvery minor of a Noetherian SPSD-ring is a Noetherian SPSD-
TIng.

Proposition 3.19. A minor of the first order of a right Noetherian SPSD-ring is
uniserial and it is either a discrete valuation ring or an Artinian uniserial ring.

Let O be right local uniserial Noetherian ring with the unique maximal ideal .
Consider the following descending chain of two-sided ideals.

O>MoM>>o... oMo ...

By Nakayama Lemma " strictly contains M*! for any k € N. As O is serial
ring then right factor module M* / ML s simple if MF £ 0.

Assume that M =£ 0. In this case if 7 € M\mz then 7O + M? = M and according
to Nakayama Lemma M = 7 O.

Consider left ideals Om and M. The local property of the ring O gives that
M D Or.

The strong inclusion Ow D M? follows from that O is serial. Factor module
jﬂ%l/;m2 is semisimple right O-module and is left O-module. As the ring O is serial
then M/ M? is simple from both sides. Whence O = 7O = M.

The next proposition immediately follows from this fact.

Proposition 3.20. Let O be a right local Noetherian serial ring with the unique
mazimal ideal M #£ 0. Then M = 7O = Ox and the ring O is both sides Artinian if
and only if the element 7 is nilpotent.
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That is why in future we will assume that the element 7 is not nilpotent.
Consider the endomorphism 7 of the right O-module Op which multiplies & € O
with the element 7 from the left, i.e. 7(a) = ma.

[e.@]
Step 1. kerm C [ M"™.
n=1
Proof. Let kerm = {a € O| ma = 0}. It is obvious that kerr is two-sided ideal.
Really, if a € kerm then 7(aa;) = (ma)ay =0, i.e. aa; € kermn.
Let a € kerm and 5 € O. Consider 7(fa) = (78)a = (fim)a = fi(ma) = 0.
If kerm = M™ for some n then 7M™ = 7OM" = M = 0, whence 7! = 0. So,
o0
kerm C M" for any natural n, whence kerm CY = [ M". O]

n=1

Step 2. kerm = 0.
Proof. Let X = kerm # 0. Then there exists ascending chain of ideals
kerm C kerm®> C ... C kern™ C .. ..

Let us show that ker 7% # kern**1 for all k. Let ker 7% = kern**1 for some k and
o

r € X, 2 #0. So, 7x = 0 and x € () M". This is followed by 2 = 7*ay, =
n=1

7oy 1. The equality 7z = 0 implies 7 ag; = 0 ie. oy € kern**1 and this

means that oy € kerm® and 7Fa, = 0 = x. That is why there exists strongly

ascending chain of two-sided ideals

+

kerm C kern® C ... Ckern™ C ....

and this is a contradiction with the property of the ring O to be right Noetherian.
The proposition is proved. O

Step 3. () M" =0.
n=1

Proof. Let Y = [ M"™ # 0. Consider two-sided ideal Y M of the ring O which is
n=1

the unique maximal submodule of M as the ring O is right Noetherian.
Considering the factor ring O/Y M one may assume that the intersection ¥ =

o

() M" is a simple right O-module in the former ring @. The property of ¥ to be a

n=1

two-sided ideal and the equality kerm = 0 imply that 7Y =Y.

Let W ={a € O| ar € Y}. Obviously W # 0 because y € M, y € Y, y # 0 and
Yy = Q.

Let us show that W is a two-sided ideal of the ring O. Obviously o+ o1 € W if
a, a1 € W.

Let « € W, ie. ar € Y. Then (Ba)r = fy1 € Y, ie. Ba € W for any
B € O. Moreover, (af)r = a(fr) = a(rf) = (am)py € Y. f W ¢ Y then
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W =7a"0=0r"and Wr €Y, ie. Wr=M""' CY. The obtained contradiction
shows that W C Y and so W =Y. Let € Y and y # 0. Then y = y;7 for some
y1 € Y. But Y7 = 0, whence y = 0. The obtained contradiction proves that O is
a discrete valuation ring with the unique maximal ideal M = 7O = O=. For more
details see Warfield [1975]. O

Corollary 3.21. A minor of the first order of a right Noetherian semiprime SPSD-
ring is either a discrete valuation ring or a division ring.

A ring A is called semimaximal if it is a semiperfect semiprime right Noetherian
ring such that for each local idempotent e € A the ring eAe is a discrete valuation
ring (not necessarily commutative), i.e., all principal endomorphism rings of A are
discrete valuation rings.

Proposition 3.22. A semimazimal ring is a finite direct product of prime semi-
mazximal rings.

A proof follows from Theorem 3.15.
So, a semimaximal ring A is indecomposable if and only if A is prime.

Proposition 3.23. A semiperfect reduced indecomposable ring B is a second order
minor of a right Noetherian semiprime SPSD-ring if and only if B is semimazximal.

Proof. Let 1 = e; + e5 be a decomposition of 1 € B into a sum of local idem-
2
potents, let B = €@ e;Be; be the corresponding two-sided Peirce decomposition,
ij=1
and let B;; = e;Be; (i,j = 1,2). The Jacobson radical R of B has the form:

R= < ]_L];l %2 >, where R; is the Jacobson radical of B;; (i = 1,2). Obviously,
21 2

R2 — ( R+ B12Ba1  RiBiz + Biz2Ry >
RoBoy + BaiR1 R3+ Bo1Bio

By Corollary 3.19, B;; is either a discrete valuation ring or a division ring. If By; = D
e 0 B . 0 312).
is a division ring, then R = . Obviously, J = is a

8 <BQI Ry ) Y <B21 Bo1 B2
nonzero ideal in B and J, = 0. So B is semimaximal.

Let’s now show that a semimaximal ring B is semidistributive. We can assume
that B is prime. Let R, = mB;; = Bym; (i = 1,2). Now bigbe # 0 for any
b12 # 0 and by # 0 (bi2 € Bi2,by € Bgg). Indeed, we can suppose that by =

0 b2 Bi1 B 0 0
m mo__
m4'. Then < 0 0 > < Byy Doy 0 by # 0 and, consequently, bjo Baopy' =
b12p5'Baa # 0. So, biapy® # 0. Analogously, b;;b; # 0 and b;b;; # 0 for 4,5 = 1,2.
Further b;;bj; # 0 for i # j and both factors are nonzero. We shall prove that

0 b1o Bi1 Bio 0O O
b21b12 75 0 for b12 75 0 and b21 75 0. Indeed, < 0 0 > ( B21 322 ) < b21 0 > 75
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0. SO, b12B22b21 7é 0 and thus there exists bg € B22 such that blzbggbgl 7é 0. If
bo1b12 = 0, then bo1b1ab9bs; = 0 and we obtain a contradiction.

Next Bjo is a uniserial right Bes-module and a uniserial left Bjj-module. By
Theorem 2.1, Bjs is a finitely generated Bgs-module. Consequently, if Big isn’t
uniserial, then By = Bg) &) Bg), where Bg) and Bg) are nonzero Bog-submodules
of B12. Let bgl 75 0. Then b21Bl2 = bngg) EBmeg), where leBg) and bngg) are
nonzero right ideals in Q. This is a contradiction. Consequently, Bio is a uniserial
right Bos-module.

Finally Bis is a uniserial left Bij-module. If this isn’t true, then there exists
a left Bjj-submodule Nj3 with two noncyclic generators in Bis. Consequently,
N1y = Nl(%) @ Nl(g) is a direct sum of two nonzero left Bji-submodules and so

Nigboy = Nl(;)b21 ® Nl(g)bgl is a direct sum of two nonzero left ideals in By for
any nonzero bgp. This is a contradiction and so B12 is a uniserial left Bii-module.
Analogously, Boi is a uniserial right Byi-module and a uniserial left Bos-module.
Thus, by Theorem 1.9 B is semidistributive. The proposition is proved. O

Corollary 3.24. An intersection of a finite number of nonzero submodules of an
indecomposable projective module over a Noetherian prime SPSD- ring is nonzero.

Lemma 3.25. A local idempotent of a Noetherian prime SPSD-ring A is a local
idempotent of its classical ring of fractions.

Note that an example of semimaximal rings is non-Artinian both sides Noethe-
rian semiprime hereditary rings. They are exactly semimaximal hereditary rings.
The article [19] contains a condition for the prime semimaximal ring A to be of
finite type. This condition is as follows. As an arbitrary prime semimaximal ring
A can be included into the prime ring of fractions @, let M(A) be the partially
ordered set (in the sense of inclusion) of all projective A-modules which belong to
some prime ()-module. So, the equivalent condition for the prime semimaximal ring
to be of finite type is the nonexistence of critical subsets in the set #A(A). Here a
subset of a partially ordered set is called critical if it is one of the following sets:
(1,1,1,1), (2,2,2), (1,3,3), (1,2,5), R = {a1 <ag >by <byycp <eg<eg< 64}.
Here we denote by (l1,..., l,,) the cardinal sum of m linearly ordered sets which
contain lq,..., [, elements correspondingly.

For proving Lemma 3.25 we need the following proposition [6, Prop. 9.3.10].

Proposition 3.26. Let Q be a semisimple ring and A be a right order in Q. Then
Q is a simple ring if and only if A is prime.

Proof of Lemma 3.25. By Proposition 3.26 A is a right order in the simple Artinian
ring Q = M, (D). One can assume that the local idempotent e € A is a sum of matrix
idempotents e = e;,;; + ...+ €;,4,. Let £ > 2. Then there exist q1,...,q € Q such
that e;4,q1,...,€i,4,qx € A and, consequently, e;;,q1A4,...,€;4.q:A are nonzero
right submodules of the right indecomposable projective module eA and €;,,;,, ¢mnAN
€iyi,@pA = 0 for m # p. We obtain a contradiction with Corollary 3.24. O
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3.3 Right Noetherian semiprime SPSD-rings

The following is a decomposition theorem for semiprime right Noetherian
SPSD-rings.

Theorem 3.27. The following conditions for a semiperfect semiprime right Noethe-
rian ring A are equivalent:

(a) the ring A is semidistributive;

(b) the ring A is a direct product of a semisimple Artinian ring and a semimaz-
mal ring.

Proof. (a) = (b). From Theorem 3.11 it follows that A is a finite direct product
of indecomposable semiprime rings. Every indecomposable ring is either a simple
Artinian ring or a semiprime semiperfect ring such that all its principal endomor-
phism rings are non-Artinian. In the second case, by Corollary 3.21, such a ring is
semimaximal.

(b) = (a). Obviously, a semiprime Artinian ring is a semiprime SPSD-ring. A
semimaximal ring is an SPSD-ring, by Proposition 3.11 and the reduction theorem
for SPSD-rings. O

Lemma 3.28. The right uniserial modules over the ring H,,(O) are exhausted by
the D™, all principal Hy,(O)-modules and quotient modules of these modules.

Theorem 3.29. Fach semimaximal ring is isomorphic to a finite direct product of
prime rings of the following form:

o0 7120 ... e
o Q2n

a=| 7O o o 1)
1) g2 ... o0

where n > 1, O is a discrete valuation ring with a prime element 7, and the oy; are
integers such that auj + o > g for all i, j, k (ay; =0 for any ©).

Proof. By Proposition 3.10 a semimaximal ring is a finite direct product of prime
semimaximal rings. We shall show that a prime semimaximal ring is isomorphic to
a ring of the form (1).

Let 1 = e + ...+ e, be a decomposition of 1 € A into a sum of pairwise
orthogonal local idempotents, A;; = e;Ae; for i, j =1,...,m. Denote by B;; (i # j)
iii iij ) If B;; isn’t reduced, then

Ji Jj
Bij ~ M3(A;;) and B;j is left Noetherian. If B;; is reduced, then A;jaj; C Ay, @ji -
A;j — Ay being the monomorphism of left Aj-modules (for any nonzero aj;) such
that ¢ji(ai;) = aijas;. If Ay isn’t finitely generated, then A;; contains a non-finitely
generated left A;-submodule A;jaj;, where a;; # 0. This gives a contradiction. So,
by Lemma 3.28, A;; ~ A;; and B;; is left Noetherian, by Theorem 2.1. Applying
induction on m and Theorem 2.1, we see that A is left Noetherian. Consequently, A

the following second order minor: B;; = (



22 VLADIMIR KIRICHENKO, MAKAR PLAKHOTNYK

is a prime Noetherian SPSD-ring. By Proposition 3.26, A is a right order in a simple
Artinian ring Q = M, (D). Suppose that every local idempotent e; from the above
decomposition 1 = e + ...+ ey, is local in M, (D). Hence, the two decompositions:
l=e1+...+epand 1 =e1; + ...+ ey, are conjugate. Consequently, m = n and
we can assume that the matrix idempotents are the local idempotents of A.
n
Denote A;; by A;. Wehave Q@ = ) e;;D (D is a division ring, the e;;, are matrix
ij=1
n
units commuting with the elements from D) and A = ) e;;A4;;, where A;; C D.
ij=1

All A; are discrete valuations rings, A;; A, C Ag, and A #0fori,j=1,...,n (A
is prime and 67;7;A€jj = Aij 75 0)

We shall prove that A;; = d;jA; = Ajd;j, where d;; € A;; C D. Indeed, let
R; be the Jacobson radical of A; and let m;A; = A;m; = R;. By corollary 3.3,
RiAij = Ainj. Take an element 0 7'5 dij S Aij so that Ald” + Rz'Aij = Aij- By
Nakayama’s Lemma A;; = dj;A; = Aidi;. Let T = diag(dl_zl,déz,),... d-! 1).

» YUn—1n>
Consider TAT—1. One can assume that the following equalities dio = ... = dp_1n
hold in A, hence A1 = Ay = ... = A,. Write A1 = O, where O is a discrete

valuation ring (non-necessarily commutative). Consequently, A;; D O for i < j.
From A;;Aj; C O we have A;;A;; D Aj; and Aj; C O for j <. So, one can assume
that dj; = %%, where M = 70O = O is the unique maximal ideal of O, a;; > 0
for j > 4. Obviously, d;; = ¥, where a;; > —aj;. Hence, we obtain a ring of
the form 3.27. The converse assertion follows from the definition of a semimaximal
ring. O

A ring A is called a tiled order if it is a prime Noetherian SPSD-ring with
nonzero Jacobson radical.

Remark. Let O be a discrete valuation ring. Then from Theorem 3.29 it follows
that each tiled order is of the form (1).

The ring O is embedded into a classical ring of fractions D, which is a division
ring. Therefore (14.5.1) denotes the set of all matrices (a;;) € M, (D) such that
a;j € 90 = e;; Aejj, where the eqq, ..., ey, are the matrix units of M, (D). It is
clear that M, (D) is the classical ring of fractions of A.

According to the terminology of V.A.Jategaonkar and R.B.Tarsy, a ring
A C M,(K), where K is the quotient field of a commutative discrete valuation
ring O, is called a tiled order over O if M,,(K) is the classical ring of fractions of A,
ei; € A and e;;Ae; = O for i = 1,...,n, where the eqq, ..., e,, are the matrix units
of M, (K) (see [8]).

Denote by M, (Z) the ring of all square n X n-matrices over the ring of integers
Z. Let & € Mn(Z). We shall call a matrix £ = («;;) an exponent matrix if
aij+ o > ag fori, j,k=1,...,nand oy =0 fori = 1,...,n. A matrix £ is called
a reduced exponent matrix if a;; +aj; > 0for¢,7=1,...,n.

We shall use the following notation: A = {O,E(A)}, where £(A) = (ayj) is the
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n
exponent matrix of a ring A, i.e., A = ) e;;7* O, where the e;; are the matrix
5,5=1
units. If a tiled order is reduced, then o;; +aj; > 0 for i,5 = 1,...,n, ¢ # j, ie.,

E(A) is reduced.

Let O be a discrete valuation ring. A right (resp. left) A-module M (resp. N)
is called a right (resp. left) A-lattice if M (resp. N) is a finitely generated free
O-module.

For example, all finitely generated projective A-modules are A-lattices.
Given a tiled order A we denote by Lat,(A) (resp. Lat;(A)) the category of right
(resp. left) A-lattices. We denote by S;(A) (resp. S;(A)) the partially ordered set
(by inclusion), formed by all A-lattices contained in a fixed simple M, (D)-module
U (resp. in a left simple M, (D)-module V). Such A-lattices are called irreducible.
Note that every simple right M, (D)-module is isomorphic to a simple M, (D)-
module U with D-basis e, ..., e, such that e;e;r = d;jer, where e, € M,(D) are
the matrix units. Respectively, every simple left M, (D)-module is isomorphic to a
left simple M, (D)-module V' with D-basis e1, ..., e, such that e;je;, = d;re;.
Let A={0,E(A)} be a tiled order, and let U (resp. V') be a simple right (resp.
left) M, (D)-module as above.
Then any right (resp. left) irreducible A-lattice M (resp. N) lying in U (resp.
in V) is an A-module with O-basis (n{e1,...,m%" ey ), while
{ a; + a;; > « , for the right case; )
aij + o > o, for the left case.

Thus, irreducible A-lattices M can be identified with an integer-valued vec-
tor (au,...,q,) satisfying (3.29). We shall write [M] = (ai,...,a,) or M =
(041, cee ,an).

The order relation on the set of such vectors and the operations on them corre-
sponding to sum and intersection of irreducible lattices are obvious.

Remark. Obviously, two irreducible A-lattices M7 = (aq,...,ap) and My =
(61, ..., 0n) are isomorphic if and only if o = 8; + 2z for i = 1,...,n and (a
fixed) z € Z. We shall denote by (a,...,a,)" the column vector with coordinates
Aly...,0p.

Note that the posets S,(A) and S;(A) do not depend on the choice of simple
M, (D)-modules U and V.

Proposition 3.30. The posets Sy(A) and Si(A) are anti-isomorphic distributive
lattices.

Proof. Since A is a semidistributive ring, S, (A) (resp. S;(A)) is a distributive lattice
with respect to the sum and intersection of submodules.

Let M = (a1,...,0,) € Sp.(A). We put M* = (—ayq,...,—a,)’ € Sj(A). If
N = (B1,...,0.)" € Sj(A), then N* = (=f41,...,—B,) € S.(A).
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Obviously, the operation * satisfies the following conditions:

1. M™ = M; 2. (My+Msy)* = M{NMs; 3. (MiNMy)x = M+ M in the right
case and there are analogous rules in the left case. Thus, the map * : S,.(4) — S;(A)
is the anti-isomorphism. O

Remark. The map * defines a duality for irreducible A-lattices.

If My C Ma, (M, Ms € Sp(A)), then My C M7. In this case, the A-lattice M»
is called an overmodule of the A-lattice M; (resp. M is an overmodule of MJ).

3.4 Quivers of tiled orders

Recall that a quiver is called strongly connected if there is a path between any
two vertices. By convention, a one-point graph without arrows will be considered a
strongly connected quiver. A quiver ) without multiple arrows and multiple loops
is called simply laced, i.e., ) is a simply laced quiver if and only if its adjacency
matrix [@] is a (0, 1)-matrix.

Theorem 3.31. Let A be a semiperfect two-sided Noetherian ring with the quiver
Q(A). Suppose the matriz [Q] is block upper triangular with permutationally irre-
ducible matrices By, ..., By on the main diagonal of the Peirce quiver of A. Then
there exists a decomposition of 1 € A into a sum of mutually orthogonal idempotents:
1=g1+...g¢ such that

t
A= @ giAg;
ij=1
is the two-sided Peirce decomposition with g;Ag; = 0 for j < i, moreover, the

adjacency matrices of the quivers Q(A;) of the rings A; = g;Ag; coincide with B,
i=1,...,t

Theorem 3.32. The quiver Q(A) of a right and left Noetherian indecomposable
semiprime semiperfect ring A is strongly connected.

A proof follows from Theorem 3.31 and Proposition 3.14. We use notations from
Theorem 3.31. If Q(A) isn’t strongly connected, then the ring (g1 + g2)A(g1 + g2)

isn’t semiprime. Indeed, for the nonzero ideal J = 8 916192 > we have J? = 0.

Let I be a two-sided ideal of a tiled order A. Obviously,

n
U= Z 6@'7‘(““’“0,
ij=1
where the e;; are matrix units. Denote by E(I) = (i) the exponent matrix of the
ideal I. Suppose that I and J are two-sided ideals of the ring A, £(I) = (15), and
E(J) = (vi5). It follows easily that E(I.J) = (d;5), where 6;; = ming{ i + vi;}-

Theorem 3.33. The quiver Q(A) of a tiled order A over a discrete valuation ring O
is strongly connected and simply laced. If A is reduced, then Q(A) = £(R?) — E(R).
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Proof. Taking into account that A is a prime Noetherian semiperfect ring, it follows
from Theorem 3.32 that Q(A) is a strongly connected quiver. Let A be a reduced
order. Then [Q(A)] is a reduced matrix. We shall use the following notation:
g(A) = (Oéij); E(R) = (ﬁij); where B” =1 for ¢ = 1,...,n and 57;]' = 4y for
i#j (i,5 =1,...,n); E(R?) = (vij), where v;; = minygp<n{ar + Bx;} for i,j =
1,...,n. Since, £(A) is reduced, we have o;; + oy > 1 for 4,5 = 1,...,n, ie.,
Yii — minlgkgn; k#id‘{aik + Oé]ﬂ'} = minlgkgm k#:i{aik + Oékz‘}. Hence Yii is equal to
1or2. Ifi#j, then 8;; = ayj and 7 = min{min)pcn prij{ir + g}, oy + 1},
i.e., vi; equals aj; or aj; + 1.

To any irreducible A-lattice M with O-basis (mq,e€1,...,7m"€,) associate the
n-tuple [M] = (o, ...,a,). Let us consider

[Pz] = (Oéil,‘..,o,...,am),

[PiR] = (1, .-, 1,0, qin) = (Bits -+, Bin)-
Set [P;R?] = (Yi1,---,%in). Then ¢; = [P;R?] — [P;R] is a (0, 1)-vector. Suppose

that the positions of the units of ¢’ are ji,...,jm. In view of the annihilation
lemma, this means that P,R/P,R?> = Uj, @ ...® Uj, . By the definition of Q(A) we
have exactly one arrow from the vertex ¢ to each of ji, ..., j,. Thus, the adjacency

matrix [Q(A)] is:
[Q(A)] = E(R?) — E(R).

The theorem is proved. ]

A tiled order A ={0,E(A)} is called a (0, 1)-order if £(A) is a (0, 1)-matrix.

Henceforth a (0, 1)-order will always mean a tiled (0, 1)-order over a discrete
valuation ring O.

With a reduced (0, 1)-order A we associate the partially ordered set

Py={1,...,n}

with the relation < defined by i < j < «;; = 0.

Obviously, (P, <) is a partially ordered set (poset).

Conversely, to any finite poset P = {1,...,n} assign a reduced (0, 1)-matrix
&, = (Ajij) in the following way: A;; = 0 & i < j, otherwise A;; = 1. Then
A(P) ={0,&p} is a reduced (0, 1)-order.

We give a construction which for a given finite partially ordered set P =
{p1,...,pn} yields a strongly connected quiver without multiple arrows and mul-
tiple loops.

Denote by Pz (respectively Ppp) the set of the maximal (respectively mini-
mal) elements of P and by P4z X Ppip their Cartesian product.

The quiver @(P) obtained from the diagram Q(P) by adding the arrows o;; :
i — j for all (pi, pj) € Pmaz ® Ppin is called the quiver associated with the
partially ordered set P.

Obviously, @(P) is a strongly connected simply laced quiver.
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Theorem 3.34. The quiver Q(A(P)) coincides with the quiver Q(P).

Proof. Recall that [Q(A(P))] = &(R?) — E(R). Suppose that in Q(P) there is
an arrow from s to t. This means that as = 0 and there is no positive integer
k (k # s,t) such that ag = 0 and ag; = 0. The elements (s and [y of the
exponent matrix £(R) = (8;;) are equal to 1. We have that £(R?) = (v;;), where
Yij = mini<k<n(Bsk + Bre) = 1. Thus, in [Q(A(P))] at the (s, t)-th position we have
Vst — Bst =1 —ag =1 —0=1. Consequently, Q(A(P)) has an arrow from s to ¢.

Suppose that p € Py,4,. This means that oy, = 1 for k # p. Therefore the entries
of the p-th row of £(R) are all 1, i.e., (Bp1,---,Bpp,---:0pm) = (1,...,1,...,1).

Similarly, if ¢ € Prin, then the g-th column (Big,---,B4q> - - Ong)’ of E(R) is
(1,...,1,...,1)T. Hence, vpq = 2, Bpy = 1, and Q(A(P)) has an arrow from p to q.
Consequently, we proved that Q(P) is a subquiver of Q(A(P)).

We show now the converse inclusion. Suppose that 7,, = 2. Then obviously

(Bprs-- s Bppy -+ Bpg) = (1,...,1,...,1)

and
(Bugs -+ Bags -+ Bng) T = (1,...,1,..., )T,

Therefore p € Praz, ¢ € Prin and there is an arrow, which goes from p to q.
Suppose 7pq = 1 and 3,; = 0. Consequently, p # q, Bpq = g = 0 and p < q.
Since Ypg = mini<e<n(Bpk + Brp), then Byp + Brg = 1 for k = 1,...,n. Thus, for
k # p,q we have By, + Biq = 1, whence we obtain oy + ay, > 1. Therefore, there
is no positive integer k (k # p, q) such that opr = apq = 0. This means that there
is an arrow from p to ¢ in @(P), and this proves the opposite inclusion. O
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