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Abstract. We give a survey of results on the theory of semiprime semidistributive
rings, in particular, serial rings. Besides this we prove that a serial ring is Artinian
if and only if some power of its Jacobson radical is zero. Also we prove that a serial
ring is Noetherian if and only if the intersection of all powers of Jacobson radical is
zero. These two theorems hold for semiperfect semidistributive rings.
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1 Introduction

Artinian uniserial, or primary decomposable serial rings were first introduced
and studied by G. Köthe in the paper [9], where he proved that any module over
such a ring is a direct sum of cyclic modules (he called such rings “Einreihige Rin-
gen”). This result was generalized for Artinian serial rings by T.Nakayama, who
called these rings “generalized uniserial rings” (see [16] and [17]). In these papers
T.Nakayama proved that any module over such a ring is a direct sum of unise-
rial submodules each of which is a homomorphic image of an ideal generated by
a primitive idempotent. T. Nakayama also showed that, conversely, these are the
only rings whose indecomposable finitely generated modules (both left and right)
are homomorphic images of ideals generated by primitive idempotents.

Artinian principal ideal rings were studied in papers of G. Köthe and K. Asano
(see [1] and [2]), where it was proved that any Artinian principal right ideal ring
is right uniserial. In fact, K. Asano proved that an Artinian ring is uniserial if
and only if each ideal is a principal right ideal and a principal left ideal. The
classical proof of this theorem is given in the book [7]. For such rings K. Asano also
proved an analogue of the Wedderburn-Artin theorem, namely, he proved that any
Artinian uniserial ring can be decomposed into a direct sum of full matrix rings of
the form Mn(A), where A is a local Artinian ring with a cyclic radical. A one-sided
characterization of Artinian principal ideal rings and its connection with primary
decomposable serial rings is given in theorem 2.1 of the paper [4]

L.A. Skornyakov studied serial rings, which he called “semi-chain rings”, in his
paper [18]. There he proved that A is a right and left Artinian serial ring if and only
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if every left A-module is a direct sum of uniserial modules. His result generalizes a
theorem proved by K.R. Fuller (see [5]), to the effect that if each left module over a
ring A is a direct sum of uniserial modules, then A is a serial left Artinian ring.

The first serial non-Artinian rings were studied and described by R. B. Warfield
and V. V.Kirichenko. In particular, they gave a full description of the structure of
serial Noetherian rings. We follow the papers [12] and [10], where the technique of
quivers was used systematically.

It is well known that many important classes of rings are naturally character-
ized by the properties of modules over them. As examples, we mention semisimple
Artinian rings, uniserial rings, semiprime hereditary semiperfect rings and semidis-
tributive rings.

There is the following chain of strict inclusions:

semisimple Artinian rings ⊂ generalized uniserial rings ⊂ serial rings ⊂ semidis-
tributive rings.

In this chain the first three classes of rings are semiperfect. The example of the
ring of integers Z shows that a distributive ring is not necessarily semiperfect.

The reduction theorem for SPSD-rings and decomposition theorem for semiprime
right Noetherian SPSD-rings were proved in the paper [14].

Quivers and prime quivers of SPSD-rings were studied in [13].
A semilocal ring A is called semiperfect if idempotents of the ring A can be

lifted modulo R.
Semiperfect rings were introduced by H. Bass in 1960.
To understand the definition of a semilocal ring we need some additional defini-

tions and propositions.
A nonzero ring A is called local if it has the unique maximal right ideal.
The intersection of all maximal right ideals of a ring A is called the Jacobson

radical of A. The Jacobson radical is denoted R = rad A.
The following theorem contains the list of properties which are equivalent for

any local ring.

Theorem 1.1. The following properties of a ring A with the Jacobson radical R are
equivalent:

1. A is local;
2. R is the unique maximal right ideal in A;
3. all non-invertible elements of A form a proper ideal;
4. R is the set of all non-invertible elements of A;
5. the quotient ring A/R is a division ring.

Proposition 1.2. Let e2 = e ∈ A. Then rad(eAe) = eRe, where R is the radical
of A.

Recall that a module M is called distributive if for any submodules K,L, N

K ∩ (L + N) = K ∩ L + K ∩N.
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Clearly, a submodule and a quotient module of a distributive module are dis-
tributive. A module is called semidistributive if it is a direct sum of distributive
modules. A ring A is called right (left) semidistributive if the right (left) regular
module AA (AA) is semidistributive. A right and left semidistributive ring is called
semidistributive.

Obviously, every uniserial module is a distributive module and every serial mo-
dule is a semidistributive module.

Example 1.1. Let S = {α1, . . . , αn} be a finite poset with ordering relation 6 and
let D be a division ring. Denote by A(S, D) the following subring of Mn(D):

A(S, D) =





∑

αi≤αj

dijeij | dij ∈ D



 .

It is not difficult to check that A(S,D) is a semidistributive Artinian ring.
In particular, the hereditary semidistributive ring

A3 =








d11 d12 d13

0 d22 0
0 0 d33


 | dij ∈ D





is of the form:
A3 = A(P3, D),

where P3 is the poset with the diagram

2• •3

1•

BBBBBBBB

||||||||

It is also clear that A3 is a semidistributive ring which is left serial, but not right
serial.

Proposition 1.3. Let M be an A-module. Then M is a distributive module if and
only if all submodules of M with two generators are distributive modules.

Proof. Suppose that all two-generated submodules of M are distributive modules.
Let K, L, N be submodules of M and k = l + n ∈ K ∩ (L + M); l ∈ L, n ∈ N .
Obviously, kA ⊂ lA + nA and KA = kA ∩ (lA + nA) = KA ∩ lA + kA ∩ nA.
Therefore, k ∈ K ∩ L + K ∩N , i.e. K ∩ (L + N) ⊆ K ∩ L + K ∩N . The inclusion
K ∩ L + K ∩N ⊆ K ∩ (L + N) is always valid.

Lemma 1.4. Let M be a distributive module over a ring A. Then for any m, n ∈ M
there exist a, b ∈ A such that 1 = a + b and maA + nbA ⊂ mA ∩ nA.
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Proof. Write t = m + n and H = mA ∩ nA. Obviously, tA ⊆ mA + nA and
Ta ∩ (mA + nA) = tA = (tA + mA) ∩ (tA + nA). So there exist b, d ∈ A such that
tb ∈ mA, td ∈ nA and t = tb+td. Then nb = tb−mb ∈ H and md = td−nd ∈ H. Let
a = 1−b and g = 1−b−d. He have tg = t−tb−td = 0 and ng = tg−mg = −mg ∈ H.
So ma = md + mg ∈ H and maA + nbA ⊆ mA ∩ nA.

Lemma 1.5. Let M be an A-module. Then M is a distributive module if and only
if for any m,n ∈ M there exist four elements a, b, c, d of A such that 1 = a + b and
ma = nc, nb = md.

Proof. Necessity follows from Lemma 1.4. Conversely, let k ∈ K ∩ (L + N), where
K, L,N are submodules of M . Then k = m + n, where m ∈ L and n ∈ N . By
assumption there exist a, b ∈ A such that 1 = a+b and ma ∈ mA∩nA, nb ∈ mA∩nA.
Consequently, ka = ma + na ∈ kA ∩ nA and kb = mb + nb ∈ kA ∩mA. Therefore,
k = ka + kb ∈ (kA ∩ nA) + (kA ∩ mA) ⊂ K ∩ L + K ∩ N , i.e., K ∩ (L + N) =
K ∩ L + K ∩N .

Let M be an A-module. Given two elements m,n ∈ M we set

(m : n) = {a ∈ A|na ∈ mA}.

Theorem 1.6 (W.Stephenson). A module M is distributive if and only if

(m : n) + (n : m) = A

for all m,n ∈ M .

Proof. This immediately follows from Lemma 1.5.

A module M has the square-free socle if its socle contains at most one copy
of each simple module.

Theorem 1.7 (V.Camillo). Let M be an A-module. Then M is a distributive
module if and only if M/N has the square-free socle for every submodule N .

Proof. Necessity. Every quotient and submodule of a distributive module are dis-
tributive, so that if M/N contains a submodule of the form U ⊕U , then M is not a
distributive module. Simply because U⊕U is not a distributive module. Indeed, for
the diagonal D(U ⊕U) = {(u, u)|n ∈ U} of U ⊕U we have D(U)∩ (U ⊕U) = D(U)
and D(U) ∩ (U ⊕ 0) = 0 and D(U) ∩ (0⊕ U) = 0.

Conversely. Let m,n ∈ M . We show that (m : n) + (n : m) = A. Let K be
a maximal right ideal of A and U = A/K. Consider the quotient module mA +
nA/mK + nK. The socle of mA + nA/mK + nK doesn’t contain U ⊕ U if one of
the following conditions holds:

(1) m ∈ nA + mK + nK = nA + mK;
(2) m ∈ nA + mK + nK = nA + mK;
In the case (1) we have m = na+nK or m(1⊕k) = na. So (1⊕k) ∈ (n : m). Since

(1⊕ k) 6∈ K, we have (n : m) 6⊆ K. In the case (2) analogously (m : n) 6⊆ K.
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Theorem 1.8. A semiprimary right semidistributive ring A is right Artinian.

Proof. It is sufficient to show that each indecomposable projective A-module
P = eA is Artinian (e is a nonzero idempotent of A). Let m be the minimal natural
number with PRm = 0. Since the module P is distributive, by Theorem 1.7, the
quotient module PRi/PRi+1 decomposes into a finite direct sum of simple modules
(i = 1, . . . , m − 1). Thus, the module P possesses a composition series and the
module P is Artinian.

We write SPSDR-ring (SPSDL-ring) for a semiperfect right (left) semidis-
tributive ring and SPSD-ring for a semiperfect semidistributive ring.

Theorem 1.9 (A.Tuganbaev). A semiperfect ring A is right (left) semidistribu-
tive if and only if for any local idempotents e and f of the ring A the set eAf is a
uniserial right fAf-module (uniserial left eAe-module) ([6], Theorem 14.2.1).

2 Q-lemma and Annihilation lemma

Recall the definition of the Gabriel quiver for a finite dimensional algebra A
over a field k. We can restrict ourselves to basic split algebras. (An algebra A
is called basic if A/R is isomorphic to a product of division algebras, where R is
the Jacobson radical of A. An algebra A over a field k is called split if A/R '
Mn1(k) ×Mn2(k) × . . . ×Mns(k).) All algebras over algebraically closed fields are
split.

Let P1, . . . , Ps be all pairwise nonisomorphic principal right A-modules. Write
Ri = PiR (i = 1, . . . , s) and Wi = Ri/RiR. Since Wi is a semisimple module,

Wi =
s⊕

j=1
U

tij
j , where Uj = Pj/Rj are simple modules. It is equivalent to the

isomorphism P (Ri) '
s⊕

j=1
P

tij
j . To each module Pi assign a point i in the plane and

join the point i with the point j by tij arrows. The so constructed graph is called
the quiver of A in the sense of P.Gabriel and denoted by Q(A).

A semiperfect ring A is called reduced if its quotient ring by the Jacobson
radical R is a direct sum of division rings.

Let A be a semiperfect ring such that A/R2 is a right Artinian ring. The quiver
of the ring A/R2 is called the quiver of the ring A and is denoted by Q(A).

Theorem 2.1. Let A be an arbitrary ring with an idempotent e2 = e ∈ A. Set
f = 1− e, eAf = X, fAe = Y , and let

A =
(

eAe X
Y fAf

)

be the corresponding two-sided Peirce decomposition of the ring A. Then the ring
A is right Noetherian (Artinian) if and only if the rings eAe and fAf are right
Noetherian (Artinian), X is a finitely generated fAf -module and Y is a finitely
generated eAe-module.
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For further reasonings we will need the following proposition.

Proposition 2.2. Let A be a ring. For an A-module P the following statements
are equivalent:

1) P is projective;
2) every short exact sequence 0 → N → M → P → 0 splits;
3) P is a direct summand of a free A-module F .

Let AA = Pn1
1 ⊕ . . . ⊕ Pns

s be the decomposition of a semiperfect ring A into a
direct sum of principal right A-modules and let 1 = f1+. . .+fs be the corresponding
decomposition of the identity of A into a sum of pairwise orthogonal idempotents,
i.e., fiA = Pni

i . Then AA = Af1⊕. . .⊕Afs = Qn1
1 ⊕. . .⊕Qns

s is the decomposition of
the semiperfect ring A into a direct sum of principal left A-modules, i.e. Afi = Qni

i ,
where Qi is an indecomposable projective left A-module (i = 1, . . . , s). Now consider
the two-sided Peirce decomposition of the ring A

A =




A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
An1 An2 · · · Ann


 .

Consider also the two-sided Peirce decomposition of the Jacobson radical R of A :
R =

⊕
i,j

fiRfj . Since R is a two-sided ideal, fiRfj ⊂ R for all i, j. By Proposition 1.2

we have Rii = fiRfi = rad(fiAfi) for i = 1, . . . , n. We shall show that fiRfj =
fiAfj for i 6= j. Indeed, multiplying on the left elements from fjA by an element
fiafj we obtain a homomorphism ϕji of the module fjA to fiA. If Im(ϕji) = fiA,
then ϕji is an epimorphism. Since fiA = Pni

i , fjA = P
nj

j are projective modules, by
Proposition 2.2, and Pni

i is isomorphic to a direct summand of the module P
nj

j . But
this is impossible, since the indecomposable modules Pi and Pj are non-isomorphic.
Therefore Im(ϕji) ⊂ fiA. We can write the homomorphism ϕji in the form of a
matrix ϕji = (ϕrs

ji ), where ϕrs
ji : Pj → Pi are homomorphisms of indecomposable

non-isomorphic projective modules Pj and Pi for r = 1, . . . , ni, s = 1, . . . , nj . Since
Im(ϕrs

ji ) 6= Pi, we have Im(ϕrs
ji ) ⊂ PiR. Therefore Im(ϕrs

ji ) ⊆ fiAR = fiR, i.e.,
fiAfj ⊆ fiR. Hence Aij = fiAfj = fiRfj for i 6= j. Thus, we obtain the following
result.

Proposition 2.3. Let A = Pn1 ⊕ . . . ⊕ Pns
s be the decomposition of a semiperfect

ring A into a direct sum of principal right A-modules and let 1 = f1 + . . . + fs be a
corresponding decomposition of the identity of A into a sum of pairwise orthogonal
idempotents, i.e., fiA = Pni

i . Then the Jacobson radical of the ring A has a two-
sided Peirce decomposition of the following form:

R =




R11 R12 · · · R1n

R21 R22 · · · R2n
...

...
. . .

...
Rn1 Rn2 · · · Rnn
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where Rii = rad(fiAfi), Aij = fiAfj for i, j = 1, . . . , n.

Lemma 2.4. (Annihilation lemma) Let 1 = f1 + . . . + fs be a canonical decom-
position of 1 ∈ A. For every simple right A-module Ui and for each fj we have
Uifj = δijUi, i, j = 1, . . . , s. Similarly, for every simple left A-module Vi and for
each fj, fjVi = δijVi, i, j = 1, . . . , s.

Proof. We shall give the proof for the case of right modules. From the previous
proposition we obtain that fiRfj = fiAfj for i 6= j. Hence Pni

i fj ⊂ fiR. But
fiA/fiR ' Uni

i . Therefore Uni
i fj = 0 and so Uifj = 0 for i 6= j.

We are going to show that Uifi = Ui. Let u ∈ Ui. Then u ·1 = u(f1 + . . .+fs) =
ufi since ufj = 0 for i 6= j. The lemma is proved.

Let A be a reduced semiperfect ring, and let 1 = e1 + . . .+es be a decomposition
of 1 ∈ A into a sum of mutually orthogonal local idempotents.

Set Ui = eiA/eiR and Vi = Aei/Rei.

Lemma 2.5. (Q-Lemma) The simple module Uk (resp. Vk) appears in the direct
sum decomposition of the module eiR/eiR

2 (resp. Rei/R2ei) if and only if eiR
2ek

(resp. ekR
2ei) is strictly contained in eiRek (resp. ekRei).

Proof. If Uk is a direct summand of the module Wi = eiR/eiR
2, then by Lemma 2.4,

Wiek 6= 0. Therefore eiRek does not equal eiR
2ek and the inclusion eiRek ⊃ eiR

2ek

is strict.
Conversely, suppose that eiR

2ek is strictly contained in eiRek. Consider a sub-
module Xk contained in eiR,

Xk = eiRei ⊕ . . .⊕ eiRek−1 ⊕ eiR
2ek ⊕ eiRek+1 ⊕ . . .⊕ eiRes

(here the direct sum sign denotes a direct sum of Abelian groups).
From the inclusions eiR ⊃ Xk ⊃ eiR

2 it follows that eiR/Xk is a semisim-
ple module. We have the equalities eiR/Xk = eiRek/eiR

2ek = (eiR/Xk)ek. By
Lemma 2.4 the module eiR/Xk decomposes into a direct sum of some copies of the
module Uk. Since eiR/Xk is isomorphic to a direct summand Wi, the module Uk is
contained in Wi as a direct summand.

For left modules Vk the statement is proved analogously. The lemma is
proved.

Lemma 2.6. Let A be a semiperfect ring, and e, f be nonzero idempotents of the
ring A such that e = f ∈ A. Then there exists an invertible element a ∈ A such that
f = aea−1.

The quiver Q(A) of a ring A is called connected if it cannot be represented in
the form of a union of two nonempty disjoint subsets Q1 and Q2 which are not
connected by any arrows.
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Theorem 2.7. The following conditions are equivalent for a semiperfect Noetherian
ring A:

(a) A is an indecomposable ring;
(b) A/R2 is an indecomposable ring;
(c) the quiver of A is connected.

Proof. Obviously, the conditions of the theorem are preserved by passing to the
Morita equivalent rings. Therefore we can assume that the ring A is reduced.

(a) ⇒ (b). Let A = A/R2 ' A1×A2 and let 1 = P +1+P 2 be the corresponding
decomposition of the identity of the ring A/R2 into a sum of orthogonal idempotents.
Let g1, g2 ∈ A be elements such that g1 + R2 = f1 and g2 + R2 = f2. There are
idempotents f1, f2 ∈ A such that f1 = g1 + r1 and f2 = g2 + r2, where r1, r2 ∈ R2.
Since f1Af2 = 0 and f2Af1 = 0, we have g1ag2 ∈ R2 and g2ag1 ∈ R2 for any a ∈ A.
Clearly, fi = figifi + firifi (i = 1, 2). Then the element f1af2 = f1g1f1af2g2f2 +
f1g1f1af2r2f2 + f1r1f1af2g2f2 + f1r1f1af2r2f2 belongs to R2 for any a ∈ A. This is
immediate from Proposition 2.3. Exactly in the same way f2Af1 ∈ R2. Therefore
f2Af1 = f2R2f1 and f1Af2 = f1R

2f2. By Proposition 2.3, the two-sided Peirce

decomposition of R has the form: R =
(

R1 A12

A21 R2

)
, where Ri = Rad(fiAfi)

(i = 1, 2) and Aij = fiAfj for i 6= j. Calculating R2 we obtain

R2 =
(

R2
1 + A12A21 R1A12 + A12R2

A21R1 + R2A21 A21A12 + R2
2

)
.

From the above we have: A12 = R1A12 + A12R2 and A21 = R2A21 + A21R1. By
Theorem 2.1, taking into account Nakayama’s lemma, we obtain that A12 = 0 and
A21 = 0 and therefore A = A11 ×A22, where Aii = fiAfi (i = 1, 2).

(a) ⇒ (c). Let the quiver of the ring A be disconnected. Then Q(A) = Q1 ∪Q2

and Q1 ∩ Q2 = ∅, and the points of the sets Q1 and Q2 are not connected by any
arrows. Renumbering, if necessary, the principal right A-modules P1, . . . , Ps one
may assume that Q1 = {1, . . . , k} and Q2 = {k +1, . . . , s}. Let A = P1⊕ . . .⊕Ps be
a decomposition of the ring A into a direct sum of principal right A-modules (where
Pi = eiA, e2

i = ei ∈ A, 1 = e1 + . . .+ es) and 1 = f1 + f2, where f1A = P1⊕ . . .⊕Pk

and f2A = Pk+1 ⊕ . . .⊕ Ps. We set Aij = fiAfj , Ri = radAii (i = 1, 2). If A12 6= 0,
then by Theorem 2.1, taking into account Nakayama’s lemma, we obtain that the
inclusion A12 ⊃ R1A12 + A12R2 is strict. But R1A12 + A12R2 = f1R

2f2. Therefore
there are local idempotents ei and ej such that ei is a summand of f1 and ej is a
summand of f2 and eiR

2ej is strictly contained in eiRej . By Lemma 2.5 we obtain
that there is an arrow which connects the point i with the point j. A contradiction.
Analogously it can be proved that A21 = 0.

(c) ⇒ (a). If the ring A is decomposable then A/R2 is also decomposable.
Clearly, in this case Q(A) is disconnected.

(b) ⇒ (a) is trivial.
The theorem is proved.
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Remark. Theorem 2.7 is not true for semiperfect one-sided Noetherian rings. As

an example one can consider the ring A =
(
Z(p) Q
0 Q

)
. The quiver of this ring

consists of two points and one loop near one of them.

As R2 =
(

p2Z(p) Q
0 Q

)
then the ring A/R2 decomposes into a direct product

of rings:
A/R2 ' Z(p)/p2Z(p) ×Q.

However, the ring A itself is indecomposable into a direct product of rings.

Theorem 2.8. Let the ring A be a serial ring such that the intersection of all powers
of its radical ∩∞n=1R

n = 0 is equal to zero. Then A is right and left Noetherian ring.

Proof. Let M ∈ P and ∩∞n=1R
n = 0.

Then the inclusion MR ⊂ M is strong. If M = MR then M ⊂ R and the
equality M = MRn gives that M ⊂ R for all n i.e. M = 0.

Let e be an arbitrary idempotent of the ring A. Then eRe = Rad eAe and
eAe ⊂ R, (eRe)n ⊂ Rn and that is why ∩(eRe)n = 0.

So for any local idempotent e the ring eAe is uniserial and the intersection of
natural powers of the radical R is equal to 0. That is why the ring eAe is discrete
valuated as it is Artinian. Assume that all rings eAe are Artinian. Then A is
also Artinian. Let at least one ring of the form eiAei be discrete valuated. Then
there exists a local idempotent ej such that the ring (ej + ei)A(ej + ai) is of the

form
(

Aj X
Y Oi

)
, where X is an infinitely generated right Oi-module. According

to Lemma 3.28
(

R1X X
Y R2

)
=

(
R2

1 + XY R1X + XR2

Y R1 + R2Y Y X + R2

)
and XR2 = X.

Consider the following module M = (XY, X), which belongs to (A1X). It is obviousl

that (XY, X)
(

R1 X
Y R2

)
= (XY, X). This contradicts to the strong inclusion

MR ⊂ M , whence X is a finitely generated right O2-module, and in the same way
Y is a finitely generated left O1-module.

So according to Theorem 2.1 the ring (ei + ej)A(ei + ej) is right Noetherian.

3 Semiperfect semidistributive rings

Theorem 1.9 has the following corollary.

Corollary 3.1. Let A be a semiperfect ring, and let 1 = e1 + . . .+ en be a decompo-
sition of 1 ∈ A into a sum of mutually orthogonal local idempotents. The ring A is
right (left) semidistributive if and only if for any idempotents ei and ej of the above
decomposition, the set eiAej is a uniserial right ejAej-module (left eiAei-module).
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Corollary 3.2. (Reduction Theorem for SPSD-rings) Let A be a semiperfect
ring, and let 1 = e1 + . . . + en be a decomposition of 1 ∈ A in a sum of mutually
orthogonal local idempotents. The ring A is right (left) semidistributive if and only
if for any idempotents ei and ej (i 6= j) of the above decomposition the ring (ei +
ej)A(ei + ej) is right (left) semidistributive.

Proof. It is sufficient to prove the corollary for a reduced ring A. If A is a right
semidistributive, then eiAej is right uniserial ejAej-module (i 6= j) and the ring
eiAei is right uniserial for i = 1, . . . , n. By Corollary 3.1, the ring (ei + ej)A(ei +
ej) is right semidistributive. Conversely, if the ring (ei + ej)A(ei + ej) is right
semidistributive, then, by Theorem 1.9, the set eiAej is a uniserial right Ajj-module
and, by Corollary 3.1, the ring A is right semidistributive.

Corollary 3.3. Let A be a Noetherian SPSD-ring, and let 1 = e1 + . . . + en be a
decomposition of the identity 1 ∈ A into a sum of mutually orthogonal local idem-
potents, let Aij = eiAej and let Ri be the Jacobson radical of the ring Aii. Then
RiAij = AijRjj for i, j = 1, . . . , n.

Example 3.1. Consider

A =
(
R C
0 C

)

as an R-algebra (R is the field of real numbers, C is the field of complex numbers).
The Peirce decomposition of the Jacobson radical R = R(A) has the form

R =
(

0 C
0 0

)

and the R-algebra A is right serial, i.e., right semidistributive.

The left indecomposable projective Q2 =
(
C
C

)
has the socle

(
C
0

)
, which

is a direct sum of two copies of the left simple module
(
R
0

)
. Consequently, by

Proposition 1.3, the R-algebra A is an SPSDR-ring but it is not an SPSDL-ring.

3.1 Quivers of SPSD-rings

Recall that a quiver without multiple arrows and multiple loops is called a simply
laced quiver. Let A be an SPSD-ring. By Theorem 1.8, the quotient ring A/R2 is
right Artinian and its quiver Q(A) is defined by Q(A) = Q(A/R2).

Theorem 3.4. The quiver Q(A) of an SPSD-ring A is simply laced. Conversely,
for any simply laced quiver Q there exists an SPSD-ring A such that Q(A) = Q.

Proof. We may assume that A is reduced and R2 = 0. Let AA = P1 ⊕ . . . ⊕ Ps,
where P1, . . . , Ps are indecomposable. Then PiR is a semisimple A-module:

PiR =
s⊕

j=1

U
tij
j
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where Uj = Pj/PjR are simple. The A-module PiR is a submodule of a distributive
A-module and, therefore, PiR is distributive. By the definition of Q(A) we have
[Q(A)] = (tij) and, by Theorem 1.7, 0 ≤ tij ≤ 1. So Q(A) is a simply laced quiver.

Conversely, let kQ be the path k-algebra of a simply laced quiver Q and J be its
fundamental ideal, i.e., the ideal generated by all arrows of Q. Write B = kQ/J2

and π : kQ → B for the natural epimorphism. Let π(εi) = ei, where ε1, . . . , εs

are all paths of length zero. Then B = e1B ⊕ . . . ⊕ esB, where e1B, . . . , esB are
indecomposable. Let R be the Jacobson radical of B and AQ = {σij} be the
set of all arrows of Q. The elements π(σmp), where σmp ∈ AQ, form a basis of
emR. Obviously, emR2 = 0 for m = 1, . . . , s. So, emR is a semisimple module and
emR = ⊕pUp for all those p, where σmp ∈ AQ. Therefore Q(B) = Q and emR is a
distributive module, by Theorem 3.27. Thus, B is a right semidistributive ring. The
analogous arguments show that B is a left semidistributive ring.

So B = kQ/J2 is an SPSD-algebra over a field k and Q(B) = Q.

Corollary 3.5. The link graph LG(A) of an SPSD-ring A coincides with Q(A).

Proof. For any SPSD-ring A the following equalities hold: LG(A) = Q(A, R) =
Q(A).

Theorem 3.6. For an Artinian ring A with R2 = 0 the following conditions are
equivalent:

(a) A is semidistributive;
(b) Q(A) is simply laced and the left quiver Q′(A) can be obtained from Q(A) by

reversing all arrows.

Proof. (a) =⇒ (b). By Theorem 3.4 it is sufficient to show that Q′(A) can be
obtained from Q(A) by reversing all arrows. One can assume that A is reduced.
Write AA as a direct sum AA = P1 ⊕ . . . ⊕ Ps, where the Pi are indecomposable
projective and let 1 = e1 + . . . + es be the corresponding decomposition of 1 ∈ A
into a sum of mutually orthogonal local idempotents. If Aij = eiAej 6= 0, then, in
view of Corollary 3.3,

AijRj = RiAij and Aij ⊂ R for i 6= j.

Hence, AijRj = RiAij = 0 for i 6= j and, in view of the Q-Lemma, it follows
that there is a loop at the vertex i both in Q(A) and in Q′(A). Thus the left quiver
Q′(A) can be obtained from Q(A) by reversing all arrows.

(b) =⇒ (a). By the Peirce decomposition for R we have: R =
s⊕

i,j=1
eiRej ,

eiRei = Ri and eiRej = A, i 6= j; i, j = 1, . . . , s.
It follows that

PiR = (Ai1, . . . , Aii−1, Ri, Aii+1, . . . , Ais)

for i = 1, . . . , s. If Aij 6= 0, for i 6= j, then, in view of the Q-Lemma, Aij is a
simple right Ajj-module and a simple left Aii-module. If Ri 6= 0, then Ri is a simple
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Aii-module and a simple left Aii-module. Thus, in view of Theorem 1.9, the ring A
is semidistributive.

Remark. The implication (b) =⇒ (a) isn’t true even in the case of finite dimensional
algebras as is shown by the following example.

Let A = kQ4 be the path k-algebra of the quiver Q4

Q4 =





1 •

AA¤¤¤¤¤¤¤¤¤¤ • 4

•

ÀÀ;
;;

;;
;;

;;
;

2

1 •

ÀÀ;
;;

;;
;;

;;
; • 4

•

AA¤¤¤¤¤¤¤¤¤¤

3





.

The basis of kQ4 is ε1, ε2, ε3, ε4, σ12, σ13, σ24, σ34, σ12σ24, σ13σ34. The indecom-
posable projective A-modules are: P1 = {ε1, σ12, σ13, σ12σ24, σ13σ34}; P2 = {ε2, σ24};
P3 = {ε3, σ34}; P4 = {ε4}. Obviously, socP1 ' P4 ⊕ P4. By Theorem 1.7, P1 is not
distributive, but Q(A) = Q4 and

Q′(A) =





4 •

AA¤¤¤¤¤¤¤¤¤¤ • 1

•

ÀÀ;
;;

;;
;;

;;
;

2

4 •

ÀÀ;
;;

;;
;;

;;
; • 1

•

AA¤¤¤¤¤¤¤¤¤¤

3





,

i.e., A satisfies condition (b) of Theorem 1.5.
Note that if we identify routes σ12σ24 and σ13σ34 then obtain the distributive

algebra, which is isomorphic to the matrix algebra M4(k) of the following form



k k k k
0 k 0 k
0 0 k k
0 0 0 k


 .

A semiperfect ring A such that A/R2 is Artinian will be called Q-symmetric
if the left quiver Q′(A) can be obtained from the right quiver Q(A) by reversing all
arrows.

Corollary 3.7. Every SPSD-ring is Q-symmetric.

Remark. Example 1.9 shows that an SPSDR-ring is not always Q-symmetric.
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Theorem 3.8. The intersection of all natural powers of Jacobson radical of SPSD-
ring is equal to zero.

Proof. Obviously we can consider the ring to be reducible. Denote

Ik =




Rk
1 A12R

k
2 · · · A1sR

k
s

A21R
k
1 Rk

2 · · · A2sR
k
s

· · · · · · · · · · · ·
As1R

k
1 As2R

k
2 · · · Rk

s


 .

Obviously Ik is two-sided ideal of the ring A. It is easy to check that

IkIl = Ik+1 and R2 ⊂ I1.

So, Rsk ⊂ Ik whence
∞⋂

n=0

Rn ⊂
∞⋂

k=0

RnIk.

As all rings Aii are Noetherian chain rings then [12] it follows that they are either
discrete valuation rings or uniserial Artinian rings Kiote rings. The intersection of
all powers of the Jacobson radical of such rings is equal to zero [12]. According
to Theorem 1.9 the ring Aij is a cyclic chain Ajj-module and a cyclic left chain
Aii-module. But in this case

∞⋂

k=0

AijR
k
j = 0, i, j = 1, . . . , s.

This means that the intersection of Ik for all natural k is equal to zero. Whence,
the intersection of all natural powers of Jacobson radical is equal to zero.

3.2 Semiprime semiperfect rings

In this section we shall describe the minors of first and second order of right
Noetherian semiprime SPSD-rings.

The endomorphism ring of an indecomposable projective module over a semiper-
fect ring is called a principal endomorphism ring.

Proposition 3.9. An Artinian principal endomorphism ring of a semiprime semiper-
fect ring is a division ring.

Proof. This ring is an Artinian prime local ring and, consequently, is a division
ring.

Lemma 3.10. Let AA = Pn1
1 ⊕Pn2

2 ⊕ . . .⊕Pns
s be the decomposition of a semiprime

semiperfect ring A into principal modules and let EndA(P1) = D1 be a division ring.
Then A = Mn1(D1)×End(Pn2

2 ⊕ . . .⊕ Pns
s ).
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Proof. Let 1 = f1 + . . . + fs be a canonical decomposition of 1 ∈ A into a sum of
pairwise orthogonal idempotents, i.e., fiA = Pni

i for i = 1, . . . , s. Let f1Af1 = A1,
(1 − f1)A(1 − f1) = A2, X = f1A(1 − f1), Y = (1 − f1)Af1. If either X 6= 0 or

Y 6= 0, then K =
(

0 X
Y Y X

)
is a nilpotent ideal and we have the contradiction.

So X = 0, Y = 0, proving the lemma.

Theorem 3.11. (Decomposition theorem for semiprime semiperfect rings)
A semiprime semiperfect ring is a finite direct product of indecomposable rings. An
indecomposable semiprime semiperfect ring is either a simple Artinian ring or an
indecomposable semiprime semiperfect ring such that all its principal endomorphism
rings are non-Artinian.

A proof immediately follows from Lemma 3.10.
Let 1 = g1 + g2 be a decomposition of the identity of A into a sum of the

mutually orthogonal idempotents, and let A = (Aij) be the corresponding Peirce
decomposition of A, i.e., Aij = giAgj , i, j = 1, 2. Similarly, if M is a two-sided
ideal of A, then M = (Mij) is the Peirce decomposition of M , where Mij = giMgj ,
i, j = 1, 2.

Lemma 3.12. Let M = (Mij) be a two-sided ideal of a semiprime ring A. If
Mij 6= 0 for i 6= j, then Mji 6= 0. Moreover, if Mij 6= 0 for i 6= j, then MijMji 6= 0
and MjiMij 6= 0.

Proof. Let MijMji = 0. Clearly, Z = MijAji + AijMji + Mij + Mji is a two-sided
ideal and Z8 = 0. The remaining cases are treated analogously.

Corollary 3.13. Let 1 = e1 + . . .+en be a decomposition of the identity of A into a
sum of the mutually orthogonal idempotents, Aij = eiAej, i, j = 1, . . . , n, and let M
be a two sided ideal in A, Mij = eiMej, i, j = 1, . . . , n. If Mij 6= 0 for i 6= j, then
Mji 6= 0 and MijMji 6= 0, MjiMij 6= 0. Moreover, from the equality AijAji = 0 it
follows that Aij = 0 and Aji = 0.

Proposition 3.14. Let A be a prime (resp. semiprime) ring, e2 = e ∈ A. Then
the ring eAe is prime (resp. semiprime).

Theorem 3.15. For a semiprime semiperfect ring A the following conditions are
equivalent:

(1) A is a finite direct product of prime rings;
(2) all principal endomorphism rings of A are prime.

Proof. (1) =⇒ (2) follows from Proposition 3.14.
(2) =⇒ (1) Obviously, we can assume that A is indecomposable and reduced.

Let 1 = e1+ . . .+en be a decomposition of 1 ∈ A into the sum of pairwise orthogonal
local idempotents. We shall prove the theorem by induction on n. The case n = 1
is obvious. Suppose that A is not prime. Then there exist two-sided nonzero ideals
M,N such that MN = 0. Let h1 = e1 + . . . + en−1 and h2 = en. We have
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the equality h1Mh1Nh1 = 0. By the induction hypothesis either h1Mh1 = 0 or
h1Nh1 = 0. Let h1Mh1 = 0, then by Corollary 3.13 h1Mh2 = 0 and h2Mh1 = 0.
If h2Mh2 = 0, then the theorem is proved, so h2Mh2 6= 0 and h2Nh2 = 0. We
have again h2Nh1 = 0 and h1Nh2 = 0. One can assume that eiNei 6= 0 for
i = 1, . . . , t and ejNej = 0 for j = t + 1, . . . , n. So NiiAij = 0 for i = 1, . . . , t and
j = t + 1, . . . , n. Consequently, NiiAijAji = 0 for the same i and j. Since the Aii

are prime, it follows that AijAji = 0. By Corollary 3.13, we obtain Aij = 0 and
Aji = 0 for i = 1, . . . , t and j = t + 1, . . . , n. Hence, the ring A is decomposable and
we obtain a contradiction, which proves the theorem.

Let A be a ring, P a finitely generated projective A-module which can be de-
composed into a direct sum of n indecomposable modules. The endomorphism ring
B = EndA(P ) of the module P is called a minor of order n of the ring A.

Proposition 3.16. Every minor of an SPSD-ring is an SPSD-ring.

The proof follows from Theorem 1.9 and Corollary 3.1.

Corollary 3.17. Every minor of a right Noetherian semiprime SPSD-ring is a right
Noetherian semiprime SPSD-ring.

The proof follows from Theorem 2.1 and Proposition 3.14.
From Theorems 1.9 and 2.1 we obtain the following statement.

Corollary 3.18. Every minor of a Noetherian SPSD-ring is a Noetherian SPSD-
ring.

Proposition 3.19. A minor of the first order of a right Noetherian SPSD-ring is
uniserial and it is either a discrete valuation ring or an Artinian uniserial ring.

Let O be right local uniserial Noetherian ring with the unique maximal ideal M.
Consider the following descending chain of two-sided ideals.

O ⊃M ⊃M2 ⊃ . . . ⊃Mn ⊃ . . .

By Nakayama Lemma Mk strictly contains Mk+1 for any k ∈ N. As O is serial
ring then right factor module Mk/Mk+1 is simple if Mk 6= 0.

Assume thatM 6= 0. In this case if π ∈M\M2 then πO+M2 =M and according
to Nakayama Lemma M = πO.

Consider left ideals Oπ and M. The local property of the ring O gives that
M ⊇ Oπ.

The strong inclusion Oπ ⊃ M2 follows from that O is serial. Factor module
M/M2 is semisimple right O-module and is left O-module. As the ring O is serial
then M/M2 is simple from both sides. Whence Oπ = πO =M.

The next proposition immediately follows from this fact.

Proposition 3.20. Let O be a right local Noetherian serial ring with the unique
maximal ideal M 6= 0. Then M = πO = Oπ and the ring O is both sides Artinian if
and only if the element π is nilpotent.
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That is why in future we will assume that the element π is not nilpotent.
Consider the endomorphism π of the right O-module OO which multiplies α ∈ O

with the element π from the left, i.e. π(α) = πα.

Step 1. kerπ ⊂
∞⋂

n=1
Mn.

Proof. Let kerπ = {α ∈ O| πα = 0}. It is obvious that kerπ is two-sided ideal.
Really, if α ∈ kerπ then π(αα1) = (πα)α1 = 0, i.e. αα1 ∈ kerπ.

Let α ∈ kerπ and β ∈ O. Consider π(βα) = (πβ)α = (β1π)α = β1(πα) = 0.
If kerπ = Mn for some n then πMn = πOMn = Mn+1 = 0, whence πn+1 = 0. So,

kerπ ⊂Mn for any natural n, whence kerπ ⊂ Y =
∞⋂

n=1
Mn.

Step 2. kerπ = 0.

Proof. Let X = kerπ 6= 0. Then there exists ascending chain of ideals

kerπ ⊂ kerπ2 ⊂ . . . ⊂ kerπn ⊂ . . . .

Let us show that kerπk 6= kerπk+1 for all k. Let kerπk = kerπk+1 for some k and

x ∈ X, x 6= 0. So, πx = 0 and x ∈
∞⋂

n=1
Mn. This is followed by x = πkαk =

πk+1αk+1. The equality πx = 0 implies πk+1αk+1 = 0 i.e. αk ∈ kerπk+1 and this
means that αk ∈ kerπk and πkαk = 0 = x. That is why there exists strongly
ascending chain of two-sided ideals

kerπ ⊂ kerπ2 ⊂ . . . ⊂ kerπn ⊂ . . . .

and this is a contradiction with the property of the ring O to be right Noetherian.
The proposition is proved.

Step 3.
∞⋂

n=1
Mn = 0.

Proof. Let Y =
∞⋂

n=1
Mn 6= 0. Consider two-sided ideal YM of the ring O which is

the unique maximal submodule of M as the ring O is right Noetherian.
Considering the factor ring O/YM one may assume that the intersection Y =

∞⋂
n=1
Mn is a simple right O-module in the former ring O. The property of Y to be a

two-sided ideal and the equality kerπ = 0 imply that πY = Y .
Let W = {α ∈ O| απ ∈ Y }. Obviously W 6= 0 because y ∈M, y ∈ Y , y 6= 0 and

y = απ.
Let us show that W is a two-sided ideal of the ring O. Obviously α + α1 ∈ W if

α, α1 ∈ W .
Let α ∈ W , i.e. απ ∈ Y . Then (βα)π = βy1 ∈ Y , i.e. βα ∈ W for any

β ∈ O. Moreover, (αβ)π = α(βπ) = α(πβ1) = (απ)β1 ∈ Y . If W 6⊂ Y then
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W = πnO = Oπn and Wπ ∈ Y , i.e. Wπ = Mn+1 ⊂ Y . The obtained contradiction
shows that W ⊂ Y and so W = Y . Let ∈ Y and y 6= 0. Then y = y1π for some
y1 ∈ Y . But Y π = 0, whence y = 0. The obtained contradiction proves that O is
a discrete valuation ring with the unique maximal ideal M = πO = Oπ. For more
details see Warfield [1975].

Corollary 3.21. A minor of the first order of a right Noetherian semiprime SPSD-
ring is either a discrete valuation ring or a division ring.

A ring A is called semimaximal if it is a semiperfect semiprime right Noetherian
ring such that for each local idempotent e ∈ A the ring eAe is a discrete valuation
ring (not necessarily commutative), i.e., all principal endomorphism rings of A are
discrete valuation rings.

Proposition 3.22. A semimaximal ring is a finite direct product of prime semi-
maximal rings.

A proof follows from Theorem 3.15.
So, a semimaximal ring A is indecomposable if and only if A is prime.

Proposition 3.23. A semiperfect reduced indecomposable ring B is a second order
minor of a right Noetherian semiprime SPSD-ring if and only if B is semimaximal.

Proof. Let 1 = e1 + e2 be a decomposition of 1 ∈ B into a sum of local idem-

potents, let B =
2⊕

i,j=1
eiBej be the corresponding two-sided Peirce decomposition,

and let Bij = eiBej (i, j = 1, 2). The Jacobson radical R of B has the form:

R =
(

R1 B12

B21 R2

)
, where Ri is the Jacobson radical of Bii (i = 1, 2). Obviously,

R2 =
(

R2
1 + B12B21 R1B12 + B12R2

R2B21 + B21R1 R2
2 + B21B12

)

By Corollary 3.19, Bii is either a discrete valuation ring or a division ring. If B11 = D

is a division ring, then R =
(

0 B12

B21 R2

)
. Obviously, J =

(
0 B12

B21 B21B12

)
is a

nonzero ideal in B and J2 = 0. So B is semimaximal.
Let’s now show that a semimaximal ring B is semidistributive. We can assume

that B is prime. Let Ri = πiBii = Biiπi (i = 1, 2). Now b12b2 6= 0 for any
b12 6= 0 and b2 6= 0 (b12 ∈ B12, b2 ∈ B22). Indeed, we can suppose that b2 =

πm
2 . Then

(
0 b12

0 0

)(
B11 B12

B21 B22

)(
0 0
0 b2

)
6= 0 and, consequently, b12B22p

m
2 =

b12p
m
2 B22 6= 0. So, b12p

m
2 6= 0. Analogously, bijbj 6= 0 and bibij 6= 0 for i, j = 1, 2.

Further bijbji 6= 0 for i 6= j and both factors are nonzero. We shall prove that

b21b12 6= 0 for b12 6= 0 and b21 6= 0. Indeed,
(

0 b12

0 0

)(
B11 B12

B21 B22

) (
0 0

b21 0

)
6=
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0. So, b12B22b21 6= 0 and thus there exists b2 ∈ B22 such that b12b22b21 6= 0. If
b21b12 = 0, then b21b12b22b21 = 0 and we obtain a contradiction.

Next B12 is a uniserial right B22-module and a uniserial left B11-module. By
Theorem 2.1, B12 is a finitely generated B22-module. Consequently, if B12 isn’t
uniserial, then B12 = B

(1)
12 ⊕B

(2)
12 , where B

(1)
12 and B

(2)
12 are nonzero B22-submodules

of B12. Let b21 6= 0. Then b21B12 = b21B
(1)
12 ⊕ b21B

(2)
12 , where b21B

(1)
12 and b21B

(1)
12 are

nonzero right ideals in O2. This is a contradiction. Consequently, B12 is a uniserial
right B22-module.

Finally B12 is a uniserial left B11-module. If this isn’t true, then there exists
a left B11-submodule N12 with two noncyclic generators in B12. Consequently,
N12 = N

(1)
12 ⊕ N

(2)
12 is a direct sum of two nonzero left B11-submodules and so

N12b21 = N
(1)
12 b21 ⊕ N

(2)
12 b21 is a direct sum of two nonzero left ideals in B11 for

any nonzero b21. This is a contradiction and so B12 is a uniserial left B11-module.
Analogously, B21 is a uniserial right B11-module and a uniserial left B22-module.
Thus, by Theorem 1.9 B is semidistributive. The proposition is proved.

Corollary 3.24. An intersection of a finite number of nonzero submodules of an
indecomposable projective module over a Noetherian prime SPSD- ring is nonzero.

Lemma 3.25. A local idempotent of a Noetherian prime SPSD-ring A is a local
idempotent of its classical ring of fractions.

Note that an example of semimaximal rings is non-Artinian both sides Noethe-
rian semiprime hereditary rings. They are exactly semimaximal hereditary rings.
The article [19] contains a condition for the prime semimaximal ring Λ to be of
finite type. This condition is as follows. As an arbitrary prime semimaximal ring
Λ can be included into the prime ring of fractions Q, let M(Λ) be the partially
ordered set (in the sense of inclusion) of all projective Λ-modules which belong to
some prime Q-module. So, the equivalent condition for the prime semimaximal ring
to be of finite type is the nonexistence of critical subsets in the set M(Λ). Here a
subset of a partially ordered set is called critical if it is one of the following sets:
(1, 1, 1, 1), (2, 2, 2), (1, 3, 3), (1, 2, 5), R = {a1 < a2 > b1 < b2; c1 < c2 < c3 < c4}.
Here we denote by (l1, . . . , lm) the cardinal sum of m linearly ordered sets which
contain l1, . . . , lm elements correspondingly.

For proving Lemma 3.25 we need the following proposition [6, Prop. 9.3.10].

Proposition 3.26. Let Q be a semisimple ring and A be a right order in Q. Then
Q is a simple ring if and only if A is prime.

Proof of Lemma 3.25. By Proposition 3.26 A is a right order in the simple Artinian
ring Q = Mn(D). One can assume that the local idempotent e ∈ A is a sum of matrix
idempotents e = ei1i1 + . . . + eikik . Let k ≥ 2. Then there exist q1, . . . , qk ∈ Q such
that ei1i1q1, . . . , eikikqk ∈ A and, consequently, ei1i1q1A, . . . , eikikqkA are nonzero
right submodules of the right indecomposable projective module eA and eimimqmA∩
eipipqpA = 0 for m 6= p. We obtain a contradiction with Corollary 3.24.
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3.3 Right Noetherian semiprime SPSD-rings

The following is a decomposition theorem for semiprime right Noetherian
SPSD-rings.

Theorem 3.27. The following conditions for a semiperfect semiprime right Noethe-
rian ring A are equivalent:

(a) the ring A is semidistributive;
(b) the ring A is a direct product of a semisimple Artinian ring and a semimax-

imal ring.

Proof. (a) =⇒ (b). From Theorem 3.11 it follows that A is a finite direct product
of indecomposable semiprime rings. Every indecomposable ring is either a simple
Artinian ring or a semiprime semiperfect ring such that all its principal endomor-
phism rings are non-Artinian. In the second case, by Corollary 3.21, such a ring is
semimaximal.

(b) =⇒ (a). Obviously, a semiprime Artinian ring is a semiprime SPSD-ring. A
semimaximal ring is an SPSD-ring, by Proposition 3.11 and the reduction theorem
for SPSD-rings.

Lemma 3.28. The right uniserial modules over the ring Hm(O) are exhausted by
the Dm, all principal Hm(O)-modules and quotient modules of these modules.

Theorem 3.29. Each semimaximal ring is isomorphic to a finite direct product of
prime rings of the following form:

A =




O πα12O · · · πα1nO
πα21O O · · · πα2nO
· · · · · · · · · · · ·

παn1O παn2O · · · O


 (1)

where n ≥ 1, O is a discrete valuation ring with a prime element π, and the αij are
integers such that αij + αjk ≥ αik for all i, j, k (αii = 0 for any i).

Proof. By Proposition 3.10 a semimaximal ring is a finite direct product of prime
semimaximal rings. We shall show that a prime semimaximal ring is isomorphic to
a ring of the form (1).

Let 1 = e1 + . . . + em be a decomposition of 1 ∈ A into a sum of pairwise
orthogonal local idempotents, Aij = eiAej for i, j = 1, . . . , m. Denote by Bij (i 6= j)

the following second order minor: Bij =
(

Aii Aij

Aji Ajj

)
. If Bij isn’t reduced, then

Bij ' M2(Aii) and Bij is left Noetherian. If Bij is reduced, then Aijaji ⊂ Aij , ϕji :
Aij → Aii being the monomorphism of left Aii-modules (for any nonzero aji) such
that ϕji(aij) = aijaji. If Aij isn’t finitely generated, then Aii contains a non-finitely
generated left Aii-submodule Aijaji, where aji 6= 0. This gives a contradiction. So,
by Lemma 3.28, Aij ' Aii and Bij is left Noetherian, by Theorem 2.1. Applying
induction on m and Theorem 2.1, we see that A is left Noetherian. Consequently, A
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is a prime Noetherian SPSD-ring. By Proposition 3.26, A is a right order in a simple
Artinian ring Q = Mn(D). Suppose that every local idempotent ei from the above
decomposition 1 = e1 + . . . + em is local in Mn(D). Hence, the two decompositions:
1 = e1 + . . . + em and 1 = e11 + . . . + enn are conjugate. Consequently, m = n and
we can assume that the matrix idempotents are the local idempotents of A.

Denote Aii by Ai. We have Q =
n∑

i,j=1
eijD (D is a division ring, the eij , are matrix

units commuting with the elements from D) and A =
n∑

i,j=1
eijAij , where Aij ⊂ D.

All Ai are discrete valuations rings, AijAjk ⊂ Aik and Aij 6= 0 for i, j = 1, . . . , n (A
is prime and eiiAejj = Aij 6= 0).

We shall prove that Aij = dijAj = Aidij , where dij ∈ Aij ⊂ D. Indeed, let
Ri be the Jacobson radical of Ai and let πiAi = Aiπi = Ri. By corollary 3.3,
RiAij = AijRj . Take an element 0 6= dij ∈ Aij so that Aidij + RiAij = Aij . By
Nakayama’s Lemma Aij = dijAj = Aidij . Let T = diag(d−1

12 , d1
23, . . . , d

−1
n−1n, 1).

Consider TAT−1. One can assume that the following equalities d12 = . . . = dn−1n

hold in A, hence A1 = A2 = . . . = An. Write A1 = O, where O is a discrete
valuation ring (non-necessarily commutative). Consequently, Aij ⊃ O for i ≤ j.
From AijAji ⊂ O we have AijAji ⊃ Aji and Aji ⊂ O for j ≤ i. So, one can assume
that dji = παij , where M = πO = Oπ is the unique maximal ideal of O, αji ≥ 0
for j ≥ i. Obviously, dij = παij , where αij ≥ −αji. Hence, we obtain a ring of
the form 3.27. The converse assertion follows from the definition of a semimaximal
ring.

A ring A is called a tiled order if it is a prime Noetherian SPSD-ring with
nonzero Jacobson radical.

Remark. Let O be a discrete valuation ring. Then from Theorem 3.29 it follows
that each tiled order is of the form (1).

The ring O is embedded into a classical ring of fractions D, which is a division
ring. Therefore (14.5.1) denotes the set of all matrices (aij) ∈ Mn(D) such that
aij ∈ παijO = eiiAejj , where the e11, . . . , enn are the matrix units of Mn(D). It is
clear that Mn(D) is the classical ring of fractions of A.

According to the terminology of V. A. Jategaonkar and R. B. Tarsy, a ring
A ⊂ Mn(K), where K is the quotient field of a commutative discrete valuation
ring O, is called a tiled order over O if Mn(K) is the classical ring of fractions of A,
eii ∈ A and eiiAeii = O for i = 1, . . . , n, where the e11, . . . , enn are the matrix units
of Mn(K) (see [8]).

Denote by Mn(Z) the ring of all square n× n-matrices over the ring of integers
Z. Let E ∈ Mn(Z). We shall call a matrix E = (αij) an exponent matrix if
αij +αjk ≥ αik for i, j, k = 1, . . . , n and αii = 0 for i = 1, . . . , n. A matrix E is called
a reduced exponent matrix if αij + αji > 0 for i, j = 1, . . . , n.

We shall use the following notation: A = {O, E(A)}, where E(A) = (αij) is the
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exponent matrix of a ring A, i.e., A =
n∑

i,j=1
eijπ

αijO, where the eij are the matrix

units. If a tiled order is reduced, then αij + αji > 0 for i, j = 1, . . . , n, i 6= j, i.e.,
E(A) is reduced.

Let O be a discrete valuation ring. A right (resp. left) A-module M (resp. N)
is called a right (resp. left) A-lattice if M (resp. N) is a finitely generated free
O-module.

For example, all finitely generated projective A-modules are A-lattices.
Given a tiled order A we denote by Latr(A) (resp. Latl(A)) the category of right

(resp. left) A-lattices. We denote by Sr(A) (resp. Sl(A)) the partially ordered set
(by inclusion), formed by all A-lattices contained in a fixed simple Mn(D)-module
U (resp. in a left simple Mn(D)-module V ). Such A-lattices are called irreducible.

Note that every simple right Mn(D)-module is isomorphic to a simple Mn(D)-
module U with D-basis e1, . . . , en such that eiejk = δijek, where ejk ∈ Mn(D) are
the matrix units. Respectively, every simple left Mn(D)-module is isomorphic to a
left simple Mn(D)-module V with D-basis e1, . . . , en such that eijek = δjkei.

Let A = {O, E(A)} be a tiled order, and let U (resp. V ) be a simple right (resp.
left) Mn(D)-module as above.

Then any right (resp. left) irreducible A-lattice M (resp. N) lying in U (resp.
in V ) is an A-module with O-basis (πα

1 e1, . . . , π
αnen), while

{
αi + αij ≥ αj , for the right case;
αij + αj ≥ αi, for the left case.

(2)

Thus, irreducible A-lattices M can be identified with an integer-valued vec-
tor (α1, . . . , αn) satisfying (3.29). We shall write [M ] = (α1, . . . , αn) or M =
(α1, . . . , αn).

The order relation on the set of such vectors and the operations on them corre-
sponding to sum and intersection of irreducible lattices are obvious.

Remark. Obviously, two irreducible A-lattices M1 = (α1, . . . , αn) and M2 =
(β1, . . . , βn) are isomorphic if and only if αi = βi + z for i = 1, . . . , n and (a
fixed) z ∈ Z. We shall denote by (α1, . . . , αn)T the column vector with coordinates
α1, . . . , αn.

Note that the posets Sr(A) and Sl(A) do not depend on the choice of simple
Mn(D)-modules U and V .

Proposition 3.30. The posets Sr(A) and Sl(A) are anti-isomorphic distributive
lattices.

Proof. Since A is a semidistributive ring, Sr(A) (resp. Sl(A)) is a distributive lattice
with respect to the sum and intersection of submodules.

Let M = (α1, . . . , αn) ∈ Sr(A). We put M∗ = (−α1, . . . ,−αn)T ∈ Sl(A). If
N = (β1, . . . , βn)T ∈ Sl(A), then N∗ = (−β1, . . . ,−βn) ∈ Sr(A).
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Obviously, the operation * satisfies the following conditions:
1. M∗∗ = M ; 2. (M1 +M2)∗ = M∗

1 ∩M∗
2 ; 3. (M1∩M2)∗ = M∗

1 +M∗
2 in the right

case and there are analogous rules in the left case. Thus, the map ∗ : Sr(A) → Sl(A)
is the anti-isomorphism.

Remark. The map * defines a duality for irreducible A-lattices.
If M1 ⊂ M2, (M1,M2 ∈ Sr(A)), then M∗

2 ⊂ M∗
1 . In this case, the A-lattice M2

is called an overmodule of the A-lattice M1 (resp. M∗
1 is an overmodule of M∗

2 ).

3.4 Quivers of tiled orders

Recall that a quiver is called strongly connected if there is a path between any
two vertices. By convention, a one-point graph without arrows will be considered a
strongly connected quiver. A quiver Q without multiple arrows and multiple loops
is called simply laced, i.e., Q is a simply laced quiver if and only if its adjacency
matrix [Q] is a (0, 1)-matrix.

Theorem 3.31. Let A be a semiperfect two-sided Noetherian ring with the quiver
Q(A). Suppose the matrix [Q] is block upper triangular with permutationally irre-
ducible matrices B1, . . . , Bt on the main diagonal of the Peirce quiver of A. Then
there exists a decomposition of 1 ∈ A into a sum of mutually orthogonal idempotents:
1 = g1 + . . . gt such that

A =
t⊕

i,j=1

giAgj

is the two-sided Peirce decomposition with giAgj = 0 for j < i, moreover, the
adjacency matrices of the quivers Q(Ai) of the rings Ai = giAgi coincide with Bi,
i = 1, . . . , t.

Theorem 3.32. The quiver Q(A) of a right and left Noetherian indecomposable
semiprime semiperfect ring A is strongly connected.

A proof follows from Theorem 3.31 and Proposition 3.14. We use notations from
Theorem 3.31. If Q(A) isn’t strongly connected, then the ring (g1 + g2)A(g1 + g2)

isn’t semiprime. Indeed, for the nonzero ideal J =
(

0 g1Ag2

0 0

)
we have J2 = 0.

Let I be a two-sided ideal of a tiled order A. Obviously,

U =
n∑

i,j=1

eijπ
µijO,

where the eij are matrix units. Denote by E(I) = (µij) the exponent matrix of the
ideal I. Suppose that I and J are two-sided ideals of the ring A, E(I) = (µij), and
E(J) = (νij). It follows easily that E(IJ) = (δij), where δij = mink{µik + νkj}.
Theorem 3.33. The quiver Q(A) of a tiled order A over a discrete valuation ring O
is strongly connected and simply laced. If A is reduced, then Q(A) = E(R2)− E(R).
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Proof. Taking into account that A is a prime Noetherian semiperfect ring, it follows
from Theorem 3.32 that Q(A) is a strongly connected quiver. Let A be a reduced
order. Then [Q(A)] is a reduced matrix. We shall use the following notation:
E(A) = (αij); E(R) = (βij), where βii = 1 for i = 1, . . . , n and βij = αij for
i 6= j (i, j = 1, . . . , n); E(R2) = (γij), where γij = min16k6n{αik + βkj} for i, j =
1, . . . , n. Since, E(A) is reduced, we have αij + αji > 1 for i, j = 1, . . . , n, i.e.,
γii = min16k6n; k 6=i,j{αik + αki} = min16k6n, k 6==i{αik + αki}. Hence γii is equal to
1 or 2. If i 6= j, then βij = αij and γij = min{min16k6n,k 6=i,j{αik + αkj}, αij + 1},
i.e., γij equals αij or αij + 1.

To any irreducible A-lattice M with O-basis (πα1e1, . . . , π
αnen) associate the

n-tuple [M ] = (α1, . . . , αn). Let us consider

[Pi] = (αi1, . . . , 0, . . . , αin),

[PiR] = (αi1, . . . , 1, . . . , αin) = (βi1, . . . , βin).

Set [PiR
2] = (γi1, . . . , γin). Then −→q i = [PiR

2] − [PiR] is a (0, 1)-vector. Suppose
that the positions of the units of −→q j are j1, . . . , jm. In view of the annihilation
lemma, this means that PiR/PiR

2 = Uj1 ⊕ . . .⊕ Ujm . By the definition of Q(A) we
have exactly one arrow from the vertex i to each of j1, . . . , jm. Thus, the adjacency
matrix [Q(A)] is:

[Q(A)] = E(R2)− E(R).

The theorem is proved.

A tiled order A = {O, E(A)} is called a (0, 1)-order if E(A) is a (0, 1)-matrix.
Henceforth a (0, 1)-order will always mean a tiled (0, 1)-order over a discrete

valuation ring O.
With a reduced (0, 1)-order A we associate the partially ordered set

PA = {1, . . . , n}

with the relation 6 defined by i 6 j ⇔ αij = 0.
Obviously, (P, 6) is a partially ordered set (poset).
Conversely, to any finite poset P = {1, . . . , n} assign a reduced (0, 1)-matrix

Ep = (Aij) in the following way: Aij = 0 ⇔ i 6 j, otherwise Aij = 1. Then
A(P ) = {O, EP } is a reduced (0, 1)-order.

We give a construction which for a given finite partially ordered set P =
{p1, . . . , pn} yields a strongly connected quiver without multiple arrows and mul-
tiple loops.

Denote by Pmax (respectively Pmin) the set of the maximal (respectively mini-
mal) elements of P and by Pmax × Pmin their Cartesian product.

The quiver Q̃(P ) obtained from the diagram Q(P ) by adding the arrows σij :
i → j for all (pi, pj) ∈ Pmax ⊗ Pmin is called the quiver associated with the
partially ordered set P .

Obviously, Q̃(P ) is a strongly connected simply laced quiver.
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Theorem 3.34. The quiver Q(A(P )) coincides with the quiver Q̃(P ).

Proof. Recall that [Q(A(P ))] = E(R2) − E(R). Suppose that in Q(P ) there is
an arrow from s to t. This means that αst = 0 and there is no positive integer
k (k 6= s, t) such that αsk = 0 and αkt = 0. The elements βss and βtt of the
exponent matrix E(R) = (βij) are equal to 1. We have that E(R2) = (γij), where
γij = min16k6n(βsk +βkt) = 1. Thus, in [Q(A(P ))] at the (s, t)-th position we have
γst − βst = 1− αst = 1− 0 = 1. Consequently, Q(A(P )) has an arrow from s to t.

Suppose that p ∈ Pmax. This means that αpk = 1 for k 6= p. Therefore the entries
of the p-th row of E(R) are all 1, i.e., (βp1, . . . , βpp, . . . , βpn) = (1, . . . , 1, . . . , 1).

Similarly, if q ∈ Pmin, then the q-th column (β1q, . . . , βqq, . . . , βnq)T of E(R) is
(1, . . . , 1, . . . , 1)T . Hence, γpq = 2, βpq = 1, and Q(A(P )) has an arrow from p to q.
Consequently, we proved that Q̃(P ) is a subquiver of Q(A(P )).

We show now the converse inclusion. Suppose that γpq = 2. Then obviously

(βp1, . . . , βpp, . . . , βpq) = (1, . . . , 1, . . . , 1)

and
(β1q, . . . , βqq, . . . , βnq)T = (1, . . . , 1, . . . , 1)T .

Therefore p ∈ Pmax, q ∈ Pmin and there is an arrow, which goes from p to q.
Suppose γpq = 1 and βpq = 0. Consequently, p 6= q, βpq = αpq = 0 and p < q.

Since γpq = min16k6n(βpk + βkp), then βpk + βkq > 1 for k = 1, . . . , n. Thus, for
k 6= p, q we have βpk + βkq > 1, whence we obtain αpk + αkp > 1. Therefore, there
is no positive integer k (k 6= p, q) such that αpk = αkq = 0. This means that there
is an arrow from p to q in Q̃(P ), and this proves the opposite inclusion.
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[9] Këothe G. Verallgemeinerte Abelsche Gruppen mit Hyperkomplexen Operatorenring. Math.
Z., 1935, Vol. .39, 31–44.

[10] Kirichenko V.V. Generalized uniserial rings. Mat. sb., 1976, 99(141), No. 4, 559–581.



SERIAL RINGS AND THEIR GENERALIZATIONS 27

[11] Kirichenko V.V., Yaremenko Yu.V. Noetherian biserial rings. Ukr. Math. Journal,
1988, 40, No. 4, 435–440.

[12] Kirichenko V.V. Generalized uniserial rings. Preprint IM-75-1, Kiev, 1975.

[13] Kirichenko V.V. Semi-perfect semi-distributive rings. Algebras and Representation theory,
2000, 3, 81–98.

[14] Kirichenko V.V., Khibina M.A. Semi-perfect semi-distributive rings. Infinite Groups
and Related Algebraic Topics, Institute of Mathematics NAS Ukraine, 1993, 457–480
(in Russian).

[15] Muller B. J. On semi-peerfect rings, Illionns J. Math., 1970, 14, No. 3, 464–467.

[16] Nakayama T. On Frobeniusean algebras I, II, Ann. of Math., 1939, 40, 611–633; 1941, 42,
1–21.

[17] Nakayama T. Note on uniserial and generalized uniserial rings, Proc. Imp. Acad. Tokyo,
1940, 16, 285–289.

[18] Skornyakov L.A. When are all modules semi-chained? Mat. Zametki, 1969, 5, 173–182.

[19] Zavadskiy A.G., Kirichenko V.V. Semimaximal rings af finite type. Mat. Sbornik, 1977,
103(145), No. 3(7), 323–345.

Vladimir Kirichenko, Makar Plakhotnyk
Mech-Math. Dept., Kyiv Taras Shevchenko Univ.
Volodymyrska Str. 64, Kyiv, Ukraine, 01601

E-mail: VV.Kirichenko@gmail.com;
Makar Plakhotnyk@ukr.net

Received December 6, 2010


