
BULETINUL ACADEMIEI DE ŞTIINŢE
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Abstract. We introduce and describe convex quadrics in R
n and characterize them

as convex hypersurfaces with quadric sections by a continuous family of hyperplanes.
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1 Introduction and main results

Characterizations of ellipses and ellipsoids among convex bodies in the plane
or in space became an established topic of convex geometry on the turn of 20th
century. Comprehensive surveys on various characteristic properties of ellipsoids
in the Euclidean space R

n are presented in [9] and [13] (see also [10]). Similar
characterizations of unbounded convex quadrics, like paraboloids, sheets of elliptic
hyperboloids or elliptic cones, are given by a short list of sporadic results (see, e. g.,
[1, 2, 15, 16]). Furthermore, even a classification of convex quadrics in R

n for n ≥ 4
is not established (although it is used in [15, 16] without proof). Our goal here is
to introduce and to describe convex quadrics in R

n and to provide a characteristic
property of these hypersurfaces in terms of hyperplane sections.

In what follows, by a convex solid we mean an n-dimensional closed convex set
in R

n, distinct from the entire space (convex bodies are compact convex solids). As
usual, bdK and int K denote, respectively, the boundary and interior of a convex
solid K. A convex hypersurface (a surface if n = 3 or a curve if n = 2) is the
boundary of a convex solid. This definition includes a hyperplane or a pair of paral-
lel hyperplanes.

In a standard way, a quadric hypersurface (or a second degree hypersurface) in
R

n, n ≥ 2, is the locus of points x = (ξ1, . . . , ξn) that satisfy a quadratic equation

n
∑

i,k=1

aikξiξk + 2

n
∑

i=1

biξi + c = 0, (1)

where not all aik are zero. We say that a convex hypersurface S ⊂ R
n is a convex

quadric provided there is a real quadric hypersurface Q ⊂ R
n and a convex com-

ponent U of R
n \ Q such that S is the boundary of U . This definition allows us

to include into considerations convex hypersurfaces like sheets of elliptic cones and
sheets of elliptic hyperbolids, and not only ellipsoids and elliptic paraboloids.

The following theorem plays a key role in the description of convex quadrics.
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Theorem 1. The complement of a real quadric hypersurface Q ⊂ R
n, n ≥ 2, is the

disjoint union of four or fewer open sets; at least one of these components is convex

if and only if the canonical form of Q is given by one of the equations

a1ξ
2
1 + · · · + akξ

2
k = 1, 1 ≤ k ≤ n,

a1ξ
2
1 − a2ξ

2
2 − · · · − akξ

2
k = 1, 2 ≤ k ≤ n,

a1ξ
2
1 = 0,

a1ξ
2
1 − a2ξ

2
2 − · · · − akξ

2
k = 0, 2 ≤ k ≤ n,

a1ξ
2
1 + · · · + ak−1ξ

2
k−1 = ξk, 2 ≤ k ≤ n,

where all scalars ai involved are positive.

Corollary 1. A convex hypersurface S ⊂ R
n, n ≥ 2, is a convex quadric if and

only if S can be described in suitable Cartesian coordinates ξ1, . . . , ξn by one of the

conditions

a1ξ
2
1 + · · · + akξ

2
k = 1, 1 ≤ k ≤ n,

a1ξ
2
1 − a2ξ

2
2 − · · · − akξ

2
k = 1, ξ1 ≥ 0, 2 ≤ k ≤ n,

a1ξ
2
1 = 0,

a1ξ
2
1 − a2ξ

2
2 − · · · − akξ

2
k = 0, ξ1 ≥ 0, 2 ≤ k ≤ n,

a1ξ
2
1 + · · · + ak−1ξ

2
k−1 = ξk, 2 ≤ k ≤ n,

where all scalars ai involved are positive.

In what follows, a plane of dimension m in R
n is a translate of an m-dimensional

subspace. We say that a plane L properly intersects a convex solid K provided L
intersects both sets bdK and int K.

A well-known result of convex geometry states that the boundary of a convex
body K ⊂ R

n is an ellipsoid if and only if there is a point p ∈ int K such that all
sections of bdK by 2-dimensional planes through p are ellipses (see [3,12] for n = 3
and [7, pp. 91–92] for n ≥ 3). This result is generalized in [15] by showing that the
boundary of a convex solid K ⊂ R

n is a convex quadric if and only if there is a
point p ∈ intK such that all sections of bdK by 2-dimensional planes through p
are convex quadric curves. In this regard, we pose the following problem (solved
in [6, 11] for the case of convex bodies).

Problem 1. Given a convex solid K ⊂ R
n, n ≥ 3, and a point p ∈ R

n, is it true

that either bdK is a convex quadric or K is a convex cone with apex p provided

all proper sections of bdK by 2-dimensional planes through p are convex quadric

curves?

Kubota [12] proved that, given a pair of bounded convex surfaces in R
3, one

being enclosed by the other, if all planar sections of the bigger surface by planes
tangent to the second surface are ellipses, then the containing surface is an ellip-
soid. Independently, Bianchi and Gruber [4] established the following far-reaching
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assertion: If K is a convex body in R
n, n ≥ 3, and δ(u) is a continuous real-valued

function on the unit sphere Sn−1 ⊂ R
n such that for each vector u ∈ Sn−1 the

hyperplane H(u) = {x | x·u = δ(u)} intersects bdK along an (n − 1)-dimensional
ellipsoid, then bdK is an ellipsoid. Our second theorem extends this assertion to
the case of convex solids.

Theorem 2. Let K be a convex solid in R
n, n ≥ 3, and δ(u) be a continuous real-

valued function on the unit sphere Sn−1 ⊂ R
n such that for each vector u ∈ Sn−1

the hyperplane H(u) = {x | x ·u = δ(u)} either lies in K or intersects bdK along

an (n − 1)-dimensional convex quadric. Then bdK is a convex quadric.

2 Proof of Theorem 1

Let Q ⊂ R
n be a real quadric hypersurface. Choosing a suitable orthogonal

basis, we may suppose that Q has one of the following canonical forms:

Ak : ξ2
1 + · · · + ξ2

k = 1, 1 ≤ k ≤ n,

Bk,r : ξ2
1 + · · · + ξ2

k − ξ2
k+1 − · · · − ξ2

r = 1, 1 ≤ k < r ≤ n,

Ck : ξ2
1 + · · · + ξ2

k = 0, 1 ≤ k ≤ n,

Dk,r : ξ2
1 + · · · + ξ2

k − ξ2
k+1 − · · · − ξ2

r = 0, 1 ≤ k < r ≤ n,

Ek,r : ξ2
1 + · · · + ξ2

k − ξ2
k+1 − · · · − ξ2

r−1 = ξr, 1 ≤ k < r ≤ n.

First, we exclude the trivial cases Q = A1 (when Q is a pair of parallel hyperplanes)
and Q = Ck (when Q is an (n − k)-dimensional subspace). Furthermore, the proof
can be reduced to the case when Q has one of the forms An, Bk,n,Dk,n, Ek,n, since
otherwise Q is a cylinder generated by a lower-dimensional quadric of the same type.

We are going to express each of the hypersurfaces An, Bk,n, Dk,n, Ek,n as the set
of revolution of a respective lower-dimensional surface. To describe these revolutions,
choose any subspaces L1, L2, and L3 of R

n such that L1 ⊂ L2 ⊂ L3 and

dimL1 = m − 1, dim L2 = m, dim L3 = m + 1, 2 ≤ m ≤ n − 1.

Let M be the 2-dimensional subspace of L3 orthogonal to L1. Given a point y ∈ L2,
put My = y + M and denote by z the point of intersection of L1 and My (z is the
orthogonal projection of y on L1). Let Cy be the circumference in My with center z
and radius ‖y−z‖. We say that a set X ⊂ L3 is the set of revolution of a set Y ⊂ L2

about L1 within L3 provided X = ∪y∈Y Cy. A set Z ⊂ R
n is called symmetric about

a subspace N ⊂ R
n if for any point x ∈ Z and its orthogonal projection u on N , the

point 2u − x lies in Z.
In these terms, we formulate three lemmas (the first one being obvious). In what

follows, 〈e1, . . . , ek〉 means the span of vectors e1, . . . , ek.

Lemma 1. If Y is a subset of L2 and X is the set of revolution of Y about L1

within L3, then X is symmetric about L2 and any component of X is the set of

revolution of a suitable component of Y about L1 within L3.
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Lemma 2. If a set Y ⊂ L2 is symmetric about L1 and X is the set of revolution of

Y about L1 within L3, then X is a convex set if and only if Y is a convex set.

Proof. Without loss of generality, we may put L3 = R
n. Choose an orthonormal

basis e1, . . . , en for R
n such that

L1 = 〈e1, . . . , en−2〉 and L2 = 〈e1, . . . , en−1〉.

Clearly, x = (ξ1, . . . , ξn) belongs to X if and only if there is a point

y = (ξ1, . . . , ξn−2, ξ
′
n−1, 0) ∈ Y where ξ′n−1 =

√

ξ2
n−1

+ ξ2
n.

If X is convex, then Y is convex due to Y = X∩L2. Conversely, let Y be convex.
Choose any points a = (α1, . . . , αn) and b = (β1, . . . , βn) in X and a scalar λ ∈ [0, 1].
We intend to show that c = (1 − λ)a + λb ∈ X. Let

a′ = (α1, . . . , αn−2, α
′
n−1, 0), b′ = (β1, . . . , βn−2, β

′
n−1, 0),

and

c′ = ((1 − λ)α1 + λβ1, . . . , (1 − λ)αn−2 + λβn−2, (1 − λ)α′
n−1 + λβ′

n−1, 0)

be points in Y , where

α′
n−1 =

√

α2
n−1

+ α2
n, and β′

n−1 =
√

β2
n−1

+ β2
n.

Then a′, b′ ∈ Y and c′ = (1 − λ)a′ + λb′ ∈ Y due to convexity of Y . Because Y is
symmetric about L1, we have

((1 − λ)α1 + λβ1, . . . , (1 − λ)αn−2 + λβn−2, µ, 0) ∈ Y

for any scalar µ with |µ| ≤ (1 − λ)α′
n−1 + λβ′

n−1. Let

y = ((1 − λ)α1 + λβ1, . . . , (1 − λ)αn−2 + λβn−2, ρ, 0),

where

ρ =

√

(

(1 − λ)αn−1 + λβn−1

)2
+

(

(1 − λ)αn + λβn

)2
.

From αn−1βn−1 + αnβn ≤ α′
n−1β

′
n−1, we obtain ρ ≤ (1 − λ)α′

n−1 + λβ′
n−1, which

gives y ∈ Y . Clearly, the point

z = ((1 − λ)α1 + λβ1, . . . , (1 − λ)αn−2 + λβn−2, 0, 0)

is the orthogonal projection of y on L1. The equalities ‖c− z‖ = ‖y − z‖ = ρ imply
that c ∈ Cy ⊂ X. Hence X is convex.

Lemma 3. Within R
n, n ≥ 3, we have

1) An is the set of revolution of An−1 ⊂ 〈e1, . . . , en−1〉 about 〈e1, . . . , en−2〉,
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2) Bk,n is the set of revolution of Bk,n−1 ⊂ 〈e1, . . . , en−1〉 about 〈e1, . . . , en−2〉,
1 ≤ k ≤ n − 2,

3) Dk,n is the set of revolution of Dk,n−1 ⊂ 〈e1, . . . , en−1〉 about 〈e1, . . . , en−2〉,
1 ≤ k ≤ n − 2,

4) Bk,n is the set of revolution of Bk−1,n−1 ⊂ 〈e2, . . . , en〉 about 〈e3, . . . , en〉, 2 ≤
k ≤ n − 1,

5) Dk,n is the set of revolution of Dk−1,n−1 ⊂ 〈e2, . . . , en〉 about 〈e3, . . . , en〉,
2 ≤ k ≤ n − 1.

Proof. 1) Given a point x = (ξ1, . . . , ξn) ∈ An, put

y = (ξ1, . . . , ξn−2,
√

ξ2
n−1

+ ξ2
n, 0), z = (ξ1, . . . , ξn−2, 0, 0). (2)

Then y ∈ An−1 ⊂ 〈e1, . . . , en−1〉 and z is the orthogonal projection of y on
〈e1, . . . , en−2〉. From

‖x − z‖ = ‖y − z‖ =
√

ξ2
n−1

+ ξ2
n

we see that x ∈ Cy. So, An lies in the revolution of An−1 about 〈e1, . . . , en−2〉.
Conversely, if y = (η1, . . . , ηn−1, 0) is a point in An−1 ⊂ 〈e1, . . . , en−1〉 and z =
(η1, . . . , ηn−2, 0, 0) is the orthogonal projection of y on 〈e1, . . . , en−2〉, then any point
u from the circle Cy ⊂ y + 〈en−1, en〉 can be written as

u = (η1, . . . , ηn−2, γn−1, γn), where γ2
n−1 + γ2

n = η2
n−1.

Clearly, u ∈ An, which shows that An contains the set of revolution of An−1 about
〈e1, . . . , en−2〉.

Cases 2)–5) are considered similarly, where the points y and z are defined, re-
spectively, by (2) in cases 2) and 3), and by

y = (0,
√

ξ2
1

+ ξ2
2
, ξ3, . . . , ξn), z = (0, 0, ξ3, . . . , ξn)

in cases 4) and 5).

Proof of Theorem 1. Our further consideration is organized by induction on n. The
cases n = 2 and n = 3 follow immediately from the well-known properties of quadric
curves and surfaces. Suppose that n ≥ 4. Assuming that the conclusion of Theo-
rem 1 holds for all m < n, let the quadric hypersurface Q ⊂ R

n have one of the
forms An, Bk,n,Dk,n, Ek,n. We consider these forms separately.

Case 1. Let Q = An. By Lemma 3, An can be obtained from

A2 = {(ξ1, ξ2) | ξ2
1 + ξ2

2 = 1} ⊂ 〈e1, e2〉

by consecutive revolutions of Ai ⊂ 〈e1, . . . , ei〉 about 〈e1, . . . , ei−1〉 within the sub-
space 〈e1, . . . , ei+1〉, i = 2, . . . , n − 1. Since both components of 〈e1, e2〉 \ A2 are
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symmetric about the line 〈e1〉, Lemmas 1 and 2 imply that R
n \ An consists of two

components; one of them, given by ξ2
1 + · · · + ξ2

n < 1, is convex.

Case 2. Let Q = Bk,n, 1 ≤ k ≤ n− 1. If k = 1, then Lemma 3 implies that B1,n

can be obtained from

B1,2 = {(ξ1, ξ2) | ξ2
1 − ξ2

2 = 1} ⊂ 〈e1, e2〉

by consecutive revolutions of B1,i ⊂ 〈e1, . . . , ei〉 about 〈e1, . . . , ei−1〉 within the sub-
space 〈e1, . . . , ei+1〉, i = 2, . . . , n − 1. Since all three components of 〈e1, e2〉 \ B1,2

are symmetric about the line 〈e1〉, Lemmas 1 and 2 imply that R
n \B1,n consists of

three components; two of them, given, respectively, by

ξ1 >
√

ξ2
2

+ · · · + ξ2
n + 1 and ξ1 < −

√

ξ2
2

+ · · · + ξ2
n + 1,

are convex. If k ≥ 2, then Bk,n can be obtained from

B1,2 = {(ξk, ξk+1) | ξ2
k − ξ2

k+1 = 1} ⊂ 〈ek, ek+1〉

in two steps. First, we obtain Bk,k+1 ⊂ R
k+1 = 〈e1, . . . , ek+1〉 by consecutive revo-

lutions of Bi,i+1 ⊂ 〈ek+1−i, ek+2−i, . . . , ek+1〉 about 〈ek+2−i, . . . , ek+1〉 within 〈ek−i,
ek+1−i, . . . , ek+1〉, i = 1, 2, . . . , k − 1. The complement of

B2,3 = {(ξk−1, ξk, ξk+1) | ξ2
k−1 + ξ2

k − ξ2
k+1 = 1}

in 〈ek−1, ek, ek+1〉, consists of two components, both symmetric about 〈ek, ek+1〉.
Since none of these components is convex, Lemmas 1 and 2 imply that R

k+1\Bk,k+1

consists of two components, both symmetric about any k-dimensional coordinate
subspace of R

k+1, but none of them convex.

Second, we obtain Bk,n from Bk,k+1 by consecutive revolutions of Bk,j ⊂
〈e1, . . . , ej〉 about 〈e1, . . . , ej−1〉 within 〈e1, . . . , ej+1〉, j = k+1, . . . , n−1. As above,
R

n \ Bk,n consists of two components, none of them convex.

Case 3. Let Q = Dk,n, 1 ≤ k ≤ n − 1. If k = 1, then D1,n can be obtained from

D1,2 = {(ξ1, ξ2) | ξ2
1 − ξ2

2 = 0} ⊂ 〈e1, e2〉

by consecutive revolutions of D1,i ⊂ 〈e1, . . . , ei〉 about 〈e1, . . . , ei−1〉 within the sub-
space 〈e1, . . . , ei+1〉, i = 2, . . . , n − 1. The complement of

D1,3 = {(ξ1, ξ2, ξ3) | ξ2
1 − ξ2

2 + ξ2
3 = 0}

in 〈e1, e2, e3〉 consists of tree components, all symmetric about 〈e1, e2〉. Since two
of these components are convex, Lemmas 1 and 2 imply that R

n \ D1,n consists of
three components; two of them, given, respectively, by

ξ1 >
√

ξ2
2

+ · · · + ξ2
n and ξ1 < −

√

ξ2
2

+ · · · + ξ2
n,
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are convex.

Since the case k = n−1 is reducible to that of k = 1 (by reordering e1, e2, . . . , en

as en, en−1, . . . , e1), we may assume that 2 ≤ k ≤ n− 2. Then Dk,n can be obtained
from

D2,3 = {(ξk−1, ξk, ξk+1) | ξ2
k−1 + ξ2

k − ξ2
k+1 = 0} ⊂ 〈ek−1, ek, ek+1〉

in two steps. First, we obtain D2,n−k+2 ⊂ 〈ek−1, ek, . . . , en〉 by consecutive revolu-
tions of D2,i ⊂ 〈ek−1, ek, . . . , ei〉 about 〈ek−1, ek, . . . , ei−1〉 within 〈ek−1, ek, . . . , ei+1〉,
i = k+1, . . . , n−1. Clearly, 〈ek−1, ek, ek+1〉\D2,3 consists of three components; two
of them,

ξk+1 >
√

ξ2
k−1

+ ξ2
k and − ξk+1 <

√

ξ2
k−1

+ ξ2
k,

are convex and symmetric to each other about 〈ek−1, ek〉. Hence 〈ek−1, ek, ek+1,
ek+2〉 \ D3,4 consists of two components, none of them convex. Lemmas 1 and 2
imply that R

n−k+2 \ D2,n−k+2 consists of two components, none of them convex.

Next, we obtain Dk,n from D2,n−k+2 by consecutive revolutions of the sur-
face Di,n−k+i ⊂ 〈ek−i+1, . . . , en〉 about 〈ek−i+2, . . . , en〉 within 〈ek−i, . . . , en〉, i =
2, . . . , k − 1. As above, R

n \Dk,n consists of two components, none of them convex.

Case 4. Let Q = Ek,n, 1 ≤ k ≤ n− 1. Clearly, Ek,n is the graph of a real-valued
function ϕ on R

n−1 = 〈e1, . . . , en−1〉, given by

ξn = ϕ(ξ1, . . . , ξn−1) = ξ2
1 + · · · + ξ2

k − ξ2
k+1 − · · · − ξ2

n−1.

Hence R
n \ Ek,n has two components. The Hessian

(

∂2ϕ
∂ξi∂ξj

)

is a diagonal n × n-

matrix, with 2’s on its first k diagonal entries and −2’s on the other n − k − 1
diagonal entries. Therefore, ϕ is not concave, being convex if and only if k = n− 1.
So, R

n \ Ek,n has a convex component if and only if k = n − 1; this component is
given by ξ2

1 + · · · + ξ2
n−1 < ξn.

3 Proof of Theorem 2

In what follows, the origin of R
n is denoted by o. We say that a plane L supports

a convex solid K provided L intersects K such that L ∩ int K = ∅. The recession

cone of K is defined by

rec K = {e ∈ R
n | x + αe ∈ K for all x ∈ K and α ≥ 0}.

It is well-known that recK 6= {o} if and only if K is unbounded; K is called line-free

if it contains no line. Finally, rintM and rbdM denote the relative interior and the
relative boundary of a convex set M ⊂ R

n.

Under the assumptions of Theorem 2, we divide the proof into a sequence of
lemmas.

Lemma 4. If K contains a line, then bdK is a convex quadric cylinder.
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Proof. If l is a line in K, then K is the direct sum 〈u0〉 ⊕ (K ∩ H(u0)), where
〈u0〉 is the 1-dimensional subspace spanned by a unit vector u0 parallel to l. By
the assumption, bdK ∩ H(u0) is an (n − 1)-dimensional convex quadric. Hence
bdK = 〈u0〉 ⊕ (bdK ∩ H(u0)) is a convex quadric cylinder.

Due to Lemma 4, we may further assume that K is line-free. Then no hyperplane
lies in K; so, every hyperplane H(u), u ∈ Sn−1, properly intersects K.

Lemma 5. For any (n−2)-dimensional plane L supporting K, there is a hyperplane

H(u), u ∈ Sn−1, that contains L.

Proof. Let P be the 2-dimensional subspace orthogonal to L and π be the orthogonal
projection of R

n on P . Clearly, the intersection L ∩ P is a singleton, say {v}. The
set M = π(K) is convex, rint M = π(int K), and v ∈ rbdM . Choose an orientation
in P and denote by l a line in P that supports M at v. Let u0 be the unit vector in
P orthogonal to l such that u0 is an outward unit normal to M at v. Let m denote
the line through v orthogonal to l, and T be the open halfplane of P bounded by l
and disjoint from M .

Assume, for contradiction, that no line l(u) = P∩H(u), u ∈ P∩Sn−1, contains v.
In particular, the line l(u0) is distinct from l. Continuously rotating the unit vector
u from the initial position u0 in a positive direction along P ∩ Sn−1, we obtain a
continuous family of lines each of them missing v. This is possible only if the parallel
lines l(u0) and l(−u0) intersect m at points that belong to the opposite open halflines
with common apex v. Hence one of the lines l(u0), l(−u0) entirely lies in T , thus
missing M , which is impossible due to K ∩ H(u0) 6= ∅ and K ∩ H(−u0) 6= ∅.

We recall that a convex solid K ⊂ R
n is called strictly convex if bdK contains

no line segments. Furthermore, K is called regular provided any point x ∈ bdK
belongs to a unique hyperplane supporting K.

Lemma 6. If K is neither strictly convex nor regular, then bdK is a sheet of an

elliptic cone.

Proof. First, we are going to show that if K is not regular, then K is not strictly
convex. Indeed, suppose that K is not regular and choose a singular point x ∈ bdK.
Then there are distinct hyperplanes G1 and G2 both supporting K at x. Choose
a hyperplane G through G1 ∩ G2 supporting K and different from each of G1 and
G2. Let L ⊂ G be an (n − 2)-dimensional plane through x which is distinct from
G1 ∩ G2. By Lemma 5, there is a hyperplane H(u) containing L. Because H(u)
meets intK, the point x is singular for the (n − 1)-dimensional convex quadric
E(u) = bdK ∩H(u). According to Corollary 1, E(u) must be a sheet of an (n− 1)-
dimensional elliptic cone. Choosing a line segment in E(u), we conclude that K is
not strictly convex.

Now, assume that K is not strictly convex and choose a line segment [x, z] ⊂
bdK. By Lemma 5, there is a hyperplane H(u0) containing the line through x and z.
Since the (n− 1)-dimensional convex quadric E(u0) = bdK ∩H(u0) is line-free and
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contains a line segment, it should be a sheet of an (n− 1)-dimensional elliptic cone.
Let v be the apex of E(u0). Denote by h1 the halfline [v, x) and choose another
halfline h2 = [v,w) ⊂ E(u0) such that the 2-dimensional plane through h1 ∪ h2

intersects int K (this is possible since H(u0) meets intK). Let P2 be a hyperplane
supporting K with the property h2 ⊂ P2. By the above, h1 6⊂ P2.

Choose a halfline h with apex v tangent to K and so close to h1 that h 6⊂ P2. Let
P be a hyperplane through h which supports K. By Lemma 5, there is a hyperplane
H(u) that meets int K and contains h. Since the section E(u) = bdK ∩ H(u) is
bounded by both P and P2, the point v is singular for E(u). As above, E(u) is a
sheet of an (n − 1)-dimensional elliptic cone. Hence h ⊂ bdK. Varying h and h2,
we obtain by the argument above that every tangent halfline of K at v lies in bdK.
This shows that K is a convex cone with apex v. Finally, choose a hyperplane H(u1)
that properly intersects K along a bounded set (this is possible since K is line-free).
By the assumption, bdK ∩H(u1) is an (n− 1)-dimensional ellipsoid. So, bdK is a
sheet of an elliptic cone with apex v generated by bdK ∩ H(u1).

Lemma 7. Let K be strictly convex and regular. There are hyperplanes H(u1) and

H(u2), u1, u2 ∈ Sn−1, such that both sections bdK ∩ H(u1) and bdK ∩ H(u2) are

(n−1)-dimensional ellipsoids whose intersection is an (n−2)-dimensional ellipsoid.

Proof. Since K is line-free, there is a 2-dimensional subspace P such that the or-
thogonal projection, M , of K on P is a line-free closed convex set (see, e.g., [14]).
Choose any orientation in P . Denote by F the family of lines l(u) = P ∩ H(u),
u ∈ P ∩ Sn−1, such that M ∩ l(u) is bounded. Let l(u0) be one of these lines.
Put [v,w] = M ∩ l(u0). The line l(u0) cuts M into 2-dimensional closed convex
subsets, M ′ and M ′′, at least one of them, say M ′, being compact. If there is a
line l(u) ∈ F0 = F \ {l(u0)} which intersects the open line segment ]v,w[, then the
respective hyperplanes H(u) and H(u0) have the desired property.

Assume that no line l(u) ∈ F0 intersects ]v,w[. We state that no line l(u) ∈ F0

intersects rintM ′. Indeed, if a line l(u1) ∈ F0 intersected rintM ′, then, rotating u
about P ∩ Sn−1 from the initial position u1, we would find a line l(u2) supporting
M at v or at w (which is impossible since int K ∩H(u2) 6= ∅). In a similar way, no
line l(u) ∈ F0 intersects rintM ′′ if M ′′ is bounded.

This argument shows that M ′′ should be unbounded, since otherwise no line
l(u) ∈ F0 intersects rintM = rint M ′ ∪ rintM ′′∪ ]v,w[, which is impossible due to
int K∩H(u2) 6= ∅. Rotating u about P ∩Sn−1 in a positive direction from the initial
position u0, we observe that the lines l(u) ∈ F0 cover the whole unbounded branch of
rbdM ′′ with endpoint v. Rotating u about P ∩Sn−1 in a negative direction from the
initial position u0, we see that the lines l(u) ∈ F0 cover the second unbounded branch
of rbdM ′′, with endpoint w. This implies the existence of lines l(u3), l(u4) ∈ F0

such that the line segments M ∩ l(u3) and M ∩ l(u4) have a common interior point.
The respective (n−1)-dimensional ellipsoids bdK∩H(u3) and bdK∩H(u4) satisfy
the conclusion of the lemma.
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Lemma 8. Let K be strictly convex and regular. If bdK contains an open piece of

a real quadric hypersurface, then bdK is a convex quadric.

Proof. Let A be an open piece of a real quadric hypersurface Q ⊂ R
n which lies

in bdK. We state that bdK ⊂ Q. Assume, for contradiction, that bdK 6⊂ Q,
and choose a maximal (under inclusion) open piece B of bdK ∩ Q that contains
A. Let Ur(x) ⊂ R

n be an open ball with center x ∈ B and radius r > 0 such that
bdK ∩Ur(x) ⊂ B. Continuously moving x towards bdK \B, we find points x0 ∈ B
and z0 ∈ bdK \ B with the property bdK ∩ Ur(x0) ⊂ B and ‖x0 − z0‖ = r.

Let G be the hyperplane through z0 which supports K (G is unique since K is
regular). Denote by G the family of (n − 2)-dimensional planes L ⊂ G that contain
z0 and are distinct from the (n−2)-dimensional plane L0 ⊂ G tangent to Ur(x0)∩G
at z0. Due to Lemma 5, any plane L ∈ G lies in a respective hyperplane HL(u).
By continuity, there is a scalar t > 0 so small that the union of (n − 1)-dimensional
convex quadrics EL(u) = bdK ∩ HL(u), L ∈ G, is dense in the hypersurface t-
neighborhood bdK ∩ Ut(z0) of z0. Each EL(u) has a nontrivial strictly convex
intersection with B. Since EL(u) is a unique convex quadric containing EL(u) ∩ B,
we conclude that EL(u) ⊂ Q. By continuity,

bdK ∩ Ut(z0) ⊂ cl
(

∪
L∈G

EL(u)
)

⊂ Q.

Hence bdK ∩Ut(z0) ⊂ B, contrary to the choice of z0 ∈ bdK \B. Thus bdK ⊂ Q.
Because int K is a convex component of R

n \ Q, the hypersurface bdK is a convex
quadric.

Lemma 9. Let E1 and E2 be (n − 1)-dimensional ellipsoids in R
n, n ≥ 3, which

lie, respectively, in hyperplanes H1 and H2 of R
n such that E = E1 ∩ E2 is an

(n − 2)-dimensional ellipsoid. For any point v ∈ R
n \ (H1 ∪ H2), there is a quadric

hypersurface Q that contains {v} ∪ E1 ∪ E2.

Proof. Choose an orthonormal basis for R
n such that

E = {(0, 0, ξ3, . . . , ξn) | ξ2
3 + · · · + ξ2

n = 1},

E1 = {(ξ1, 0, ξ3, . . . , ξn) | (ξ1 − ρ1)
2 + ξ2

3 + · · · + ξ2
n = ρ2

1 + 1},

E2 = {(0, ξ2, ξ3, . . . , ξn) | (ξ2 − ρ2)
2 + ξ2

3 + · · · + ξ2
n = ρ2

2 + 1},

where ρ1 > 0 and ρ2 > 0. Then H1 and H2 are described by the equations ξ2 = 0
and ξ1 = 0, respectively. Consider the family of quadric hypersurfaces Q(µ) ⊂ R

n

given by

ξ2
1 + · · · + ξ2

n + 2µξ1ξ2 − 2ρ1ξ1 − 2ρ2ξ2 − 1 = 0,

where µ ∈ R. We have Ei = Hi ∩Q(µ), i = 1, 2. The point v = (ν1, . . . , νn) belongs
to R

n \ (H1 ∪ H2) if and only if ν1ν2 6= 0. Then v ∈ Q(µ0) provided

µ0 = (1 + 2ρ1ν1 + 2ρ2ν2 − ν2
1 − · · · − ν2

n)/(2ν1ν2).
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Lemma 10. If K is strictly convex and regular, then bdK contains an open piece

of a quadric hypersurface.

Proof. We proceed by induction on n (≥ 3). Let n = 3. By Lemma 7, there are
planes H(u1) and H(u2) such that both sections E1 = bdK ∩ H(u1) and E2 =
bdK ∩ H(u2) are ellipses, with precisely two points, say v and w, in common. The
set bdK\(E1∪E2) consists of four open pieces, at least three of them being bounded
because K is line-free. We choose any of these pieces if K is bounded, and choose
the piece opposite to the unbounded one if K is unbounded. Denote by Γ the chosen
piece. Let L be a plane through [v,w] that misses Γ and is distinct from both H(u1)
and H(u2). There is a neighborhood Ω ⊂ bdK of v such that for any point z ∈ Γ∩Ω,
the plane Lz through z parallel to L intersects each of the ellipses E1 and E2 at two
distinct points.

Choose a point z ∈ Γ ∩ Ω and denote by Pz the plane through z that supports
K (Pz is unique since K is regular), and by lz the line through z parallel to [v,w].
Let Fα, α > 0, be the family of planes through lz forming with Lz an angle of size
α or less. By continuity, the neighborhood Ω and the scalar α can be chosen so
small that for any given plane M ∈ Fα, every plane H(u) through the line M ∩ Pz

intersects each of the ellipses E1 and E2 at two distinct points. Furthermore, we
can find a scalar r > 0 such that for any plane H(u) trough z, the convex quadric
curve bdK ∩ H(u) intersects the closed curve bdK ∩ Sr(z) at two points, where
Sr(z) ⊂ R

3 is the sphere of radius r centered at z.

Due to Lemma 9, there is a quadric surface Q containing {z} ∪E1 ∪E2. By the
above, given a plane M ∈ Fα, every plane H(u) through the line M ∩ Pz intersects
bdK along an ellipse, which has five points in Q (namely, z and two on each ellipse
Ei, i = 1, 2). Since an ellipse is uniquely defined by five points in general position,
the ellipse E(u) = bdK ∩ H(u) lies in Q for any choice of a plane H(u) through
the line M ∩ Pz, where M ∈ Fα. This argument shows the existence of two open
“triangular” regions in bdK ∩ Q ∩ Ur(z) which have a common vertex z and are
bounded by a pair of planes M1,M2 ∈ Fα (see the shaded sectors of bdK ∩ Ur(z)
in the figure below). Hence the case n = 3 is proved.
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Suppose that the inductive statement holds for all m ≤ n − 1, n ≥ 4, and let
K ⊂ R

n be a line-free, strictly convex and regular solid that satisfies the hypothesis
of Theorem 2. Since the case when K is compact is proved in [4], we may assume
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that K is unbounded. Then the recession cone rec K contains halflines and is line-
free. Choose a halfline h ⊂ recK with endpoint o such that the (n− 1)-dimensional
subspace L ⊂ R

n orthogonal to h satisfies the condition L∩ recK = {o}. Then any
proper section of K by a hyperplane parallel to L is bounded (see, e.g., [14]).

Because the set ∆ = {δ(u)u | u ∈ L ∩ Sn−1} is compact, we can choose a
hyperplane L0 parallel to L and properly intersecting K so far from ∆ that every
hyperplane H(u), u ∈ L ∩ Sn−1, intersects rint (K ∩ L0). Since any section

bdK ∩ H(u) ∩ L0, u ∈ L ∩ Sn−1,

is an (n−2)-dimensional convex quadric, K∩L0 satisfies the hypothesis of Theorem 2
(with L0 instead of R

n). By the inductive assumption, rbd (K ∩ L0) contains a
relatively open piece of an (n − 1)-dimensional quadric, and Lemma 8 implies that
bdK ∩L0 is an (n− 1)-dimensional ellipsoid. Let G ⊂ L0 be an (n− 2)-dimensional
plane through the center of K ∩ L0. By continuity and the argument above, there
is an ε > 0 such that the hyperplanes L1 and L2 through G forming with L0 an
angle of size ε also intersect bdK along (n − 1)-dimensional ellipsoids E1 and E2,
respectively. Denote by N the hyperplane through G parallel to h, and choose a
point v ∈ (bdK ∩ N) \ (L1 ∪ L2) so close to L0 that the hyperplane L′

0 through v
parallel to L0 satisfies the following conditions (see the figure below):

a) bdK ∩ L′
0 is an (n − 1)-dimensional ellipsoid,

b) L′
0 intersects the relative interior of each of the (n− 1)-dimensional solid ellip-

soids K ∩ L1 and K ∩ L2.

qq
v

L0

L′
0

K

���������������

XXXXXXXXXXXXXXX
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By Lemma 9, there is a real quadric hypersurface Q that contains {v}∪E1 ∪E2.
Since the (n − 1)-dimensional ellipsoid E′

0 = bdK ∩ L′
0 is uniquely determined by

the set {v} ∪ (E1 ∩ L′
0) ∪ (E2 ∩ L′

0), we have E′
0 ⊂ bdK ∩ Q. By continuity, there

is a β > 0 such that any hyperplane L′ through G that forms with L′
0 an angle of

size β or less satisfies conditions a) and b) above; whence bdK ∩ L′ is an (n − 1)-
dimensional ellipsoid that lies in bdK ∩ Q. The union of such ellipsoids bdK ∩ L′

covers an open piece of Q that lies in bdK.

Summing up the statements of Lemmas 4–10, we conclude that bdK is a convex
quadric.
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