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Method for constructing one-point expansions

of a topology∗ on a finite set

and its applications

V. I.Arnautov, A.V.Kochina

Abstract. The article consists of two parts. In the first part we present an algorithm
which allows to receive, for any topology τ which is given on a set X from n elements,
all topologies on the set X

⋃
{y} each of which induces the topology τ on the set X.

In the second part (as an example) this algorithm is applied for calculation of the
number of topologies on the set Y each of which induces the discrete topology on the
set X.

Mathematics subject classification: 54A10.
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Introduction

The history of researches of the problem about the number of topologies on finite
sets and some results received by different authors are given in [1].

The works [1] and [2] contain an extended list of articles, which are devoted to
this problem.

At present the number of all topologies on sets having no more than 18 elements
is known. These numbers are given in the following table, which can be find in [1]
and [2].

c© V. I.Arnautov, A.V.Kochina, 2010
∗If Y = X

⋃
{y} then a topology τ̃ on the set Y is called one-point expansion of the topology

τ = τ̃ |X .
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The number of elements
of the set X

The number of topologies on the set X

0 1

1 1

2 4

3 29

4 355

5 6942

6 209527

7 9535241

8 642779354

9 63260289423

10 8977053873043

11 1816846038736192

12 519355571065774021

13 207881393656668953041

14 115617051977054267807460

15 88736269118586244492485121

16 93411113411710039565210494095

17 134137950093337880672321868725846

18 261492535743634374805066126901117203

This article adjoins the works in which this problem is studied. However, this
question is investigated from other point of view.

Namely, we consider a topology on a set from n + 1 elements as one-point ex-
pansion of a topology given on a set from n elements.

1 Justification of the algorithm

1.1. Theorem. Let τ be a topology on a finite set X and let τ̃ be such a topology
on Y = X

⋃
{y} that τ̃ |X = τ . Then there exist such V0 ∈ τ and U0 ∈ τ that the

following statements are valid:

1. U0 ⊆
⋂

V *V0,V ∈τ

V ,

2. τ̃ = {V ∈ τ |V ⊆ V0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U0}.

Proof. We take V0 =
⋃

Ṽ ∈τ̃ ,y /∈Ṽ

Ṽ and U0 =
⋂

Ṽ ∈τ̃ ,y∈Ṽ

(Ṽ \{y}).

As y /∈ V0 =
⋃

Ṽ ∈τ̃ ,y /∈Ṽ

Ṽ ∈ τ̃ , then V0 = V0 ∩X ∈ τ̃ |X = τ .

Besides

U0 =
⋂

Ṽ ∈τ̃ ,y∈Ṽ

(Ṽ \{y}) = (
⋂

Ṽ ∈τ̃ ,y∈Ṽ

Ṽ )\{y} = (
⋂

Ṽ ∈τ̃ ,y∈Ṽ

Ṽ ) ∩X ∈ τ̃ |X = τ.
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Prove the first statement.
Let V ′ ∈ τ and V ′ * V0. Then there exists Ũ ′ ∈ τ̃ such that V ′ = X

⋂
Ũ ′. As

V ′ * V0 =
⋃

Ṽ ∈τ̃ ,y /∈Ṽ

Ṽ , then y ∈ Ũ ′, and hence,

U0 =
⋂

Ṽ ∈τ̃ ,y∈Ṽ

(Ṽ \{y}) ⊆ Ũ ′ \ {y} = Ũ ′
⋂
X = V ′.

From arbitrariness of the set V ′ it follows that U0 ⊆
⋂

V *V0,V ∈τ

V .

The first the statement is proved.
Now prove the second statement, i.e.

τ̃ = {V ∈ τ |V ⊆ V0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U0}.

Let W̃ ∈ τ̃ . If y /∈ W̃ , then from the definition of V0 it follows that
W̃ ⊆ V0 =

⋃

Ṽ ∈τ̃ ,y /∈Ṽ

Ṽ , and as W̃ = W̃ ∩X ∈ τ̃ |X = τ , then

W̃ ∈ {V ∈ τ |V ⊆ V0} ⊆ {V ∈ τ |V ⊆ V0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U0}.

If y ∈ W̃ , then W̃\{y} = W̃ ∩ X ∈ τ̃ |X = τ . Besides,
W̃\{y} ⊇

⋂

Ṽ ∈τ̃ ,y∈Ṽ

(Ṽ \{y}) = U0. Then

W̃ = (W̃\{y}) ∪ {y} ∈ {U ∪ {y}|U ∈ τ, U ⊇ U0} ⊆

{V ∈ τ |V ⊆ V0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U0}.

So, we have shown that τ̃ ⊆ {V ∈ τ |V ⊆ V0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U0}.
Now let

W ∈ {V ∈ τ |V ⊆ V0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U0}.

If W ∈ {V ∈ τ |V ⊆ V0}, then there exists W̃ ∈ τ̃ such that W = W̃ ∩X.
As y /∈ V0, then V0 ⊆ X, and hence W = W̃ ∩X ⊇ W̃ ∩V0. As W ⊆ W̃ and

W ⊆ V0, then W ⊆ W̃ ∩ V0, and hence W = W̃ ∩ V0. Besides,
V0 =

⋃

Ṽ ∈τ̃ ,y /∈Ṽ

Ṽ ∈ τ̃ , and hence, W = W̃ ∩ V0 ∈ τ̃ .

If W ∈ {U ∪ {y}|U ∈ τ, U ⊇ U0} then there exists such U ′ ∈ τ that U ′ ⊇ U0

and U ′∪{y} = W . As U ′ ∈ τ = τ̃ |X then there exists W̃ ′ ∈ τ̃ such that U ′ = W ′∩X.
As U0 =

⋂

Ṽ ∈τ̃ y∈Ṽ

(Ṽ \{y}), then from finiteness of the set τ̃ it follows that

U0 ∪ {y} =
⋂

Ṽ ∈τ̃ ,y∈Ṽ

Ṽ ∈ τ̃ . Then y ∈ W̃ ′ ∪ U0 ∪ {y}, and

W = U ′ ∪ {y} = U ′ ∪ U0 ∪ {y} =

((W̃ ′ ∩X) ∪ (U0 ∪ {y}) ∩X) ∪ ((W̃ ′ ∪ (U0 ∪ {y})) ∩ {y}) =
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(W̃ ′ ∪ (U0 ∪ {y})) ∩ (X ∪ {y}) = W̃ ′ ∪ (U0{y}) ∈ τ̃ .

Therefore, τ̃ ⊇ {V ∈ τ |V ⊆ V0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U0}, and hence,
τ̃ = {V ∈ τ |V ⊆ V0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U0}.

The theorem is completely proved.

1.2. Theorem. Let τ be a topology on a set X and V0 ∈ τ . Consider a set U0 ∈ τ
such that U0 ⊆

⋂
V ∈τ,V *V0

V (we assume that
⋂

V ∈∅

V = X). Then

τ̃(V0, U0) = {V ∈ τ |V ⊆ V0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U0}

is a topology on the set Y = X
⋃
{y}, and τ̃(V0, U0)|X = τ .

Proof. Prove first that τ̃(V0, U0) is a topology on the set Y .
As ∅ ⊆ V0, then ∅ ∈ {V ∈ τ |V ⊆ V0} ⊆ τ̃ . Besides, as X ∈ τ and U0 ⊆ X, then

X ∈ {U |U ∈ τ, U ⊇ U0}, and hence, Y = X ∪ {y} ∈ τ̃ .
Now let A,B ∈ τ̃ , then:
– If A,B ∈ {V ∈ τ |V ⊆ V0}, then A ∩ B ∈ τ and A ∩ B ⊆ V0, and hence,

A ∩B ∈ τ̃ .
– If A ∈ {V ∈ τ |V ⊆ V0} and B ∈ {U ∪ {y}|U ∈ τ, U ⊇ U0}, then A ∈ τ and

B\{y} ∈ τ , and as A ⊆ V0 and B\{y} ⊇ U0, then A ∩ (B\{y}) ∈ τ . As y /∈ A, then
A ∩B = A ∩ (B\{y}) ⊆ V0, and hence, A ∩B ∈ τ̃ .

It is similarly proved that A ∩B ∈ τ̃ if B ∈ {V ∈ τ |V ⊆ V0} and

A ∈ {U ∪ {y}|U ∈ τ, U ⊇ U0}.

– If A,B ∈ {U ∪ {y}|U ∈ τ, U ⊇ U0}, then A\{y} ∈ τ , B\{y} ∈ τ and A\{y} ⊇
U0, B\{y} ⊇ U0. As τ is a topology on the set X, then (A\{y}) ∩ (B\{y}) ∈ τ .
Besides, as (A\{y}) ∩ (B\{y}) ⊇ U0, then A ∩ B ∈ {U ∪ {y}|U ∈ τ, U ⊇ U0} ⊆ τ̃ ,
and hence A ∩B ∈ τ̃ .

So, we have checked that A ∩B ∈ τ̃ , for any A,B ∈ τ̃ .
Now let {Aγ | γ ∈ Γ} ⊆ τ̃ . If Aγ ∈ {V ∈ τ |V ⊆ V0} for any γ ∈ Γ, then⋃

γ∈Γ
Aγ ∈ τ and

⋃
γ∈Γ

Aγ ⊆ V0, and hence
⋃

γ∈Γ
Aγ ∈ τ̃ .

If there exists γ0 ∈ Γ such that Aγ0 /∈ {V ∈ τ |V ⊆ V0}, then Aγ0 ∈
{U ∪ {y}|U ∈ τ, U ⊇ U0}, and hence, Aγ0 = Uγ0 ∪ {y}, where Uγ0 ∈ τ . Then⋃
γ∈Γ

Aγ ⊇ Aγ0 ⊇ U0 and (
⋃

γ∈Γ
Aγ)\{y} =

⋃
γ∈Γ

(Aγ\{y}).

Let γ ∈ Γ. If Aγ ∈ {V ∈ τ |V ⊆ V0} ⊆ τ , then Aγ\{y} = Aγ ∈ τ and if Aγ /∈
{V ∈ τ |V ⊆ V0}, then there exists Vγ ∈ τ such that Vγ ⊇ U0 and Aγ = Vγ ∪ {y}.
But then Aγ\{y} = Vγ ∈ τ .

So, we have proved that Aγ\{y} ∈ τ for any γ ∈ Γ. Having put Vγ = Aγ\{y}
for those γ ∈ Γ, receive

⋃

γ∈Γ

Aγ = Aγ0 ∪ (
⋃

γ /∈Γ,γ 6=γ0

Aγ) = (Vγ0 ∪ {y}) ∪ (
⋃

γ /∈Γγ 6=γ0

Aγ\{y}) =
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Vγ0 ∪ (
⋃

γ∈Γγ 6=γ0

Vγ)) ∪ {y} = (
⋃

γ∈Γ

Vγ) ∪ {y}.

As
⋃

γ∈Γ
Vγ ∈ τ and

⋃
γ∈Γ

Vγ ⊇ U0, then,
⋃

γ∈Γ
Aγ ∈ τ̃ .

So, we have proved that τ̃(V0, U0) is a topology on the set Y .

Now prove that τ̃(V0, U0)|X = τ .

Let U ∈ τ̃(V0, U0)|X . Then there exists Ũ ∈ τ̃(V0, U0) such that U = Ũ ∩X. If
Ũ ∈ {V ∈ τ |V ⊆ V0}, then Ũ ∈ τ and y /∈ Ũ . Then U = Ũ ∩X = Ũ ∈ τ .

Now let Ũ ∈ {U ∪ {y}|U ∈ τ, U ⊇ U0}. Then Ũ\{y} ∈ τ , and hence,
U = Ũ ∩ X = Ũ\{y} ∈ τ . From arbitrariness of U it follows that we have the
inclusion τ̃(V0, U0)|X ⊆ τ . Now show the inverse inclusion.

Let V ′ ∈ τ . Two cases are possible:
1) V ′ ⊆ V0;

2) V ′ * V0.
If V ′ ⊆ V0, then V ′ ∈ {V ∈ τ |V ⊆ V0} ⊆ τ̃(V0, U0), and y /∈ V ′. Then

V ′ = V ′ ∩X ∈ τ̃(V0, U0)|X .

If V ′ * V0, then V ′ /∈ {V ∈ τ |V ⊆ V0}, and according to the condition of the
theorem we have that V ′ ⊇

⋂
V ∈τ,V *V0

V ⊇ U0. Then, from the definition of the

topology τ̃(V0, U0) it follows that V ′ ∪ {y} ∈ τ̃(V0, U0).

Besides, as V ′ ⊆ X, then V ′ = (V ′ ∪ {y}) ∩X ∈ τ̃(V0, U0)|X . From arbitrariness
of V ′ it follows that τ̃(V0, U0)|X ⊇ τ , and hence, τ̃(V0, U0)|X = τ .

The theorem is completely proved.

1.3. Theorem. Let X be a finite set, τ̃ and τ̃ ′ be such topologies on the set
Y = X

⋃
{y} that τ̃ |X = τ̃ ′|X = τ . If V0, U0, V

′
0 , U

′
0 ∈ τ , τ̃ = {V ∈ τ |V ⊆ V0} ∪

{U ∪ {y}|U ∈ τ, U ⊇ U0} and τ̃ ′ = {V ∈ τ |V ⊆ V ′
0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U ′

0},
then τ̃ 6= τ̃ ′ if and only if (V0, U0) 6= (V ′

0 , U
′
0).

Proof. Necessity. We assume the contrary, i.e. τ̃ 6= τ̃ ′, but (V0, U0) = (V ′
0 , U

′
0).

Then V0 = V ′
0 and U0 = U ′

0, hence,

τ̃ = {V ∈ τ |V ⊆ V0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U0} =

= {V ∈ τ |V ⊆ V ′
0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U ′

0} = τ̃ ′.

Receive a contradiction with the assumption that τ̃ 6= τ̃ ′.

Hence (V0, U0) 6= (V ′
0 , U

′
0).

Sufficiency. We assume the contrary, i.e. τ̃ = τ̃ ′ and (V0, U0) 6= (V ′
0 , U

′
0).

If V0 6= V ′
0 , then V0 * V ′

0 , or V ′
0 * V0.

We assume, for definiteness, that V0 * V ′
0 . Then V0 ∈ {V ∈ τ |V ⊆ V0} ⊆ τ̃ and

V0 /∈ {V ∈ τ |V ⊆ V ′
0}.

As any set from {U ∪ {y}|U ⊇ U ′
0} contains y and y /∈ V0, then

V0 /∈ {V ∈ τ |V ⊆ V ′
0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U0} = τ̃ ′,
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and hence, in this case τ̃ 6= τ̃ ′.
If U0 6= U ′

0, then U0 * U ′
0, or U ′

0 ⊆ U0.
We assume, for definiteness, that U0 * U ′

0. Then U ′
0 ∪ {y} ∈ {U ∪ {y}|U ∈

τ, U ⊇ U ′
0} ⊆ τ̃ ′, and U ′

0 ∪ {y} /∈ {U ∪ {y}|U ∈ τ, U ⊇ U0}. As any set from
{V ∈ τ |V ⊆ V0} does not contain y and y ∈ U ′

0 ∪ {y}, then

U ′
0 ∪ {y} /∈ {V ∈ τ |V ⊆ V0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U0} = τ̃ ,

and hence, τ̃ 6= τ̃ ′ in this case, too.
Therefore τ̃ 6= τ̃ ′.
The theorem is completely proved.

1.4. Remark. We notice that if τ̃ and τ̃ ′ are such topologies on the set Y = X
⋃
{y}

that τ̃ |X 6= τ̃ ′|X , then τ̃ 6= τ̃ ′. Therefore any extensions on the set Y of various
topologies set on the set X will be various.

So, from Theorems 1.2 and 1.3 the following algorithm for the construction of
all topologies on the set Y = X

⋃
{y} follows, knowing all topologies on the finite

set X.

1.5. Algorithm.

1. We choose any topology τ0 set on the set X;

2. We choose arbitrarily a subset V0 ∈ τ0;

3. We choose arbitrarily such subset U0 ∈ τ0 that U0 ⊆
⋂

V ∈τ0,V *V0

V (consider

that
⋂

V ∈∅

V = X);

4. We determine the topology

τ̃(V0, U0) = {V ∈ τ |V ⊆ V0} ∪ {U ∪ {y}|U ∈ τ, U ⊇ U0}.

2 Application of the algorithm for calculation of the number

of some topologies

2.1. Definition. As it is usual, a partially ordered set (X,≤) is called a lattice if
for any elements a, b ∈ X there exists inf{a, b} and sup{a, b}.

2.2. Definition. Lattices (X,≤) and (Y,≤) are called:
– isomorphic if there exists such a bijection f : X → Y that f(inf{a, b}) =

inf{f(a), f(b)} and f(sup{a, b}) = sup{f(a), f(b)}, for any elements a, b ∈ X;
– antiisomorphic if there exists such a bijection f : X → Y that f(inf{a, b}) =

sup{f(a), f(b)} and f(sup{a, b}) = inf{f(a), f(b)}, for any elements a, b ∈ X.

2.3. Definition. If (X, τ1) and (Y, τ2) are topological spaces then the topologies τ1
and τ2 are called:
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– lattice isomorphic if the lattices (τ1,⊆) and (τ2,⊆) are isomorphic;
– lattice antiisomorphic if the lattices (τ1,⊆) and (τ2,⊆) are antiisomorphic.

2.4. Remark. If X is a finite set, (X, τ) is a topological space and τ ′ =
{X \ V

∣∣V ∈ τ}, it is easy to notice that τ ′ is a topology on the set X which is
lattice antiisomorphic with the topology τ .

2.5. Proposition. Let X be a finite set and Y = X
⋃
{y}. If τ is a topology on

the set X and τ ′ = {X \ V
∣∣V ∈ τ}, then τ ′ is a topology on the set X and τ and τ ′

have the same number of expansions on the set Y .

Proof. Let Ω and Ω′ be sets of all expansions of topologies τ and τ ′ on the set Y ,
accordingly. Define the following mapping ψ : Ω → Ω′:

map each topology τ̂ ∈ Ω onto the topology ψ(τ̂ ) = τ̂ ′ = {Y \ V̂
∣∣V̂ ∈ τ̂}. As

ψ(τ̂ )
∣∣
X

= {(Y \ V̂ )
⋂
X

∣∣V̂ ∈ τ̂} = {X \ (V̂
⋂
X)

∣∣V̂ ∈ τ̂} = {X \ V )
∣∣V ∈ τ} = τ ′,

then ψ(τ̂ ) ∈ Ω′.
If τ̂ ′ ∈ Ω′, then τ̂ = {Y \ V

∣∣V ∈ τ̂ ′} ∈ Ω and ψ(τ̂ ) = τ̂ ′, and hence, ψ : Ω → Ω′

is a surjective mapping.
Besides if τ̂1 6= τ̂2, then

ψ(τ̂1) = {Y \ V
∣∣V ∈ τ̂1} 6= {Y \ U

∣∣U ∈ τ̂1} = ψ(τ̂2),

and hence, ψ : Ω → Ω′ is injective mapping, i.e. ψ : Ω → Ω′ is an bijective mapping.
The proposition is completely proved.

2.6. Theorem. Let τ ′ and τ ′′ be such topologies on finite sets X and Z, accordingly,
that they are lattice isomorphic or lattice antiisomorphic. If X̃ = X

⋃
{y} and

Z̃ = Z
⋃
{y}, then the topologies τ ′ and τ ′′ have the same number of expansions on

the sets X̃ and Z̃, accordingly.

Proof. First we consider the case when the topologies τ ′ and τ ′′ are lattice isomor-
phic. Let f : (τ ′,⊆) → (τ ′′,⊆) be a corresponding lattice isomorphism.

If Ω1 = {(V ′, U ′)
∣∣V ′ ∈ τ ′, U ′ ∈ τ ′, and U ′ ⊆

⋂
V ∈τ ′, V *V ′

V } and Ω2 =

{(V ′′, U ′′)
∣∣V ′′ ∈ τ ′′, U ′′ ∈ τ ′′, and U ′′ ⊆

⋂
W∈τ ′′, W*V ′′

W}, then we define the map-

ping Ψ : Ω1 → Ω2 as follows: Ψ((V ′, U ′)) = (f(V ′), f(U ′)).
As f : (τ ′,⊆) → (τ ′′,⊆) is a lattice isomorphism, then U ⊆ V if and only if

f(U) ⊆ f(V ) for any U, V ∈ τ1.
If (V ′, U ′) ∈ Ω1, then U ′ ⊆

⋂
V ∈τ ′, V *V ′

V , and hence,

f(U ′) ⊆
⋂

V ∈τ ′, V *V ′

f(V ) =
⋂

W∈τ ′′, W*f(V ′)

W,

i.e. Ψ((V ′, U ′)) = (f(V ′), f(U ′)) ∈ Ω2.
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The injectivity of the mapping Ψ : Ω1 → Ω2 follows from the injectivity of the
mapping f : τ ′ → τ ′′.

If (V ′′, U ′′) ∈ Ω2, then U ′′ ⊆
⋂

W∈τ ′, W*V ′′

W . Then

f−1(U ′′) ⊆
⋂

W∈τ ′′, W*V ′′

f−1(W ) =
⋂

V ∈τ ′, V *f−1(V ′)

V,

and hence, (f−1(V ′′), f−1(U ′′)) ∈ Ω1, and

Ψ((f−1(V ′′), f−1(U ′′))) = (f(f−1(V ′′)), f(f−1(U ′′))) = (V ′′, U ′′).

Therefore, Ψ : Ω1 → Ω2 is a bijection.
So, we have proved that the sets Ω1 and Ω2 have the same number of elements.
From Theorems 1.1, 1.2 and 1.3 it follows that the number of expansions of the

topology τ ′ on the set X̃ is equal to the number of elements of the set Ω1, and the
number of expansions of the topology τ ′′ on the set Z̃ is equal to the number of
elements of the set Ω2. Hence the number of expansions of the topology τ ′ on the
set X̃ is equal to the number of expansions of the topology τ ′′ on the set Z̃.

The theorem is proved for the case when topologies τ ′ and τ ′′ are lattice isomor-
phic.

If the topologies τ ′ and τ ′′ are lattice antiisomorphic, then it is easy to notice
that the topology τ ′1 = {X \ V

∣∣V ∈ τ ′} will be lattice isomorphic to topology τ ′′.
Then, according to proved above, the topologies τ ′1 and τ ′′ have the same number

of expansions on the sets X̃ and Z̃, accordingly. According to Proposition 2.5, the
topologies τ ′1 and τ ′ have the same number of expansions on the sets X̃, and hence,

the topologies τ ′1 and τ ′′ have the same number of expansions on the sets X̃ and Z̃,
accordingly.

The theorem is completely proved.

2.7. Theorem. 1 If X is a set from n elements and Y = X
⋃
{y}, then on the set

Y precisely 2n+1 + n − 1 topologies are present, each of which induces the discrete
topology on the set X.

Proof. If τ is the discrete topology on the set X, then τ = {V
∣∣V ⊆ X}. For

any subset V0 ∈ τ we consider the sets Ũ(V0) = {U ∈ τ
∣∣U ⊆

⋂
V ∈τ,V *V0

V } and

Ω(V0) = {(V0, U)
∣∣U ∈ Ũ(V0)}.

The following 3 cases are possible:

1. V0 = X;

2. V0 ∈ {X \ {x}
∣∣x ∈ X};

1The proof of this theorem given below shows the way of using the mentioned above algorithm
for calculation of one-point expansions for some topologies. Though, other and probably shorter
proofs of this theorem can be. The referee kindly informed authors of this work about one of such
proofs.
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3. V0 ∈ τ \ ({X}
⋃
{X \ {x}

∣∣x ∈ X}).

Consider each of these cases separately.

1. Let V0 = X. As {V ∈ τ
∣∣V * V0 = X} = ∅, then the set

Ũ(X) = {U ∈ τ
∣∣U ⊆

⋂

V ∈∅

V } = {U ∈ τ
∣∣U ⊆ X} = τ,

contains precisely 2n subsets of the set X. Then the set Ω(X) = {(X,U)
∣∣U ∈ Ũ(X)}

contains precisely 2n elements.

2. Let V0 ∈ {X \ {x}
∣∣x ∈ X}. As {V ∈ τ

∣∣V * X \ {x}} = {A ⊆ X
∣∣x ∈ A},

then the set

Ũ(X \ {x}) = {U ∈ τ
∣∣U ⊆

⋂

V ∈{A⊆X
∣∣x∈A}

V } = {U ∈ τ
∣∣U ⊆ {x}} = {∅, {x}}

contains precisely 2 subsets of the set X. Then the set

Ω(X \ {x}) = {(X \ {x}, U)
∣∣U ∈ Ũ(X \ {x})

contains precisely 2 elements for any x ∈ X, and hence the set
⋃

x∈X
Ω(X \ {x})

contains precisely 2 · n elements.

3. Now let V0 ∈ τ \ ({X}
⋃
{X \ {x}

∣∣x ∈ X}). Then {x1} * V0 and {x2} * V0

for the some elements x1, x2 ∈ X, and hence,

Ũ(V0) = {U ∈ τ
∣∣U ⊆

⋂

V *V0

V } ⊆ {x1}
⋂

{x2} = {∅}

contains only ∅. Therefore the set Ω(V0) = {(V0, ∅)} contains precisely 1 element for
any V0 ∈ τ \ ({X}

⋃
{X \ {x}

∣∣x ∈ X}). Then the set
⋃

V0∈τ\({X}
⋃
{X\{x}

∣∣x∈X})

Ω(V0)

contains precisely 2n − 1 − n elements.
From Theorems 1.1, 1.2 and 1.3 it follows that the number of topologies on the

set Y = X
⋃
{y} each of which induces the topology τ on the set X is equal to the

number of elements of the set

{(V,U)
∣∣V,U ∈ τ, U ⊆

⋂

W∈τ,W*V

W} =

Ω(X)
⋃

Ω(X \ {x})
⋃( ⋃

V0∈τ\({X}
⋃
{X\{x}

∣∣x∈X})

Ω(V0)
)
,

i.e. it is equal to 2n + 2 · n+ 2n − 1 − n = 2n+1 + n− 1.
The theorem is completely proved.
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