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On quasiidenties of torsion free nilpotent loops

Alexandru Covalschi

Abstract. It is proved that any loop which contains an infinite cyclic group and
does not contain infinite number of relative prime periodic elements has an infinite
and independent basis of quasiidentities. In particular, any torsion free nilpotent loop
has an infinite and independent basis of quasiidentities.
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One of the classical directions of investigation of algebraic systems in their general
theory is the quasivariety theory of algebraic systems, founded by A.I. Malcev [1–3].

This paper studies the problem of existence of an independent basis of quasi-
identities for certain loops. It is proved that if L is a loop which contains an infinite
cyclic group and does not contain an infinite number of prime periodic elements,
then the quasiidentities of L have an independent and infinite basis of quasiidenti-
ties. In particular, every torsion-free nilpotent loop has an infinite and independent
basis of quasiidentities and the quasivariety generated by it has infinity of coverages.

1 Main notions and denotations

A quasigroup is an algebra with the basic set Q and with three basic binary
operations ·, /, \ defined on it which satisfy the identities

x · (x\y) = x\(x · y) = (y/x) · x = (y · x)/x = y.

If a quasigroup Q has such an element e that e · x = x · e = x for all x ∈ Q, then
Q is called a loop and e is called its unity (see [4] or [5]). Therefore, we consider a
loop Q as an algebra with three basic operations of the quasigroup Q and one null
basic operation e.

Let a be a non-unity element of a loop L. If some product of m factors, each
equal to the element a, is equal to the unity element e ∈ L , then a is called relative

m-periodic. In particular, if m is a prime number then the relative m-periodic
element a is called relative prime periodic. If the loop L does not contain a periodic
element, then they say that it is torsion free.
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A quasiidentity (quasigroupoid quasiidentity ) of variables x1, . . . , xn is a uni-
versal formula which has the form

(∀x1 . . . xn)&i∈Iui(x1, . . . , xn) = u′i(x1, . . . , xn) ⇒

u(x1, . . . , xn) = u′(x1, . . . , xn),

where I is a finite set of indices, ui, u
′

i, u, u
′ are quasigrupoid words of variables

x1, . . . , xn. When writing quasiidenties, the symbols ∀x1 . . . xn are usually omitted.
As the equality of two words u = v in the loop class is equivalent to u/v = e, the
quasiidentities written in the loop signature are studied as &i∈Iui = e⇒ u = e .

A quasigroup class formed only of quasigroups in which the quasiidentities of a
given system of quasiidentities are true is called a quasivariety.

A system Σ of quasiidentities is called independent if no quasiidentity of Σ results
from all the rest. A basis of the system Σ is such a subsystem Σ′ ⊆ Σ that any
quasiidentity from Σ results from the overall of the quasiidentities from Σ′.

A quasivariety N is called a coverage of quasivariety M if M ⊂ N and for any
quasivariety K the inclusions M ⊆ K ⊂ N imply M = K.

As usual, prime numbers are denoted by pi, i ∈ Σ = {0, 1, 2, . . .}, the infinite
cyclic group - by Z, the cyclic group of order pi - by Zpi

, the quasivariety generated
by a quasigroup Q - by qQ. The set of all natural numbers will be denoted by N .

2 The basic results

We shall say that the quasiidentity Φ(x1, . . . , xn) = &m
i=1ui(x1, . . . , xn) =

u′i(x1, . . . , xn) ⇒ u(x1, . . . , xn) = u′(x1, . . . , xn)) is compatible in the quasigroup
Q if the formula ϕ(x1, . . . , xn) = (&m

i=1ui = u′i&u = u′) is compatible in Q, that is,
there are such values x1 = a1, . . . , xn = an of the variables in Q that the following
equalities are true:

u1(a1, . . . , an) = u′1(a1, . . . , an), . . . , um(a1, . . . , an) = u′m(a1, . . . , an),

u(a1, . . . , an) = u′(a1, . . . , an).

Lemma 1. The conjunction of a finite number of quasiidentities compatible in any

quasigroup is equivalent to one quasiidentity.

Proof. It is sufficient to prove the lemma for the conjunction of two quasiidentities
ϕ1 and ϕ2. Let the following equalities be:

ϕ1 = (&m
i=1ui(x1, ..., xk) = u′i(x1, . . . , xk) ⇒ u(x1, . . . , xk) = u′(x1, . . . , xk));

ϕ2 = (&m
i=1vi(y1, . . . , ys) = v′i(y1, . . . , ys) ⇒ v(y1, . . . , ys) = v′(y1, . . . , ys)).

We shall show that the formula ϕ1 & ϕ2 is equivalent to the quasiidentity
ϕ = (&m

i=1ui(x1, . . . , xk) = u′i(x1, . . . , xk) & &m
j=1vj(y1, . . . , ys) = v′j(y1, . . . , ys) ⇒

u(x1, . . . , xk)v(y1, . . . , ys) = u′(x1, . . . , xk)v
′(y1, . . . , ys)).
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Indeed, let the formula ϕ1 & ϕ2 be true in the quasigroup Q. We assume that the
left side of the quasiidentity ϕ is true inQ for the substitutions xi → ai (i = 1, . . . , k),
yj → bj (j = 1, . . . , s), where a1, . . . , ak, b1, . . . , bs ∈ Q . As the quasiidentities ϕ1

and ϕ2 are true in Q, we have (u(a1, . . . , ak) = u′(a1, . . . , ak)) and (v(b1, . . . , bs) =
v′(b1, . . . , bs)). Therefore u(a1, . . . , ak)v(b1, . . . , bs) = u′(a1, . . . , ak)v

′(b1, . . . , bs).
Thus, the quasiidentity ϕ is a consequence of the formula ϕ1 & ϕ2.

Conversely, let the quasiidentity ϕ be true in the quasigroup Q. We show that
the quasiidentity ϕ1 is true in the quasigroup Q. We assume that the left side of
the quasiidentity ϕ1 is true in Q for the substitutions xi → ai (i = 1, . . . , k), where
a1, . . . , ak ∈ Q. As the quasiidentity ϕ2 is compatible in any quasigroup, and thus
in the quasigroup Q, then for certain substitutions yj → bj (j = 1, . . . , s), where
b1, . . . , bs ∈ Q, we have the equalities: vj(b1, . . . , bs) = v′j(b1, . . . , bs) (j = 1, . . . , s),
v(b1, . . . , bs) = v′(b1, . . . , bs).

As a result, the left side of the quasiidentity ϕ is true in the quasigroup Q
for the substitutions xi → ai (i = 1, . . . , k), yj → bj (j = 1, . . . , s). As the
quasiidentity ϕ is true in the quasigroup Q, then from u(a1, . . . , ak)v(b1, . . . , bs) =
u′(a1, . . . , ak)v

′(b1, . . . , bs) it follows that u(a1, . . . , ak) = u′(a1, . . . , ak). Similarly,
we can show that ϕ2 is true in the quasigroup Q. Thus, the formula ϕ1 & ϕ2 is a
consequence of the formula ϕ. This completes the proof of Lemma 1.

As any quasiidentity is compatible in any loop then from Lemma 1 follows.

Corollary 1. In the class of loops the conjunction of a finite number of quasiiden-

tities is equivalent to one quasiidentity.

Lemma 2. Let quasiidentity ϕ be true in a quasigroup Q and let the quasivariety

qQ, generated by the quasigroup Q, contain an infinite cyclic group Z. Then the set

of all prime cyclic groups Zpi
in which ϕ is not true is finite.

Proof. Let’s assume that the statement of the lemma is not true, and thus, the set

I = {i ∈ Σ|Zpi
⊢qϕ}

is infinite. Let

ϕ = (&m
i=1ui(x1, . . . , xk) = u′i(x1, . . . , xk) ⇒ u(x1, . . . , xk) = u′(x1, . . . , xk)).

We study the finite representative quasigroup

L = lp(x1, . . . , xn‖ui(x1, . . . , xn) = u′i(x1, . . . , xn), i = 1, . . . ,m

from qQ generated by elements x1, . . . , xn with the defining relations
ui(x1, . . . , xn) = u′i(x1, . . . , xn), i = 1, . . . ,m.

As for i ∈ I the quasiidentity ϕ is false in the cyclic group Zpi
, then there are such

elements a1, . . . , an ∈ Zpi
that ui(a1, . . . , ak) = u

′

i(a1, . . . , ak) (i = 1, . . . ,m), but
u(a1, . . . , an) 6= u′(a1, . . . , an), that is u(a1, . . . , an)−1u′(a1, . . . , an) 6= e or written
simpler still u−1u′ 6= e. According to Dik’s Theorem [3], there is a homomorphism
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θi : L → Zpi
for which θi(u

−1u′) 6= e, (i ∈ I). By Theorem 1 [1, p.73] there is
such a homomorphism θi : L →

∏

i∈I Zpi
that θ(a)(i) = θi(a), for any a ∈ L and

any i ∈ I. The set I is infinite. Then θi(u
−1u′) is an element of infinite order of

group θ(L). As θ(L) is a finitely generated abelian group, θ(L) can be decomposed
in the direct product of cyclic groups. As the element θ(u−1(u′) has a finite order,
we conclude that there is a homomorphism Ψ : θ(L) → Z so e 6= ψθ(u−1u′) =
u(ψθ(x1), . . . , ψθ(xn))−1u

′

(ψθ(x1, . . . , ψθ(xn)), that is u(ψϕ(a1), . . . , ψϕ(an))−1 6=
u′(ψϕ(a1, . . . , ψ(xa)).

Therefore, for values of variables x1 = ψϕ(a1), . . . , xn = ψϕ(an) we obtained
that the quasiidentity ϕ is false in the infinite cyclic group Z.Contradiction. This
completes the proof of Lemma 2.

Let Σ be an independent system of quasiidentities. Then for any formula ϕ ∈ Σ
there is a quasigroup Qϕ, so Qϕ| =qϕ, but Qϕ| = ψ for any formula ψ ∈ Σ\{ϕ} by
the definition of independent system of quasiidentities. We call the set {Qϕ|ϕ ∈ Σ}
the system corresponding to the independent system Σ.

Lemma 3. Suppose there is a quasivariety N of quasigroups definted by an infi-

nite and independent system of compatible quasiidentities {ϕi|i ∈ I ⊆ Σ} with the

corresponding system of quasigroups {Qi|i ∈ I}. If a subquasivariety M ⊆ N can

be defined in the quasivariety N such that for some bijective application α : I → Σ
we have Qi ⊢ ψα(j) for all j ∈ I\{i}. Then the quasivariety M has an infinite and

independent basis of quasiidentities in the class of all quasigroups.

Proof. Let α be a bijective application from I on Σ. Let’s denote Σ = {ϕi&ψα(i)|i ∈
I}. Obviously, any quasiidentity from Σ is true in any quasigroup from M . Con-
versely, if in the quasigroup Q all formulas from Σ are true, then Q ∈M . Therefore,
the set Σ defines the quasivariety M in the class of all quasigroups. As all formulas
from Σ\{ϕi&ψα(i)} are true in Q and the formula ϕi&ψα(i) is false in the quasigroup
Qi, then Σ is an independent system of quasiidentities. By Lemma 1 each formula
from Σ is equivalent to a quasiidentity. Hence the system Σ is equivalent to a sys-
tem Σ′ of quasiidentities. As Σ is independent and infinite, it results that Σ′ is also
independent and infinite. This completes the proof of Lemma 3.

Theorem. If the loop L contains an infinite cyclic group and does not contain an

infinity of pi-periodic elements, then the quasiidentity qL generated by the loop L
has an infinite and independent basis of quasiidentities.

Proof. Denote by I the set of all indices i ∈ Σ of prime numbers for which the loop
L does not contain relative pi-periodic elements. According to the hypothesis, the
set I is infinite and for any i ∈ I the quasiidentity xpi = e ⇒ x = e is true in the
loop L, where by upi we understand the pi fold product of the element u written as
(. . . (uu · u) . . . u)u. Let Σ = {ψi|i ∈ Σ} be a set of quasiidentities (some of them
may coincide) which defines the quasivariety qL and N - the quasivariety of loops
defined by the independent system {xpi = e ⇒ x = e|i ∈ I} of quasiidentities. As
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every quasiidentity of this system is true in the loop L, then there is the inclusion
qL ⊆ N . Let ψi (i ∈ Σ) be an arbitrary quasiidentity from Σ:

ψi = (&m
i=1ui(x1, . . . , xk) = e⇒ u(x1, . . . , xk) = e);

we shall denote Mi = {Zpk
| =qψi ∈ I|Zpk

| =qψi}. By Lemma 2 the set Mi is finite.
We construct the quasiidentity ψ′

i, corresponding to the quasiidentity ψi, as follows:
if Mi = ∅ then we consider ψ′

i = ψi and if Mi 6= ∅ then we consider

ψ′

i = (&m
i=1ui(x1, . . . , xk) = e⇒ (. . . (u(x1, . . . , xk))

p1 ) . . .)pm = e,

where Mi = {pi1 , . . . , pim}.
We show that the quasiidentities ψ′

i and ψi are equivalent in the class N . Ob-
viously, ψ′

i is a consequence of the quasiidentity ψi. In particular, this results in
the quasiidentity ψ′

i be true in each of the cyclic groups Zpj
, j ∈ I\{i1, . . . , im}.

Obviously, if j ∈ Σ\{i1, . . . , im} then the quasiidentity ψ′

i is true in the cyclic group
Zpj

. Hence for every j ∈ Σ the quasiidentity ψ′

i is true in the cyclic group Zpj
.

Let there be the loop Q ∈ N and assume that the quasiidentity ψ′

i is true in the
loop Q. Let the left side of the quasiidentity ψi be true in Q for the substitutions
xi → ai, i = 1, . . . , n. As ψ′

i is true in Q, we have (. . . (u(a1, . . . , an)pi) . . .)pim = e.
Now, applying the quasiidentities xpik = e ⇒ x = e, k = i1, . . . , im, which

are true in every loop from the quasivariety N , from the last equality we obtain
u(a1, . . . , an) = e. Therefore, the quasiidentity ψi is true in the loop Q. Hence in
the class N the quasiidentities ψi and ψ′

i are equivalent and ψ′

i is true in the cyclic
group Zpj

for any j ∈ I. The set {Zpj
|j ∈ I} is the system corresponding to the

independent system of quasiidentities {xpi = e⇒ x = e)|i ∈ I}.
From here by Lemma 3 it results that the quasivariety qL has an infinite and

independent basis of quasiidentities. This completes the proof of Theorem.

Corollary 2. Every torsion-free nilpotent loop has an infinite and independent basis

of quasiidentities.

3 Applications

1. From local Malcev Theorem’s the following coverage criterion of quasivarieties
results: If the quasivariety M has an independent and infinite basis of quasiidentities,

then M has an infinity of coverages. The detailed proof of this statement can be
found, for instance, in [6].

According to Corollary 2 and the coverage criterion of quasivarieties, we obtain
the following statement.

If L is a torsion free nilpotent loop of any rank, then the quasivariety qL has

infinity of coverages in the latices of loop quasivarieties.

2. Let M2×2(K) be the vector space of square matrices with elements from
associative ring K. We define multiplication and division in M2×2(K) by formulas:

(

a b
c d

)

·

(

x y
z t

)

=

(

a+ x b+ y
c+ z d+ t+ (x− a)(yc− bz)

)

,
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(

a b
c d

)

/

(

x y
z t

)

=

(

a− x b− y
c− z d− t+ (a− 2x)(yc − bz)

)

.

It is easy to see that the set M2×2(K) forms a commutative loop with re-

spect to multiplication and division. The unity is

(

0 0
0 0

)

and

(

a b
c d

)−1

=

(

−a −b
−c −d

)

. Denote that loop by L. As the ring K satisfies the identity

0 · x = x then from formulas which defined the operations it follows that elements

of the form

(

0 0
0 d

)

belong to the centre of loop L. Let A =

(

a b
c d

)

, B =
(

m n
p q

)

, C =

(

x y
z t

)

be arbitrary elements of L. We compute its associator

(A,B,C) = (AB ·C)/(A ·BC) =

(

0 0
0 (anz − ayp+ 2mbz − 2myc+ xbp− xnc)

)

.

Hence the associator (A,B,C) belongs to the centre of L. Consequently, the loop
L is nilpotent of class 2. As K is a ring of characteristic zero then it is easy to see
that L is a torsion free loop. Then any subloop of cartesian product of loop L is
torsion free. From here it follows by Corollary 2 that any free loop of quasivariety
generated by L has an infinite and independent basis of quasiidentities.

Finally, I would like to thank the university teacher V. I.Ursu for his input to
the final editing, as well as for the precious remarks in the construction of loops with
infinite independent bases of quasiidentities.
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