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On stability of Pareto-optimal solution

of portfolio optimization problem

with Savage’s minimax risk criteria

Vladimir Emelichev, Vladimir Korotkov, Kirill Kuzmin

Abstract. A multicriteria Boolean optimization problem consisting in an efficient
choice of a Pareto-optimal portfolio of investor’s assets that uses the Savage’s minimax
risk criteria is considered. Upper and lower attainable bounds of the stability radius
of such portfolio with regard to independent changes of elements of a risk matrix are
obtained.
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1 Introduction

In recent years, interest towards multi-objective decision-making processes under
uncertainty and risk has grown dramatically. It can be explained by numerous appli-
cations of such problems in game theory, mathematical economics, optimal control,
investment analysis, banking, insurance business, etc. Widespread occurrence of dis-
crete optimization models has conditioned the interest of many experts to the study
of various types of stability aspects, parametric and post-optimal analysis problems
of both scalar (one-criterion) and vector (multicriteria) discrete optimization (see,
for example, monographs [1–3], reviews [4–6], and annotated bibliographies [7, 8]).

One of the well-known approaches to investigation of the stability of discrete op-
timization problems is aimed at obtaining the so-called quantitative stability charac-
teristics. This approach consists in finding the limit level of perturbations of initial
problem data which do not change the studied original solution. As a rule, the
perturbed parameters are the vector criterion coefficients. The majority of results
in this research area are related to stability radius formula for Pareto-optimal (effi-
cient) solutions of vector linear optimization problems [9,10], in particular, Boolean
problems [11], game theory problems [12, 13], and also for the stability radius of a
lexicographic optimum of certain Boolean problems with linear criteria [14,15].

This paper deals with obtaining upper and lower attainable bounds of the sta-
bility radius of a Pareto-optimal solution of portfolio optimization problem with
Savage’s minimax risk criteria.
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2 Basic definitions and auxiliary statements

Let us consider the vector variant of the portfolio optimization problem, i.e.
the problem of financial investments management, based on Markovitz’s ”portfolio
theory” [16, 17] (see also the bibliography in [18]). To this end, we introduce the
following notations:

Nn = {1, 2, ..., n} – assets (shares, companies’ bonds, real estate etc.),
Nm – economic strategies of an investor,
R – three-dimensional risk matrix (missed opportunities) of m× n× s size with

elements rijk from R,
rijk – risk quantity of an investor choosing strategy i ∈ Nm and asset j ∈ Nn

with criterion k ∈ Ns,
x = (x1, x2, ..., xn)T ∈ X ⊂ {0, 1}n – investor’s portfolio of assets.

xj =






1, if the investor chooses an asset j,

0 otherwise.

Presumably, each investor’s portfolio x from a given portfolio set X assures expected
total profit p and does not exceed the total amount of available capital c, i. e. for
each portfolio x = (x1, x2, ..., xn)T ∈ X the conditions

∑

j∈Nn

pj xj ≥ p,
∑

j∈Nn

cjxj ≤ c,

hold, where pj is the expected profit of asset j, cj is the cost of asset j.
Along with three-dimensional matrix R = [rijk] ∈ Rm×n×s we use its two-

dimensional sections Rk ∈ Rm×n, k ∈ Ns.
Let the following vector function

f(x, R) = (f1(x, R1), f2(x, R2), ..., fs(x, Rs))

be defined over the set X with Savage’s minimax risk (extreme pessimism) criteria
[19, 20], (see also [21–23])

fk(x, Rk) = max
i∈Nm

∑

j∈Nn

rijkxj → min
x∈X

, k ∈ Ns.

We consider the problem of finding Pareto set P s(R), where a Pareto-optimal (effi-
cient) portfolios (solutions) is regarded as portfolio optimization problem Zs(R):

P s(R) = {x ∈ X : P s(x, R) = ∅},

where P s(x, R) = {x′ ∈ X : x ≻
R
x′}, whereas symbol ≻

R
is a binary relation defined

over the set X as follows:

x ≻
R
x′ ⇔ g(x, x′, R) ≥ 0 & g(x, x′, R) 6= 0,
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where 0 = (0, 0, . . . , 0) ∈ Rs, g(x, x′, R) = (g1(x, x
′, R1), g2(x, x

′, R2), . . . ,
gs(x, x′, Rs)), gk(x, x′, Rk) = fk(x, Rk) − fk(x

′, Rk) = max
i∈Nm

Rikx −

max
i∈Nm

Rikx
′, k ∈ Ns, and Rik = (ri1k, ri2k, . . . , rink) is row i of matrix Rk ∈ Rm×n.

In space Rd of an arbitrary dimension d ∈ N we set the l∞-metric, i.e. as the
norm of vector z = (z1, z2, ..., zd) ∈ Rd we understand the number

‖z‖ = max{|zj | : j ∈ Nd},

and as the norm of matrix we understand the norm of a vector composed of all
matrix elements. Thus the inequalities ‖R‖ ≥ ‖Rk‖ ≥ ‖Rik‖ holds for any i ∈ Nm

and k ∈ Ns.

As usual (see, for example,[6, 9–12]), stability radius of portfolio x0 ∈ P s(R) is
defined as follows:

ρs(x0, R) =

{
sup Ξ, if Ξ 6= ∅,
0, if Ξ = ∅,

where

Ξ = {ε > 0 : ∀R′ ∈ Ω(ε) (x0 ∈ P s(R+R′))},

Ω(ε) = {R′ ∈ Rm×n×s : ‖R′‖ < ε}.

Here Ω(ε) is the set of perturbing matrices, and Zs(R + R′) is the perturbed
problem.

The following lemma is evident.

Lemma. Let x0 ∈ P s(R), ϕ > 0. If for any perturbing matrix R′ ∈ Ω(ϕ) and any
solution x ∈ X \ {x0} index q ∈ Ns exists, such that the inequality gq(x, x

0, Rq +
R′

q) > 0 holds, then x0 ∈ P s(R+R′) for any R′ ∈ Ω(ϕ).

It is also quite evident that for any matrix Rk ∈ Rm×n and any solutions x0, x ∈
X the following inequalities are true:

Rikx−Ri0kx
0 ≥ −‖Rk‖ ‖x+ x0‖∗, i, i0 ∈ Nm, k ∈ Ns, (1)

where ‖z‖∗ =
∑

j∈Nn

|zj |, z = (z1, z2, ..., zn)T .

3 Stability radius bounds

For portfolio x0 ∈ P s(R) we introduce the following notations:

ϕ = min
x∈X\{x0}

max
k∈Ns

min
i0∈Nm

max
i∈Nm

Rikx−Ri0kx
0

‖x+ x0‖∗
,

ψ = min
x∈X\{x0}

max
k∈Ns

min
i0∈Nm

max
i∈Nm

Rikx−Ri0kx
0

‖x− x0‖∗
.
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Theorem. For stability radius ρs(x0, R), s ≥ 1, of a Pareto-optimal portfolio x0

of problem Zs(R) the following bounds are true:

ϕ ≤ ρs(x0, R) ≤ ψ.

Proof. Let x0 ∈ P s(R). The formula

∀x ∈ X \ {x0} (x0 6∈ P s(x0, R))

obviously holds. Hence with account of inequality ‖x + x0‖∗ ≥ ‖x − x0‖∗ > 0, this
results in ψ ≥ ϕ ≥ 0.

To prove Theorem, firstly it is necessary to prove that ρs(x0, R) ≥ ϕ, which
is evident if ϕ = 0. Let ϕ > 0. According to the definition of ϕ for any portfolio
x ∈ X \ {x0}, there is such index q ∈ Ns that

min
i0∈Nm

max
i∈Nm

(Riqx−Ri0qx
0) ≥ ϕ ‖x+ x0‖∗. (2)

Further, taking into account (1), for any perturbing matrix R′ ∈ Ω(ϕ) and any
k ∈ Ns, we have:

gk(x, x
0, Rk +R′

k) = max
i∈Nm

(Rik +R′
ik)x− max

i∈Nm

(Rik +R′
ik)x

0 =

= min
i0∈Nm

max
i∈Nm

(Rikx−Ri0kx
0 +R′

ikx−R′
i0kx

0) ≥

≥ min
i0∈Nm

max
i∈Nm

(Rikx−Ri0kx
0) − ‖R′

k‖‖x+ x0‖∗.

Hence, in view of ϕ > ‖R′‖ ≥ ‖R′
q‖ inequality (2) implies

gq(x, x
0, Rq +R′

q) > 0.

Therefore, due to Lemma we have x0 ∈ P s(R + R′) for any perturbing matrix
R′ ∈ Ω(ϕ), i.e. the inequality ρs(x0, R) ≥ ϕ is true.

Further, we prove the inequality ρs(x0, R) ≤ ψ. In accordance with the definition
of ψ there is such portfolio x ∈ X \ {x0} that the following inequalities are true:

ψ‖x− x0‖∗ ≥ min
i0∈Nm

max
i∈Nm

(Rikx−Ri0kx
0), k ∈ Ns. (3)

Now, setting ε > ψ, we consider the perturbing matrix R0 = [r0ijk] ∈ Rm×n×s whose
elements are defined as follows:

r0ijk =






δ, if i ∈ Nm, x
0
j ≥ xj, k ∈ Ns,

−δ, if i ∈ Nm, x
0
j < xj, k ∈ Ns,
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where ψ < δ < ε. Then ‖R0‖ = ‖R0
k‖ = ‖R0

ik‖ = δ where i ∈ Nm, k ∈ Ns. In
addition, all rows R0

ik, i ∈ Nm, of matrix R0
k are equal and consist of components

δ and −δ for any index k ∈ Ns. Therefore, denoting this row by B (it only depends
on x and x0), we have

B(x− x0) = −δ‖x− x0‖∗, ‖B‖ = δ.

Hence, in view of (3), for any index k ∈ Ns , we obtain

gk(x, x
0, Rk +R0

k) = max
i∈Nm

(Rik +B)x− max
i∈Nm

(Rik +B)x0 =

= max
i∈Nm

Rikx− max
i∈Nm

Rikx
0 +B(x− x0) = min

i0∈Nm

max
i∈Nm

(Rikx−Ri0kx
0) +B(x− x0) ≤

≤ (ψ − δ) ‖x− x0‖∗ < 0.

Thus, the binary relation x0 ≻
R+R0

x holds. Therefore, for any ε > ψ there

is such perturbing matrix R0 ∈ Ω(ε) that Pareto-optimal portfolio x0 of problem
Zs(R) looses its Pareto-optimality in the perturbed problem Zs(R+ R0), i.e. x0 6∈
P s(R+R0). Therefore ρs(x0, R) ≤ ψ.

The upper bound ψ of the stability radius ρs(x0, R) indicated in Theorem is
attainable, since for m = 1 our problem Zs(R) is transformed into a vector (s-
criteria) Boolean programming problem with linear criteria:

Rkx→ min
x∈X

, k ∈ Ns, (4)

whereas the upper bound turns into the form

ρs(x0, R) ≤ ψ = min
x∈X\{x0}

max
k∈Ns

Rk(x− x0)

‖x− x0‖∗
,

where Rk is k-th row of matrix R ∈ Rs×n. It is known [6, 10] that the right-hand
side of this ratio is the expression of the stability radius of x0 ∈ P s(R) of problem
(4). Therefore, if m = 1, we have ρs(x0, R) = ψ, that assures the attainability of
this upper bound.

It is also quite evident that the lower bound ϕ is also attainable. Indeed, let the
equality ‖x+x0‖∗ = ‖x−x0‖∗ be true for any x ∈ X \{x0}, then ρs(x0, R) = ϕ = ψ.

So we have the following corollary of Theorem, which shows that the radius of
stability of Pareto-optimal portfolio x0 ∈ P s(R) can be equal to the lower positive
bound ϕ and may not coincide with the upper bound ψ.

Corollary 1. There exists a class of problems Zs(R) such that for the solution
x0 ∈ P s(R) the following correlations are true:

0 < ρs(x0, R) = ϕ < ψ. (5)
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Proof. Let ϕ > 0. The inequality ϕ < ψ is true if ‖x + x0‖∗ > ‖x − x0‖∗ holds for
any vector x ∈ X \ {x0}. To prove the equality ρs(x0, R) = ϕ in accordance with
Theorem, it is sufficient to identify the class of problems for which the inequality
ρs(x0, R) ≤ ϕ is true. Further exposition is devoted to this.

The definition of ϕ > 0 entails such vector x̂ ∈ X \ {x0} that

ϕ‖x̂+ x0‖∗ ≥ gk(x̂, x
0, Rk), k ∈ Ns. (6)

Further exposition will be for any index k ∈ Ns.
We introduce the following notations:

i(x0) = arg max{Rikx
0 : i ∈ Nm},

i(x̂) = arg max{Rikx̂ : i ∈ Nm},

∆ = ‖x̂+ x0‖∗ − ‖x̂− x0‖∗ > 0.

Further, we assume that the inequality holds:

(Ri(x̂)k −Ri(x0)k)x̂ > ϕ∆, (7)

which entails the inequality i(x0) 6= i(x̂), since ϕ∆ > 0 holds.

For any number ε > ϕ we define the elements of the section R0
k of the perturbing

matrix R0 by the rule

r0ijk =






δ, if i = i(x0), x0
j = 1,

−δ, if i = i(x0), x0
j = 0,

−δ, if i ∈ Nm \ {i(x0)}, x̂j = 1,

0 otherwise,

where

min

{
ε,

1

∆
(Ri(x̂)k −Ri(x0)k)x̂

}
> δ > ϕ. (8)

Noteworthy, the last inequalities are correct because of (7).

Due to the structure of the section R0
k we have

R0
ikx̂ = −δ‖x̂‖∗, i ∈ Nm \ {i(x0)}, (9)

R0
i(x0)kx

0 = δ‖x0‖∗, (10)

‖R0
k‖ = ‖R0‖ = δ, R0 ∈ Ω(ε).

Moreover, the equality holds:

R0
i(x0)kx̂ = δ(∆ − ‖x̂‖∗). (11)
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Indeed, let us denote the sets:

Q1 = {j ∈ Nn : x̂j = x0
j = 1},

Q2 = {j ∈ Nn : x̂j = 1, x0
j = 0}.

Then the following equalities are obvious:

|Q1| = ∆/2,

|Q2| = ‖x̂‖∗ − ∆/2,

R0
i(x0)kx̂ = δ|Q1| − δ|Q2|,

from which the inequality (11) ensues.
Further, we will prove that gk(x̂, x

0, Rk +R0
k) < 0. In line with (10) we have

fk(x
0, Rk +R0

k) = max
i∈Nm

(Rik +R0
ik)x

0 = fk(x
0, Rk) + δ‖x0‖∗. (12)

We will prove that the equality is true:

fk(x̂, Rk +R0
k) = fk(x̂, Rk) − δ‖x̂‖∗. (13)

Using (9), we have

fk(x̂, Rk +R0
k) = max

{
(Ri(x̂)k +R0

i(x̂)k)x̂, max
i6=i(x̂)

(Rik +R0
ik)x̂

}
=

= max
{
(fk(x̂, Rk) − δ‖x̂‖∗), max

i6=i(x̂)
(Rik +R0

ik)x̂
}
.

Thus, taking into account the obvious inequalities

fk(x̂, Rk) − δ‖x̂‖∗ ≥ (Rik +R0
ik)x̂, i ∈ Nm \ {i(x0), i(x̂)},

to prove (13) we must prove that

fk(x̂, Rk) − δ‖x̂‖∗ ≥ (Ri(x0)k +R0
i(x0)k)x̂.

To this end, using (8) and (11), we have

fk(x̂, Rk) − δ‖x̂‖∗ − (Ri(x0)k +R0
i(x0)k)x̂ = (Ri(x̂)k −Ri(x0)k)x̂− δ‖x̂‖∗−

−R0
i(x0)kx̂ > δ(∆ − ‖x̂‖∗) −R0

i(x0)kx̂ = 0.

At last, consistently applying (12), (13), (6) and (8), we obtain

gk(x̂, x
0, Rk +R0

k) = gk(x̂, x
0, Rk) − δ‖x̂ + x0‖∗ ≤ (ϕ− δ)‖x̂ + x0‖∗ < 0.

Because of that such inequality is true for any k ∈ Ns, that x0 ≻
R+R0

x̂.

Therefore, the formula

∀ε > ϕ ∃R0 ∈ Ω(ε) (x0 6∈ P s(R+R0))

holds, which because of the vector x0 ∈ P s(R) results in the inequality ρs(x0, R) ≤
ϕ. In summary, we get proof that correlation (5) is valid.
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We give a numeric example proving Corollary 1.

Example. Let m = 2, n = 3, k = 1; X = {x0, x1}, x0 = (1, 1, 0)T , x̂ = (0, 1, 1)T ;

R =

(
−5 2 2
1 −1 0

)
.

Then f(x0, R) = 0, f(x̂, R) = 4, i. e. x0 is the optimal portfolio of the problem
Z1(R); ‖x̂ + x0‖∗ = 4, ‖x̂ − x0‖∗ = 2, i(x0) = 2, i(x̂) = 1. So ϕ = 1, ψ = 2,
(Ri(x̂)k −Ri(x0)k)x̂ = 5 > 2 = ϕ(‖x̂ + x0‖∗ − ‖x̂− x0‖∗).

By Theorem ρ1(x0, R) ≥ 1. On the other hand, if

R0 =

(
0 −δ −δ
δ δ −δ

)
,

where 1 < δ < 2.5, then ‖R0‖ = δ and f(x0, R+R0) = 2δ > 4−2δ = f(x̂, R+R0).
As a result we have that x0 6∈ P 1(R + R0). Hence ρ1(x0, R) ≤ 1. Thus, by

Theorem we have ρ1(x0, R) = ϕ = 1 < ψ = 2.

Pareto-optimal portfolio x0 ∈ P s(R) is called stable, if ρs(x0, R) > 0. In addi-
tion, let us introduce the traditional Smale set Sms(R) [24], i.e. the set of strongly
efficient portfolios:

Sms(R) = {x ∈ X : ∀x′ ∈ X \ {x} ∃q ∈ Ns (fq(x
′, Rq) > fq(x, Rq))}.

Apparently, Sms(R) ⊆ P s(R) for any matrix R ∈ Rm×n×s and Sms(R) can be
empty.

Corollary 2. Pareto-optimal portfolio x0 ∈ P s(R) is stable iff x0 ∈ Sms(R).

Proof. Sufficiency. Let Pareto-optimal portfolio x0 of problem Zs(R) be strongly
efficient. Then for any x ∈ X \ {x0} we have

ξ(x) = max
k∈Ns

min
i0∈Nm

max
i∈Nm

Rikx−Ri0kx
0

‖x+ x0‖∗
= max

k∈Ns

fk(x, Rk) − fk(x
0, Rk)

‖x+ x0‖∗
> 0.

Therefore, by Theorem, we have ρs(x0, R) ≥ ϕ = min
x∈X\{x0}

ξ(x) > 0, i.e. port-

folio x0 ∈ P s(R) is stable.
Necessity. Let portfolio x0 ∈ P s(R) be stable. Then, according to Theorem, we

obtain ψ ≥ ρs(x0, R) > 0. Therefore, for any portfolio x ∈ X \ {x0} we have

max
k∈Ns

fk(x, Rk) − fk(x
0, Rk)

‖x− x0‖∗
> 0.

It means that for any x ∈ X \ {x0} there is such index q ∈ Ns, that fq(x, Rq) >
fq(x

0, Rq), i.e. x0 ∈ Sms(R).

Since from the equality ϕ = 0 the equality ψ = 0 ensues, then the following
corollary results from Theorem:

Corollary 3. If x0 ∈ P s(R), then ρs(x0, R) = 0 if ϕ = 0.
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