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Generalized hypergeometric systems

and the fifth and sixth Painlevé equations

Galina Filipuk

Abstract. This paper concerns (generalized) hypergeometric systems associated
with the fifth and sixth Painlevé equations, which are the second order nonlinear
ordinary differential equations. The Painlevé equations govern monodromy preserving
deformations of certain second order linear scalar equations. We reduce these scalar
equations to generalized hypergeometric systems.
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1 Introduction

In some problems of the general theory of ordinary differential equations (ODEs)
it is very efficient to study systems of ODEs rather than single scalar equations.
The benefit is that the problem can be studied by using the matrix calculus and
most likely can easily be generalized. Thus, the methods of reduction of a linear
differential equation with a finite number of regular and irregular singularities to
a system of linear differential equations of some canonical form are needed. In
general, the reduction problems are difficult and only partial results are available in
this direction, see for instance [1, 9].

The current paper concerns the study of the second order linear differential
equation

d2y

dx2
+ p1(x)

dy

dx
+ p2(x)y = 0, (1)

where p1(x) and p2(x) are certain rational functions (exact formulas are given in
the sections below). The isomonodromy deformations of equation (1) with such
choice of coefficients lead to the famous fifth and sixth Painlevé equations [12].
The solutions of these equations, the Painlevé transcendents, are nonlinear special
functions which appear in many areas of modern mathematics and mathematical
physics (random matrix theory, algebraic geometry, integrable systems, topological
field theories and many others). The Painlevé equations are second order nonlinear
differential equations of the form

d2λ

dt2
= R

(
t, λ,

dλ

dt

)
,
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where R is a rational function, having the Painlevé property, which is that their
general solutions possess no movable critical points (see, for instance, [7] for defini-
tions). Moreover, the Painlevé transcendents are not expressible in terms of classical
linear special functions. Nowadays, the interest in the Painlevé equations is growing
due to numerous applications.

There are many systems one can associate with the scalar differential equation
(1). In this paper we are interested in the systems of the form

(x − B)
dY

dx
= AY, (2)

where the matrix A does not depend on x and the diagonal elements of the ma-
trix B include all singularities of equation (1). We call such systems generalized
hypergeometric systems. If the matrix B is diagonal, then we call the system a
hypergeometric system following [9]. We remark that the systems we consider can
also be viewed as generalized Okubo systems, but we want to distinguish apparent
singularities (there is a holomorphic basis of solutions at such points) and include
them as elements of the matrix B. Apparent singularities, as will be discussed later
on, play a special role in monodromy preserving deformations of equation (1), and
hence we are interested in studying the problem of reduction (1) to generalized hy-
pergeometric systems. Systems of the type (2) recently appeared in the study of the
Heun equation [3].

In this paper, we first consider equation (1) with 4 regular singularities x =
0, 1,∞, t and one apparent singularity λ. The scalar equation (1) is Fuchsian in
this case, and the algorithm of reduction is known [9]. We explicitly compute the
hypergeometric system (2), where the 4× 4 matrix B is diagonal (0, 1, t, λ) and the
constant matrix A is the sum of a lower triangular matrix and a nilpotent matrix
having elements i, i + 1 equal to 1 and all others equal to zero. If the parameter t
moves in the complex plane, the isomonodromy deformations of (1) (deformations
which preserve the monodromy group of the equation) lead to the sixth Painlevé
equation (PV I) for the function λ(t). From the works of Okamoto, Noumi and others
it is known that the parameter space of the sixth Painlevé equation admits the
action of the extended affine Weyl group. The corresponding action of the group on
solutions of (PV I) is known as the action of the group of Bäcklund transformations.
One of such Bäcklund transformations was recently rederived in [4] from the integral
transformation of 2× 2 system. Thus, we are interested to understand the action of
this transformation on the hypergeometric system. This gives a new insight into the
nature of the Painlevé equations and their Bäcklund transformations. In particular,
the action of the Bäcklund transformation gives a new hypergeometric system with
a new apparent singularity and different eigenvalues and diagonal elements.

It is also possible [5] to consider other 4 × 4 systems, called Okubo systems,
equivalent to equation (1), but the apparent singularity is not singled out there in
the diagonal matrix B as in the hypergeometric system we consider. Other types of
systems of differential equations associated with the sixth Painlevé equation and the
action of the Bäcklund transformations on them are considered in [10, 11]. Other
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Painlevé equations are also studied from this perspective, see for instance the pa-
per [2] concerning the fourth Painlevé equation. We also remark that equation (1)
gives the Heun equation as the result of the confluence process when the apparent
singularity tends to one of 4 other regular singularities of (1) and the 3× 3 hyperge-
ometric system associated with the Heun equation was useful in finding the integral
transformations between its solutions [3].

As the result of the confluence process when one of regular singularities of (1)
associated with (PV I) coalesces with another regular singularity, we get a linear
equation the isomonodromy deformations of which give the fifth Painlevé equation
(PV ). In this case, equation (1) has two regular singularities x = 0,∞, one irregular
singularity x = 1 and one apparent singularity λ (which becomes the solution of (PV )
viewed as a function of the deformation parameter t). We introduce a generalized
hypergeometric system and compute it explicitly for the linear system associated
with the fifth Painlevé equation. The system we present encodes the information of
the generalized Riemann scheme (information about the singularities of the scalar
equation) in elements of the matrix B, which is not diagonal in this case, and diag-
onal elements and the eigenvalues of the matrix A. We remark that the generalized
Okubo type systems have been recently studied in [8], but as remarked above, the
apparent singularity does not appear in the diagonal elements of the matrix B.

The paper is organized as follows. In the following two sections we consider
the problems outlined above in detail. The main results and open problems are
summarized in the last section.

2 A hypergeometric system associated with the sixth Painlevé

equation

Equation (1) with

p1(x) =
1 − θ0

x
+

1 − θ1

x − 1
+

1 − θ2

x − t
−

1

x − λ
, (3)

p2(x) =
k1(k2 + 1)

x(x − 1)
+

λ(λ − 1)µ

x(x − 1)(x − λ)
−

t(t − 1)HV I

x(x − 1)(x − t)
, (4)

t(t − 1)HV I = k1(k2 + 1)(λ − t) + λ(λ − 1)(λ − t)µ2 − (5)

−(θ0(λ − 1)(λ − t) + θ1λ(λ − t) + (θ2 − 1)λ(λ − 1))µ

and
k1 + k2 + θ0 + θ1 + θ2 = 0 (6)

is a Fuchsian equation with 4 regular singularities x = 0, 1,∞, t and one apparent
singularity λ.

The sixth Painlevé equation is the following nonlinear ordinary differential equa-
tion of second order for the unknown function λ(t):

λ′′ =
1

2

(
1

λ
+

1

λ − 1
+

1

λ − t

)
(λ′)2 −

(
1

t
+

1

t − 1
+

1

λ − t

)
λ′ +
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λ(λ − 1)(λ − t)

t2(t − 1)2

(
α + β

t

λ2
+ γ

t − 1

(λ − 1)2
+ δ

t(t − 1)

(λ − t)2

)
,

where ′ stands for the derivation with respect to the independent variable t and
α, β, γ, δ are complex parameters.

One of standard ways to derive the sixth Painlevé equation is to study mon-
odromy preserving deformations of a second order Fuchsian differential equation on
P

1 with four regular singular points and one apparent singularity [12], i.e., to con-
sider deformations of equation (1) with (3)–(6). This leads to a system of partial
differential equations, and the compatibility condition gives a Hamiltonian system

dλ

dt
=

∂HV I

∂µ
,

dµ

dt
= −

∂HV I

∂λ
(7)

and, hence, (PV I) for the function λ(t) with

α =
(2k1 + θ0 + θ1 + θ2 − 1)2

2
, β = −

θ2
0

2
, γ =

θ2
1

2
, δ =

1 − θ2
2

2
.

The reader is referred to [7, 12] for further details.
Each element of the hypergeometric system (2) is written as

(x − λj)y
′

j =

4∑

k=1

αj,kyk, j ∈ {1, . . . , 4},

where λ1 = 0, λ2 = 1, λ3 = t, λ4 = λ. The matrix B in (2) is diagonal with
finite singularities of (1) on the diagonal. The matrix A in (2) is independent of
x and we impose condition that it is the sum of a lower triangular matrix and a
nilpotent matrix having elements i, i + 1 equal to 1 and all others equal to zero.
Hence, αi,j = 0, j > i+1, and αi,i+1 = 1. Because of the special form of the system,
we can find successively

y2 = xy′1 + f0(x)y1,

y3 = x(x − 1)y′′1 + g1(x)y′1 + g0(x)y1,

y4 = x(x − 1)(x − t)y′′′1 + h2(x)y′′1 + h1(x)y′1 + h0(x)y1

with some functions f, g, h of x depending on the coefficients of the matrix A and,
thus, we can easily find the fourth order differential equation for the first component
y1 of the vector Y . Next, we can find conditions on the coefficients when it is
reduced to equation (1) with (3), (4). The elements below the diagonal are extremely
cumbersome and we do not write them here1. However, by direct computations and
using the algorithm of [1] it can be verified that the following statement holds true.

Proposition 1. The diagonal elements of the hypergeometric system associated with
equation (1) with (3)–(6) are θ0, θ1 − 1, θ2 − 2, −1 and the eigenvalues are given
by −2, −1, −k1, k1 + θ0 + θ1 + θ2 − 1.

1The pdf file with the matrix of the hypergeometric system is available at
www.mimuw.edu.pl/∼filipuk/files/ForPaper.pdf
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This proposition shows that each diagonal element of the matrix A is equal to
the characteristic exponent at the respective regular singular point modulo integers.
Also we have that two of the eigenvalues of the matrix A are equal to the character-
istic exponents at infinity of equation (1). This, in turn, implies that the local and
global behaviour of solutions of the scalar equation and the system does not change.

It is well known that the parameter space of (PV I) admits the action of the

extended affine Weyl group of type D
(1)
4 (see [11] and references therein). It is gen-

erated by several basic transformations. By a Bäcklund transformation we mean
a transformation of dependent variables and parameters that leaves system (7) in-
variant. The following transformation is one of generators of the group of Bäcklund
transformations. Let us define new variables λ̃, µ̃ as follows:

λ̃ = λ +
k1

µ
, µ̃ = µ, k̃1 = −k1, θ̃0 = k1 + θ0, θ̃1 = k1 + θ1, θ̃2 = k1 + θ2. (8)

Then one can verify directly that, if the pair (λ, µ) satisfies the Hamiltonian sys-
tem (7), then the pair (λ̃, µ̃) again satisfies the same system with new parameters
θ̃0, θ̃1, θ̃2, k̃1.

As shown in [4], this transformation appears in the result of the integral trans-
formation of the 2 × 2 linear Fuchsian system. Other generators of the group of
Bäcklund transformations appear in the result of simple gauge transformations [6].

Next we study the action of transformation (8) on the hypergeometric system.

Theorem 1. The Bäcklund transformation (8) induces a new hypergeometric system
associated with (PV I) with B = diag(0, 1, t, λ+k1/µ) and a new matrix A which has
elements θ0 + k1, θ1 + k1 − 1, θ2 + k1 − 2, −1 on the diagonal and eigenvalues equal
to −2, −1, k1, 2k1 + θ0 + θ1 + θ2 − 1.

3 A generalized hypergeometric system associated with the fifth

Painlevé equation

We consider equation (1) with

p1(x) =
1 − k0

x
+

η1t

(x − 1)2
+

1 − θ1

x − 1
−

1

x − λ
, (9)

p2(x) =
k

x(x − 1)
−

tHV

x(x − 1)2
+

λ(λ − 1)µ

x(x − 1)(x − λ)
, (10)

tHV = λ(λ − 1)2µ2 − (k0(λ − 1)2 + θ1λ(λ − 1) − η1tλ)µ + k(λ − 1) (11)

and

4k = (k0 + θ1)
2 − k2

∞
. (12)
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The generalized Riemann scheme giving local exponents at regular and irregular
singularities of equation (1) with (9)–(12) is given in [12]. The monodromy preserv-
ing deformations lead to the Hamiltonian system (7) for the Hamiltonian HV and,
hence, to the fifth Painlevé equation given by

λ′′ =

(
1

2λ
+

1

λ − 1

)
(λ′)2 −

1

t
λ′ +

(λ − 1)2

t2

(
αλ + β

1

λ

)
+

γ

t
λ + δ

λ(λ + 1)

λ − 1

with

α =
k2
∞

2
, β = −

k2
0

2
, γ = η1(1 + θ1), δ = −

η2
1

2
.

for the function λ(t).
Since equation (1) is not Fuchsian as in (PV I) case above, the algorithm of [1]

is not applicable and we need to find a new type of system to reduce the equation.
We introduce the following generalized hypergeometric system.

Theorem 2. The generalized hypergeometric system of equation (1) with (9)–(12)
is given by





x 0 0 0
0 x − 1 0 0
0 η1t x − 1 0
0 0 0 x − λ









y′1
y′2
y′3
y′4



 =





k0 1 0 0
α2,1 θ1 1 0
α3,1 α3,2 −2 1
α4,1 α4,2 α4,3 −1









y1

y2

y3

y4





with

α2,1 = λµ − µ + k0(θ1 + η1t + 1/λ − 1) − k − tHV ,

λ(λ − 1)α4,3 = k0(λ − 1)2 − λ(1 − θ1 + η1t − λ − θ1λ + (λ − 1)2µ) =: q1,

λ2(λ − 1)α4,2 = q1(k0(λ − 1) + λ(1 + θ1 + µ − λµ)),

α4,1 =
q1

λ2(λ − 1)

{
k2
0(λ − 1) + k0λ

[
θ1 + η1t + (λ − 2)(λ − 1)µ

]
−

−λ2
[
k + µ

(
θ1 + η1t − θ1λ + (λ − 1)2µ

)]}
,

(λ − 1)α3,2 = 1 + θ1 + (1 + k0)η1t + k(λ − 1)2 − λ − q2λ−

−q3(λ − 1)µ + λ(λ − 1)3µ2,

q2 = θ1 + k0η1t, q3 = k0 − (2k0 + θ1 + η1t)λ + (k0 + θ1)λ
2,

λ2α3,1 = λ2(2k(λ − 1) − q4µ + (λ − 1)2(2λ − 1)µ2)−

−k2
0(1 + q5λ) + k0λ(q6 + η1t(1 + η1(1 + λ(λµ − 2)) + q7(λ − 1))),

q4 = θ1 + η1t + λ − 3θ1λ − 2η1tλ + 2θ1λ
2 − 1,

q5 = η1tλ + λ(λ − 1)2µ − 1, q6 = θ1(1 − λ)(1 + λ2µ),

q7 = 1 − 2µ + λ(k + µ(3 − 2λ + λ(λ − 1)µ)).
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Substituting y1 = y into the system we require that y solves equation (1) with
(9)–(12). A routine calculation shows that the matrix A in the system has eigenval-
ues −2, −1, (k0 + θ1 − k∞)/2, (k0 + θ1 + k∞)/2 which encode the information of
the generalized Riemann scheme in [12]. We note that the action of the Bäcklund
transformations of (PV ) on the sytem can also be studied similarly to (PV I) case.

4 Conclusions

We have computed the hypergeometric system associated with the sixth Painlevé
equation via (1) and studied the action of a particular Bäcklund transformation on
it. We introduced a new type of systems, the generalized hypergeometric system,
and reduced equation (1) associated with the fifth Painlevé equation to it. The
generalized hypergeometric systems give a new type of reduction problems and are
worth of further study. The generalized hypergeometric systems for other Painlevé
equations and the confluence process are currently under investigation and will be
published elsewhere. We expect that the hypergeometric systems could be applied
to other problems concerning the Painlevé equations. It is an open (and compu-
tationally difficult) problem to study the (generalized) hypergeometric systems for
the (degenerate) Garnier systems and examine their symmetries. There is some ev-
idence [10] that new symmetries of the Garnier systems may not exist and, so, the
hypergeometric systems could shed some more light on this problem.
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in terms of Riemann-Hilbert correspondence, IMRN, 2004, 1, 1–30.



10 G. FILIPUK

[7] Iwasaki K., Kimura H., Shimomura S., Yoshida M. From Gauss to Painlevé. A Modern
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