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Differential Matrices in Finite Markov Processes
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Abstract. The problem of determining the transient and differential matrices in fi-
nite Markov processes is considered. New polynomial time algorithms for determining
the considered matrices in Markov chains are proposed and grounded. The proposed
algorithms find the limit and differential matrices efficiently when the characteristic
values of the matrix of probability transition are known; the running time of the al-
gorithms is O(n4), where n is the number of the states of dynamical system in the
Markov process.
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1 Introduction and Problem Formulation

In this paper we study the problem of determining the differential components
of the transient matrix in a finite Markov process. We consider a dynamical system
L with finite set of states X (|X| = n) and assume that the dynamics of this
system is modelled by a Markov process with a matrix of transition probability
P = (pij)i,j=1,n. It is well known that the probability transitions of dynamical system
from a state to another during t units of times can be determined by calculating the
matrix P (t) = P t, ∀t ≥ 0; an arbitrary element pi,j(t) of the matrix P (t) gives the
probability of system L to pass from the state xi to the state xj during t transitions.
Asymptotic behavior of the matrix P (t) is studied in [1]. Basing on this asymptotic
behavior analysis in [3] an approach for determining the stationary component (the
limiting probability matrix) of the transient matrix is proposed. Here we shall use
this approach and will show how to determine the differential matrices is proposed.
We shall use formula (6) and (7) from [3]. On the bases of these formula we can
conclude that an arbitrary element pi,j(t) of the matrix P (t) can be determined as
follows

pi,j(t) =
∑

y∈C\D

m(y)−1
∑

k=0

tk

yt
βi,j,k(y), ∀t > deg(Bi,j(z)), i, j = 1, n,

where D = {z ∈ C | |I − zP | 6= 0}, βijk(y) ∈ C, ∀y ∈ C\D, k = 0,m(y) − 1,
m(y) is the order of the root y of the polynomial ∆(z) = |I − zP | and Bij(z) is a
polynomial of degree less or equal to n − 1, i, j = 1, n.
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If we denote βk(y) = (βijk(y))i,j=1,n, ∀y ∈ C\D, k = 0,m(y) − 1, then we obtain
formula in the matrix form

P (t) =
∑

y∈C\D

m(y)−1
∑

k=0

tk

yt
βk(y), ∀t ≥ n. (1)

In [3] it have been proved that C\D consists of the set of inverses of the nonzero
proper values of the matrix P , where the order of each element is the same as the
order of the corresponding proper value. Therefore the relation (1) represents the
expression which gives the components of the matrix P (t) with respect to the proper
values of the matrix P . Basing on this fact we show how to calculate the matrices
βk(y). Note that the stationary component for the transient matrix P t can be found
using algorithms from [3].

2 Algorithm for Determining the Differential Matrices

To describe algorithms for determining the differential matrices we need some
auxiliary results concerning with the properties of the linear recurrent equations
from [4].

2.1 Some auxiliary results

Consider an arbitrary set K on which the operations of summation and multi-
plication are defined. On this set we consider the following relation

an =

m−1
∑

k=0

qkan−1−k, ∀n ≥ m, (2)

where ak are given elements from K. A sequence a = {an}
∞
n=0 is called the linear

m-recurrence on K if there exists the vector q = (qk)
m−1
k=0 ∈ Km such that (2) holds.

Here we call q the generating vector and we call I
[a]
m = (an)m−1

n=0 the initial value of

the sequence a. The sequence a is called the linear recurrence on K if ∃m ∈ N
∗ such

that the sequence a is a linear m-recurrence on K. If qm−1 6= 0 then the sequence a
is called non-degenerate; otherwise it is called degenerate.

Denote:

Rol[K][m] – the set of non-degenerate linear m-recurrences on K;

Rol[K] – the set of non-degenerate recurrences on K;

G[K][m](a) – the set of generating vectors of length m of the sequence
a ∈ Rol[K][m];

G[K](a) – the set of generating vectors of the sequence a ∈ Rol[K].

In the following we will consider K an subfield of the field of complex numbers
C and a = {an}

∞
n=0 ⊆ C.
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We call the function G[a] : C → C, G[a](z) =
∞
∑

n=0
anzn, the generating function

of the sequence a = (an)∞n=0 ⊆ C and we call the function G
[a]
t : C → C, G

[a]
t (z) =

t−1
∑

n=0
anzn the partial generating function of order t of the sequence a = (an)∞n=0 ⊆ C.

Let a ∈ Rol[K][m], q ∈ G[K][m](a). For this sequence we will consider the

characteristic polynomial H
[q]
m (z) = 1 − zG

[q]
m (z) and the characteristic equation

H
[q]
m (z) = 0. For an arbitrary α ∈ K∗ we also call the polynomial H

[q]
m,α(z) = αH

[q]
m (z)

characteristic polynomial of the sequence a. We introduce the following notation:

H[K][m](a) – the set of characteristic polynomials of degree m of the sequence
a ∈ Rol[K];

H[K](a) – the set of characteristic polynomials of sequence a ∈ Rol[K].

In the case when we will operate with arbitrary recurrence (not obligatory non-
degenerate) for the corresponding set we shall use the similar notation and will
specify with the mark ”∗”, i.e. we will denote respectively: Rol∗[K][m], Rol∗[K],
G∗[K][m](a), G∗[K](a), H∗[K][m](a), H∗[K](a)). We shall use the following well
known properties:

1) Let a ∈ Rol[K][m], q ∈ G[K][m](a), H
[q]
m,α(z) =

p−1
∏

k=0

(z − zk)
sk , zi 6= zj , ∀i 6= j.

Then an = I
[a]
m · ((B[a])T )−1 · (β

[a]
n )T , ∀n ∈ N, where β

[a]
i =

(

τij

zi
k

)

k=0,p−1, j=0,sk−1

,

τij =

{

ij , if i2 + j2 6= 0
1, if i = j = 0

, i ∈ N, B[a] = (β
[a]
i )m−1

i=0 ;

2) If a is a matrix sequence, a ∈ Rol[Mn(K)][m] and q ∈ G[Mn(K)][m](a), then

a ∈ Rol∗[K][mn] and |I − zG
[q]
m (z)| ∈ H∗[K][mn](a).

2.2 The Main Results and Algorithm

Consider the matrix sequence a = (P (t))∞t=0. Then it is easy to observe that the
recurrent relation at = Pat−1, ∀t ≥ 1 holds. So, a ∈ Rol[Mn(R)][1] with generating
vector q = (P ) ∈ G[Mn(R)][1](a). Therefore according to the mentioned above
property 2 we have a ∈ Rol∗[R][n] and ∆(z) ∈ H∗[R][n](a).

Let r = deg∆(z) and consider the subsequence a = (P (t))∞t=n−r of the sequence a.
We have a ∈ Rol[R][r] and ∆(z) ∈ H[R][r](a). For the corresponding elements this
relation can be expressed as follows: aij ∈ Rol[R][r], ∆(z) ∈ H[R][r](aij), i, j = 1, n.

According to property 1) mentioned above we obtain:

pij(t) = aij(t) = aij(t−n + r) = I
[aij ]
r (BT )−1(βt−n+r)

T , i, j = 1, n, ∀t ≥ n− r, (3)
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where

βt =

(

tk

yt

)

y∈C\D,

k=0,m(y)−1

, ∀t ≥ 0, B = (βj)j=0,r−1, 00 ≡ 1. (4)

Now it is evident how to determine the initial values of subsequences aij , i, j = 1, n:

I
[aij ]
r = (aij(t))

r−1
t=0 = (aij(t))

n−1
t=n−r = (pij(t))

n−1
t=n−r, i, j = 1, n. (5)

If we denote

I
[aij ]
r (BT )−1 = (γijs(y))

y∈C\D, s=0,m(y)−1, i, j = 1, n, (6)

then formula (3) takes the following form:

pi,j(t) =
∑

y∈C\D

m(y)−1
∑

s=0

(t − n + r)s

yt−n+r
γijs(y) =

=
∑

y∈C\D

m(y)−1
∑

s=0

s
∑

k=0

Ck
s (r − n)s−kyn−rγijs(y)

tk

yt
=

=
∑

y∈C\D

m(y)−1
∑

k=0

tk

yt

m(y)−1
∑

s=k

Ck
s (r − n)s−kyn−rγijs(y) =

=
∑

y∈C\D

m(y)−1
∑

k=0

tk

yt
βijk(y), i, j = 1, n, ∀t ≥ n − r, (7)

where

βijk(y) = yn−r

m(y)−1
∑

s=k

Ck
s (r − n)s−kγijs(y), ∀y ∈ C\D, k = 0, m(y) − 1, i, j = 1, n. (8)

Rewriting relations (7) in the matrix form we obtain the representation (1) of the
matrices βk(y) (y ∈ C\D, k = 0,m(y) − 1) which can be determined according
formula (8). This means that we have grounded the following algorithm for the
decomposition of the transient matrix:

Algorithm 1. Decomposition of the transient matrix

Input Data: The matrix of transition probability P .
Output Data: The matrices βk(y) (y ∈ C\D, k = 0,m(y) − 1).

1. Calculate the coefficients of the characteristic polynomial ∆(z) of the matrix P
using algorithm from [3] (the algorithm from [3] is based on Leverrier’s method ([5]);
the computational complexity of this algorithm is O(n4);
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2. Solve the equation ∆(z) = 0 and find all roots of these equations in C and
determine C\D;

3. Determine the order of each root m(y) of the characteristic polynomial. The
order of each root can be found using Horner’s scheme, i.e. the order of the root by
the number of successive factorization of the polynomial ∆(z) by (z−y), ∀y ∈ C\D;

4. Calculate the matrix B using formula (4);

5. Determine the matrix (BT )−1. This matrix can be found using (O(n3)) elemen-
tary operations;

6. Calculate the values Ck
s , s = 0, max

y∈C\D
m(y) − 1, k = 0, s, according to Pascal

triangle rule : C0
s = Cs

s = 1, Ck
s = Ck−1

s−1 + Ck
s−1 (k = 1, s − 1);

7. Find recursively (r − n)s, s = 0, max
y∈C\D

m(y) − 1;

8. For every i, j = 1, n do the following steps:

a. Find the initial value I
[aij ]
r according to formula (5);

b. Calculate the values γijs(y), y ∈ C\D, s = 0,m(y) − 1, according to (6);

c. For arbitrary y ∈ C\D, k = 0,m(y) − 1, determine the coefficients βijk(y) of
the matrix βk(y) using formula (8) and the values calculated at the steps 6. − 7.

2.3 Computational Aspects of the Algorithm

The proposed algorithm can be used efficiently for determining the differential
matrices in the case when the characteristic values of the matrix P are known.
Therefore the computational complexity of the algorithm depends on computational
complexity of determining the characteristic values of the matrix P . If the set of
characteristic values of the matrix P are known then it is easy to observe that
the algorithm determines the differential matrices in time O(n4). We obtain this
estimation of the running time of the algorithm if we estimate in the worst case the
number of elementary operations of the steps 3)-8) of the algorithm.

Note that the matrix β0(1) corresponds to limit probability matrix Q of the
Markov chains and therefore this matrix can be calculated using O(n4) elementary
operations.

So, basing on results described above we may conclude that the matrix P (t) can
be represented as follows

P (t) =
∑

y∈C\D

m(y)−1
∑

k=0

βk(y)
tk

yt
, ∀t ≥ n − r.

For t = 0, n − r − 1 this formula can be expressed in the form

P (t) = L(t) +
∑

y∈C\D

m(y)−1
∑

k=0

βk(y)
tk

yt
, (9)
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where L(t) is a matrix that depends only on t. If the matrices βk(y), ∀y ∈ C\D,
k = 0,m(y) − 1, are known then we can determine the matrices L(t) from (9), taking
into account that P (t) = P t, ∀t ≥ 0.

In [1, 2] it is noted that the matrices L(t), t = 0, n − r − 1, and βk(y), for
each y ∈ (C\D)\{1}, k = 0,m(y) − 1, are differential matrices, i.e. the sum of
elements across to each row is equal to zero. The unique non-differential component
matrix in representation (9) is the matrix β0(1); the remainder matrices βk(1), k =
1,m(1) − 1, are null (see ([3]).

3 Algorithm for Determining the Limit and Differential Matrices

in Markov Chains

We shall use the ideas from previous section for a simultaneous calculation of
the limit and differential matrices in Markov chains. We propose a modification
of algorithms from [3] and previous section that allows to determine the limit and
differential matrices. In a similar way as in Section 2 we assume that all characteristic
values of the matrix P are known and show how to determine all components of the
transient matrix represented in the form (1). The main details concerned with the
specification and argumentation of the modified algorithm are described in the next
two subsections.

3.1 Some Auxiliary Results Concerning with Representation

of z-transform

We shall use the same method from Subsection 2.3 of [3] for determining the
matrix F (z) = (I − zP )−1 described in Subsection 2.3 of [3], but here we will not
divide F (z) by (z − 1)m(1)−1. In a such way we obtain

F (z) =
1

∆(z)

n−1
∑

k=0

R(k)zk, (10)

where the matrix-coefficients R(k), k = 0, n − 1, are determined recursively accord-
ing to formula

R(0) = β0I; R(k) = βkI + PR(k−1), k = 1, n − 1; (11)

and the values βk, k = 0, n, represent the coefficients of the polynomial ∆(z) calcu-
lated according to Algorithm 1.1 from [3].

Basing on formula (5) from [3] we can observe that the elements of the matrix
F (z) can be expressed in the following form

Fij(z) = Bij(z) +
∑

y∈C\D

m(y)
∑

k=1

αi,j,k(y)

(z − y)k
, i, j = 1, n. (12)
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So, in general form the relation (12) can be written in the following way

Fij(z) = Bij(z) +
Qij(z)

∆(z)
, i, j = 1, n, (13)

where Qij(z) ∈ C[z] and deg(Qij(z)) < deg(∆(z)) = r, i, j = 1, n.
If we express the equality (10) for each element and after that substitute in (13)

then we obtain formula

n−1
∑

k=0

R
(k)
ij zk = Bij(z)∆(z) + Qij(z), i, j = 1, n.

So, Bij(z) =
n−1−r
∑

k=0

bijkz
k and Qij(z) =

r−1
∑

k=0

qijkz
k represent the quotient and the rest,

respectively, after the division of the polynomial
n−1
∑

k=0

R
(k)
ij zk by ∆(z). Therefore the

polynomials Bij(z) and Qij(z) can be found using the procedure described bellow.

Calculation procedure for Determining the polynomials Bij(z) and

Qij(z), i, j = 1, n:

• For i, j = 1, n do:

– qijk = R
(k)
ij , k = 0, n − 1;

• For k = n − 1, n − 2, . . . , r do:

– bi,j,k−r =
qijk

βr
;

– qi,j,k−t = qi,j,k−t − bi,j,k−rβr−t, t = 0, r.

3.2 Expansion of z-transform with Respect to Nonzero

Characteristic Values

Let µ ∈ C\D, m(µ) = m (µ−1 be a nonzero characteristic value of the matrix P
and assume that the order of this characteristic value is m). According to formula
(12) − (13), for the separated root µ we have

Qij(z)

∆(z)
=

m
∑

k=1

αi,j,k(µ)

(z − µ)k
+

∑

y∈(C\D)\{µ}

m(y)
∑

k=1

αi,j,k(y)

(z − y)k
, i, j = 1, n. (14)

Let ∆(z) = (z − µ)mD(z), D(z) =
r−m
∑

k=0

dkz
k and denote deg(D(z)) = M . The

relation (14) can be written as follows

Qij(z)

∆(z)
=

Gij(z)

(z − µ)m
+

Eij(z)

D(z)
, i, j = 1, n,



TRANSIENT AND DIFFERENTIAL MATRICES IN FINITE MARKOV PROCESSES 91

where Eij(z) =
M−1
∑

k=0

eijkz
k, Gij(z) =

m−1
∑

k=0

gijkz
k ∈ C[z], i, j = 1, n. Making elemen-

tary transformation we obtain

Qij(z) = Gij(z)D(z) + Eij(z)(z − µ)m, i, j = 1, n.

By expansion the function (z − µ)m =
m
∑

k=0

Ck
m(−µ)m−kzk and then introducing the

notation ξ(k) = Ck
m(−µ)−k, k = 0,m we have

(z − µ)m =

m
∑

k=0

Ck
m(−µ)m−kzk = (ξ(m))−1

m
∑

k=0

ξ(k)zk.

Now for our relation we make the following transformations:

r−1
∑

t=0

qijtz
t =

m−1
∑

k=0

gijkz
k

M
∑

s=0

dsz
s + (ξ(m))−1

M−1
∑

s=0

eijsz
s

m
∑

k=0

ξ(k)zk =

=

m−1
∑

k=0

M
∑

s=0

gijkdsz
k+s + (ξ(m))−1

m
∑

k=0

M−1
∑

s=0

ξ(k)eijsz
k+s =

=

r−1
∑

t=0

zt













∑

k + s = t

0 ≤ k ≤ m − 1
0 ≤ s ≤ M

gijkds + (ξ(m))−1
∑

k + s = t

0 ≤ k ≤ m

0 ≤ s ≤ M − 1

ξ(k)eijs













.

Equated the corresponding coefficients we obtain

qijt =
∑

0 ≤ k ≤ m − 1
0 ≤ t − k ≤ M

dt−kgijk + (ξ(m))−1
∑

0 ≤ s ≤ t

t − m ≤ s ≤ M − 1

ξ(t − s)eijs =

=

m−1
∑

k=0

dt−kI{0≤x≤M}(t − k)gijk + (ξ(m))−1
t
∑

s=0

ξ(t − s)I{t−m≤x≤M−1}(s)eijs,

where IA(x) is index of the set A: IA(x) = 1, ∀x ∈ A and IA(x) = 0, ∀x /∈ A.
For t ≤ M − 1 formula above can be written in the following form

qijt =
m−1
∑

k=0

dt−kI{x≤t}(k)gijk + (ξ(m))−1
t
∑

s=0

ξ(t − s)I{x≥t−m}(s)eijs =

=

m−1
∑

k=0

dt−kI{x≤t}(k)gijk + (ξ(m))−1eijt + (ξ(m))−1
t−1
∑

s=0

ξ(t − s)I{x≥t−m}(s)eijs ⇔

eijt = ξ(m)

[

qijt −

m−1
∑

k=0

dt−kI{x≤t}(k)gijk − (ξ(m))−1
t−1
∑

s=0

ξ(t − s)I{x≥t−m}(s)eijs

]

.
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So, finally we will obtain the following expression

eijt = wijt +
m−1
∑

k=0

xtkgijk, t = 0,M − 1, i, j = 1, n.

In the following we will determine the coefficients wijt and xtk from the expression
above. We have

wijt +

m−1
∑

k=0

xtkgijk = eijt = ξ(m)qijt −

m−1
∑

k=0

ξ(m)dt−kI{x≤t}(k)gijk−

−

t−1
∑

s=0

ξ(t − s)I{x≥t−m}(s)

[

wijs +

m−1
∑

k=0

xskgijk

]

=

=

[

ξ(m)qijt −
t−1
∑

s=0

ξ(t − s)I{x≥t−m}(s)wijs

]

+

+
m−1
∑

k=0

gijk

[

−ξ(m)dt−kI{x≤t}(k) −
t−1
∑

s=0

ξ(t − s)I{x≥t−m}(s)xsk

]

.

So we have obtained

xtk = −ξ(m)dt−kI{x≤t}(k) −
t−1
∑

s=max{0, t−m}

ξ(t − s)xsk, k = 0,m − 1,

wijt = ξ(m)qijt −
t−1
∑

s=max{0, t−m}

ξ(t − s)wijs, t = 0,M − 1, i, j = 1, n.

(15)

For t ≥ M we have the transformations

qijt =

m−1
∑

k=0

dt−kI{0≤x≤M}(t − k)gijk + (ξ(m))−1 ·

M−1
∑

s=0

ξ(t − s)I{x≥t−m}(s)·

·

[

wijs +
m−1
∑

k=0

xskgijk

]

= (ξ(m))−1
M−1
∑

s=0

ξ(t − s)I{x≥t−m}(s)wijs+

+
m−1
∑

k=0

gijk

[

dt−kI{0≤x≤M}(t − k) + (ξ(m))−1
M−1
∑

s=0

ξ(t − s)I{x≥t−m}(s)xsk

]

⇔

⇔

m−1
∑

k=0

rtkgijk = sijt, t = M, r − 1, i, j = 1, n, (16)

where

rtk = dt−kI{0≤x≤M}(t − k) + (ξ(m))−1
M−1
∑

s=max{0, t−m}

ξ(t − s)xsk,

sijt = qijt − (ξ(m))−1
M−1
∑

s=max{0, t−m}

ξ(t − s)wijs, k = 0,m − 1.

(17)
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Now let us determine the values αijk(µ), k = 1,m, i, j = 1, n. According to formula
(14) we have

Gij(z)

(z − µ)m
=

m
∑

k=1

αi,j,k(µ)

(z − µ)k
=

1

(z − µ)m

m
∑

k=1

αi,j,k(µ)(z − µ)m−k ⇔

⇔

m−1
∑

s=0

gijsz
s =

m
∑

k=1

αi,j,k(µ)(z − µ)m−k =

m−1
∑

k=0

αi,j,m−k(µ)(z − µ)k =

=

m−1
∑

k=0

αi,j,m−k(µ)

k
∑

s=0

Cs
k(−µ)k−szs =

m−1
∑

s=0

zs
m−1
∑

k=s

αi,j,m−k(µ)Cs
k(−µ)k−s ⇔

⇔ gijs =
m−1
∑

k=s

Cs
k(−µ)k−sαi,j,m−k(µ), s = 0,m − 1, i, j = 1, n.

If we substitute the expression of gijs in (16) then we obtain

sijt =
m−1
∑

k=0

rtk

m−1
∑

s=k

Ck
s (−µ)s−kαi,j,m−s(µ) =

m−1
∑

s=0

αi,j,m−s(µ)
s
∑

k=0

Ck
s (−µ)s−krtk =

=

m
∑

s=1

αijs(µ)

m−s
∑

k=0

Ck
m−s(−µ)m−s−krtk =

m
∑

s=1

r∗tsαijs(µ), t = M, r − 1, i, j = 1, n,

where

r∗ts =

m−s
∑

k=0

Ck
m−s(−µ)m−s−krtk, t = M, r − 1, s = 1,m. (18)

The solution of the system is

αij(µ) = (R∗)−1Sij, i, j = 1, n, (19)

where αij(µ) = ((αijs(µ))s=1,m)T , Sij = ((sijt)t=M,r−1)
T and R∗ = (r∗ts)t=M,r−1, s=1,m.

3.3 The Main Conclusion and Description of the Algorithm

In Section 2.1 from [3] the numerical complex functions νk(z) = (1 − z)−k,
∀k ≥ 1 have been introduced. In [3] it was shown that these functions satisfy

the recurrent relation νk+1(z) =
dνk(z)

kdz
, ∀k ≥ 1. In addition it was shown that

νk(z) =
∞
∑

t=0
Tk−1(t)z

t, ∀k ≥ 1, where the coefficient Tk−1(t) is a polynomial of

degree less or equal to k − 1. Moreover, the calculation formula for the elements
βijk(y) and for the corresponding matrices

Wij(y, t) =

m(y)−1
∑

k=0

(−y)−k−1αi,j,k+1(y)Tk(t), ∀y ∈ C\D, i, j = 1, n
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have been obtained.

Let Tk(t) =
k
∑

s=0
u

(k)
s ts, ∀k ≥ 0. Then

νk+1(z) =
d

kdz

∞
∑

t=0

Tk−1(t)z
t =

1

k

∞
∑

t=1

tTk−1(t)z
t−1 =

1

k

∞
∑

t=0

(t + 1)Tk−1(t + 1)zt ⇔

⇔ Tk(t) =
1

k
(t + 1)Tk−1(t + 1) =

1

k
(t + 1)

k−1
∑

s=0

u(k−1)
s (t + 1)s =

=
1

k

k−1
∑

s=0

u(k−1)
s (t + 1)s+1 =

1

k

k−1
∑

s=0

u(k−1)
s

s+1
∑

l=0

C l
s+1t

l =

=
1

k

k−1
∑

s=0

u(k−1)
s

(

1 +

s+1
∑

l=1

C l
s+1t

l

)

=
1

k

k−1
∑

s=0

u(k−1)
s +

1

k

k
∑

l=1

tl
k−1
∑

s=l−1

u(k−1)
s C l

s+1 ⇔

⇔ u
(0)
0 = 1, u

(k)
0 =

1

k

k−1
∑

s=0

u(k−1)
s , u

(k)
l =

1

k

k−1
∑

s=l−1

C l
s+1u

(k−1)
s , ∀k ≥ 1, l = 1, k. (20)

In such a way we obtain formula for calculating the elements of the matrices in the
representation

βijk(y) =

m(y)
∑

s=k+1

(−y)−sαijs(y)u
(s−1)
k , y ∈ C\D, k = 0,m(y) − 1, i, j = 1, n. (21)

Basing on result described above we can use the following algorithm for determining
the limit and differential matrices in Markov chain

Algorithm 2. Determining the Limit and Differential Matrices

Input Data: The matrix of probability transition P .
Output Data: The matrices βk(y) (y ∈ C\D, k = 0,m(y) − 1).

1–3. Do steps 1 − 3 of Algorithm 1;

4. Calculate the matrices R(k), k = 0, n − 1, according to formula (11);

5. Find the values qijk, k = 0, r − 1, i, j = 1, n, using the calculation procedure
described in Subsection 3.1;

6. Calculate Ck
s , s = 1, max

y∈C\D
m(y), k = 0, s, using Pascal’s triangle rule;

7. Determine u
(k)
l , k = 0, max

y∈C\D
m(y) − 1, l = 0, k, using formula (20);

8. For every µ ∈ C\D do items a)–g):

a. Determine the values ξ(k) = Ck
m(−µ)−k, k = 0,m (m = m(µ));
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b. Determine the coefficients dk, k = 0, r − m, using Horner’s scheme;

c. Calculate the values xtk, t = 0,M − 1, k = 0,m − 1, according to (15);

d. Calculate the values rtk, t = M, r − 1, k = 0,m − 1, using formula (17);

e. Determine the elements of the matrix R∗ according to relation (18);

f. Find the matrix (R∗)−1 using known numerical algorithms;

g. For i, j = 1, n do items g1) − g4) :

g1. Calculate the values wijt, t = 0,M − 1, according to formula (15);

g2. Calculate the values sijt, t = M, r − 1, using formula (17);

g3. Determine the vector αij(µ) according to relation (19);

g4. Calculate the elements βijk(µ) of the matrix βk(µ), k = 0,m(µ) − 1,
according to formula (21).

For this algorithm we may give the same comments as for the previous algorithm.
If the characteristic values of the matrix P are known then the algorithm finds the
limit and differential matrices using O(n4) elementary operations. However this
algorithm can be used also if only a subset of characteristic values of the matrix P
is known; in this case the set C \ D will consists of the inverses of known nonzero
characteristic values and the algorithm will find the corresponding matrices which
correspond to known characteristic values. The computational complexity of the
algorithm in the case when the characteristic values are unknown depends on the
complexity of determining the characteristic values.

4 Numerical Examples

We will illustrate the details of proposed algorithms for periodic and aperiodic
Markov chains.

Example 1. Let be given the Markov process with the matrix of probability tran-
sition

P =





1 0 0
0 0.5 0.5

0.5 0 0.5





and consider the problem of determining the differential components of the matrix
P (t). We apply Algorithm 1 :

1) P 2 =





1 0 0
0.25 0.25 0.5
0.75 0 0.25



, P 3 =





1 0 0
0.5 0.125 0.375

0.875 0 0.125



,

s1 = trP = 2, s2 = trP 2 = 1.5, s3 = trP 3 = 1.25, β0 = 1, β1 = −s1 = −2,

β2 = −(s2 + β1s1)/2 = 1.25, β3 = −(s3 + β1s2 + β2s1)/3 = −0.25;
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2–3) ∆(z) =
3
∑

k=0

βkz
k = 1 − 2z + 1.25z2 − 0.25z3 = (1 − z)(1 − 0.5z)2 ⇒

⇒ C\D = {z ∈ C | ∆(z) = 0} = {1, 2}, m(1) = 1, m(2) = 2, r = n = 3;

4) β0 = (1, 1, 0), β1 = (1, 0.5, 0.5), β2 = (1, 0.25, 0.5) ⇒ B =





1 1 0
1 0.5 0.5
1 0.25 0.5



;

5) (BT )−1 =





1 0 −2
−4 4 6
4 −4 −4



;

6–7) C0
0 = C0

1 = C1
1 = 1, (r − n)0 = 00 = 1, (r − n)1 = 01 = 0;

8a–8b) Γ11 = I
[a11]
3 (BT )−1 = (1, 1, 1)





1 0 −2
−4 4 6
4 −4 −4



 = (1, 0, 0);

Γ12 = (0, 0, 0)(BT )−1 = (0, 0, 0); Γ13 = (0, 0, 0)(BT )−1 = (0, 0, 0);

Γ21 = (0, 0, 0.25)(BT )−1 = (1,−1,−1); Γ22 = (1, 0.5, 0.25)(BT )−1 = (0, 1, 0);

Γ23 = (0, 0.5, 0.5)(BT )−1 = (0, 0, 1); Γ31 = (0, 0.5, 0.75)(BT )−1 = (1,−1, 0);

Γ32 = (0, 0, 0)(BT )−1 = (0, 0, 0); Γ33 = (1, 0.5, 0.25)(BT )−1 = (0, 1, 0);

8c) βijk(y) =
m(y)−1
∑

s=k

0s−kγijs(y) = γijk(y), ∀y ∈ C\D, k = 0,m(y) − 1, i, j = 1, 3 ⇒

⇒ β0(1) =





1 0 0
1 0 0
1 0 0



 , β0(0.5) =





0 0 0
−1 1 0
−1 0 1



 , β1(0.5) =





0 0 0
−1 0 1
0 0 0



 .

So, the transient matrix can be represented as follows:

P (t) =





1 0 0
1 0 0
1 0 0



+





0 0 0
−1 1 0
−1 0 1





(

1

2

)t

+





0 0 0
−1 0 1
0 0 0



 t

(

1

2

)t

, ∀t ≥ 0. (22)

If we apply Algorithm 2 for the same example then we obtain:

1–3) P 2 =





1 0 0
0.25 0.25 0.5
0.75 0 0.25



, P 3 =





1 0 0
0.5 0.125 0.375

0.875 0 0.125



 ; β0 = 1,

β1 = −2, β2 = 1.25, β3 = −0.25; C\D = {1, 2}, m(1) = 1, m(2) = 2, r = n = 3;

4–5) R(0) = β0I =





1 0 0
0 1 0
0 0 1



 , R(1) = β1I + PR(0) =





−1 0 0
0 −1.5 0.5

0.5 0 −1.5



,

R(2) = β2I + PR(1) =





0.25 0 0
0.25 0.5 −0.5
−0.25 0 0.5



 ; qijk = R
(k)
ij , i, j = 1, 3, k = 0, 2;
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6–7) C0
1 = C1

1 = C0
2 = C2

2 = 1, C1
2 = C0

1 + C1
1 = 2; u

(0)
0 = u

(1)
0 = u

(1)
1 = 1;

8
′
) µ = 1, m = m(µ) = 1, M = r − m = 2; ξ(0) = 1, ξ(1) = −1;

-0.25 1.25 -2 1

1 -0.25 1 -1 0
⇒ d0 = −1, d1 = 1, d2 = −0.25;

x00 = −ξ(1)d0 = −1, x10 = −ξ(1)d1 − ξ(1)x00 = 0;

r20 = d2 − ξ(1)x10 = −0.25, r∗21 = r20 = −0.25;R∗ = (−0.25); (R∗)−1 = (−4);

wij0 = −qij0 = −R
(0)
ij , wij1 = −qij1 + wij0 = −R

(0)
ij − R

(1)
ij ;

sij2 = qij2 − wij1 = R
(0)
ij + R

(1)
ij + R

(2)
ij =





0.25 0 0
0.25 0 0
0.25 0 0





ij

,

αij(1) = (−4)(sij2) =





−1 0 0
−1 0 0
−1 0 0





ij

, i, j = 1, 3;

βij0(1) = −αij(1) =





1 0 0
1 0 0
1 0 0





ij

, i, j = 1, 3 ⇒ β0(1) =





1 0 0
1 0 0
1 0 0



 ;

8
′′
) µ = 2, m = m(µ) = 2, M = r − m = 1; ξ(0) = 1, ξ(1) = −1, ξ(2) = 0.25;

-0.25 1.25 -2 1

2 -0.25 0.75 -0.5 0

2 -0.25 0.25 0

⇒ d0 = 0.25, d1 = −0.25;

x00 = −ξ(2)d0 = −0.0625, x01 = 0, r10 = 0, r11 = 0.25, r20 = −0.0625,

r21 = −0.25 ⇒ r∗11 = 0.25, r∗12 = 0, r∗21 = −0.125, r∗22 = −0.0625 ⇒

⇒ R∗ =

(

0.25 0
−0.125 −0.0625

)

⇒ (R∗)−1 =

(

4 0
−8 −16

)

;

wij0 = 0.25qij0 = 0.25R
(0)
ij , sij1 = qij1 + 4wij0 = R

(0)
ij + R

(1)
ij ,

sij2 = qij2 − wij0 = R
(2)
ij − 0.25R

(0)
ij ⇒ Sij =

(

R
(0)
ij + R

(1)
ij

R
(2)
ij − 0.25R

(0)
ij

)

⇒

⇒ αij(2) = (R∗)−1Sij =

(

4R
(0)
ij + 4R

(1)
ij

−4R
(0)
ij − 8R

(1)
ij − 16R

(2)
ij

)

, i, j = 1, 3;

βij0(2) = −0.5αij1(2) + 0.25αij2(2) = −3R
(0)
ij − 4R

(1)
ij − 4R

(2)
ij ,

βij1(2) = 0.25αij2(2) = −R
(0)
ij − 2R

(1)
ij − 4R

(2)
ij , i, j = 1, 3 ⇒
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⇒ β0(2) =





0 0 0
−1 1 0
−1 0 1



 , β1(2) =





0 0 0
−1 0 1
0 0 0



 .

So,we obtain the same representation (22) of the transient matrix P (t).

Example 2. Let be given the 2-periodic Markov process determined by the matrix
of probability transition

P =

(

0 1
1 0

)

and consider the problem of determining the limit and differential components of
the matrix P (t). If we apply Algorithm 1 then we obtain:

1–3) P 2 =

(

1 0
0 1

)

, s1 = trP = 0, s2 = trP 2 = 2 ⇒ β0 = 1, β1 = −s1 = 0,

β2 = −(s2 + β1s1)/2 = −1 ⇒ ∆(z) =

2
∑

k=0

βkz
k = 1 − z2 = (1 − z)(1 + z) ⇒

⇒ C\D = {z ∈ C | ∆(z) = 0} = {1,−1}, m(1) = m(−1) = 1, r = n = 2;

4–5) β0 = (1, 1), β1 = (1,−1) ⇒ B =

(

1 1
1 −1

)

⇒ (BT )−1 =

(

0.5 0.5
0.5 −0.5

)

;

6–8) C0
0 = 1, (r − n)0 = 00 = 1; Γ11 = Γ22 = (1, 0)

(

0.5 0.5
0.5 −0.5

)

= (0.5, 0.5),

Γ12 = Γ21 = (0, 1)

(

0.5 0.5
0.5 −0.5

)

= (0.5,−0.5) ⇒

⇒ β0(1) =

(

0.5 0.5
0.5 0.5

)

, ⇒ β0(−1) =

(

0.5 −0.5
−0.5 0.5

)

.

So we obtain the following representation of the transient matrix:

P (t) =

(

0.5 0.5
0.5 0.5

)

+

(

0.5 −0.5
−0.5 0.5

)

(−1)t, ∀t ≥ 0. (23)

If we apply algorithm 2 then we obtain:

1–3) P 2 =

(

1 0
0 1

)

, β0 = 1, β1 = 0, β2 = −1 ⇒ ∆(z) = 1−z2 = (1−z)(1+z) ⇒

⇒ C\D = {1,−1}, m(1) = m(−1) = 1, r = n = 2;

4) R(0) = β0I =

(

1 0
0 1

)

, R(1) = β1I + PR(0) =

(

0 1
1 0

)

,

5–7) qijk = R
(k)
ij , i, j = 1, 2, k = 0, 1; C0

1 = C1
1 = 1; u0

0 = 1;

8
′
) µ = 1, m = m(µ) = 1, M = r − m = 1; ξ(0) = 1, ξ(1) = −1;
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-1 0 1

1 -1 -1 0
⇒ d0 = −1, d1 = −1;

x00 = −ξ(1)d0 = −1, r10 = d1 − ξ(1)x00 = −2 ⇒ r∗11 = −2 ⇒

⇒ R∗ = (−2); (R∗)−1 = (−0.5); wij0 = ξ(1)qij0 = −R
(0)
ij ;

sij1 = qij1 + ξ(1)wij0 = R
(0)
ij + R

(1)
ij ⇒ αij(1) = (−0.5)(sij1) = −0.5R

(0)
ij − 0.5R

(1)
ij ;

βij0(1) = −αij1(1) = 0.5R
(0)
ij + 0.5R

(1)
ij , i, j = 1, 2 ⇒ β0(1) =

(

0.5 0.5
0.5 0.5

)

;

8
′′
) µ = −1, m = m(µ) = 1, M = r − m = 1; ξ(0) = 1, ξ(1) = 1;

-1 0 1

-1 -1 1 0
⇒ d0 = 1, d1 = −1;

x00 = −ξ(1)d0 = −1, r10 = d1 + ξ(1)x00 = −2 ⇒ r∗11 = −2 ⇒

⇒ R∗ = (−2); (R∗)−1 = (−0.5); wij0 = ξ(1)qij0 = R
(0)
ij ;

sij1 = qij1 − ξ(1)wij0 = R
(1)
ij − R

(0)
ij ⇒ αij(−1) = (−0.5)(sij1) = −0.5R

(1)
ij + 0.5R

(0)
ij ;

βij0(−1) = αij0(−1) = −0.5R
(1)
ij +0.5R

(0)
ij , i, j = 1, 2 ⇒ β0(−1) =

(

0.5 −0.5
−0.5 0.5

)

.

So we obtain the representation (23).
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