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Abstract. The article deals with one class of Hammerstein nonlinear integral equa-
tions with kernel depending on the sum and the difference of arguments. In the
particular case of basic nonlinear equation the existence of one parameter family of
solutions is proved. Using special solution of this family the solution of basic nonlinear
equation is constructed and asymptotic behavior at infinity is investigated. At the
end of the work some of examples are given.
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1 Introduction

We consider the following Hammerstein nonlinear integral equation:

F (x) = µ(x)

∞∫

0

[K(x − t) + ε
◦
K(x + pt)]Q(t, F (t))dt, x ≥ 0 (1)

with respect to unknown function F (x), where ε ≥ 0, p > 0 are parameters. Here
µ(x) is a defined on [0,+∞) measurable function, satisfying the following conditions:

• µ(x) ↑ in x on [0,+∞), (2)

• 0 < ε0 ≤ µ(x) ≤ 1, x ∈ [0,+∞), (3)

• (1 − µ(x))xj ∈ L1(0,+∞), j = 0, 1. (4)

The kernels K and
◦
K are defined on the sets (−∞,+∞) and (0,+∞) respectively,

and have the following properties:

• 0 < K(x) =

b∫

a>0

e−|x|sdσ(s), x ∈ (−∞,+∞), (5)

where

• σ ↑ [a, b), 0 < a < b < +∞, 2

b∫

a

dσ(s)

s
= 1, (6)
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•
◦
K(τ) ≥ 0, τ ∈ (0,+∞), mj ≡

∞∫

0

xj
◦
K(x)dx < +∞, j = 0, 1, 2. (7)

The function Q(t, z) is a real and measurable function, which is defined on the set
(0,+∞) × (−∞,+∞) and satisfies conditions below:

• there exists a number δ > 0 such that
z − w(t, z) ≤ Q(t, z) ≤ z, (t, z) ∈ [0,+∞) × [δ,+∞)

(8)

where w(t, z) is a real function on (0,+∞) × (−∞,+∞) possessing the following
properties:

• w(t, z) ≥ 0, (t, z) ∈ [0,+∞) × [δ,+∞) ≡ Ωδ, (9)

• w(t, z) ↓ in z on [δ,+∞) for each t > 0, (10)

• w(t, z) ∈ Carat(Ωδ) (11)

i.e. w(t, z) satisfies Caratheodory condition on the set Ωδ [1].
The last condition means that the function w(t, z) for each fixed z ∈ [δ,+∞) is

measurable in t > 0, and for almost all t > 0 the function w(t, z) is continuous by z

in [δ,+∞)

• there exists a measurable function

w0 ∈ L1(0,+∞) ∩ C0[0,+∞), m1(w0) =

∞∫

0

xw0(x)dx < +∞,

0 ≤ w0(x) ↓ in x on [δ,+∞), such that

w(t, z) ≤ w0(t + z) (12)

• Q(t, z) ↑ in z on [δ0,+∞) for each t > 0 and for some δ0 ≥ δ,

Q(t, z) ∈ Carat (Ωδ)
(13)

The equation (1) with conditions (2)–(13) is not only of pure mathematical interest,
but it also has application in radiative transfer theory [2].

In the particular case when Q(t, z) = z − w(t, z) and µ(x) ≡ 1, the equation (1)
was studied by Kh.A. Khachatryan [3].

In the present work the existence of solution of nonlinear equation (1) is proved,
as well as the asymptotic property of solution is investigated. At the end of the
work some of examples are given.

2 Corresponding linear equation

Step. I. First we consider the following linear homogeneous Wiener-Hopf equa-
tion

S∗(x) =

∞∫

0

K(x − t)S∗(t)dt, x > 0 (14)
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with respect to unknown function S∗(x), where the kernel K(x) is given by (5).

We rewrite the equation (14) in the operator form

(I −K)S∗ = 0 (15)

where I is the unit operator, and K is the Winer-Hopf integral operator with the
kernel K(x). Let E be one of the following Banach spaces: Lp(0,+∞), p ≥ 1,
M(0,+∞), CM (0,+∞), C0(0,+∞). It is known that the operator I −K permits
the following factorization [4]:

I −K = (I − V−)(I − H)(I − V+) (16)

where

(V−f)(x) = β

∞∫

x

e−β(t−x)f(t)dt, x ∈ (0,+∞), (17)

(V+f)(x) = β

x∫

0

e−β(x−t)f(t)dt, x ∈ (0,+∞), (18)

f ∈ E, β > 0 is a parameter and

(Hf)(x) =

∞∫

0

h(x − t)f(t)dt, x > 0, (19)

h(x) =

b∫

a

(
1 −

β2

s2

)
e−|x|sdσ(s), x ∈ (−∞,+∞). (20)

Using factorization (16) we rewrite the equation (15) in the following form

(I − V−)(I − H)(I − V+)S∗ = 0. (21)

The solution of equation (21) is equivalent to the solution of the following coupled
equations:

(I − V−)S∗
0 = 0. (22)

(I − H)S∗
1 = S∗

0 , (23)

(I − V+)S∗ = S∗
1 . (24)

From (17) it follows that the function S∗
0 = c∗0 = const > 0 satisfies the equation

(22). Substituting S∗
0 in (23) we get the following integral equation

S∗
1(x) = c∗0 +

∞∫

0

h(x − t)S∗
1(t)dt, x > 0. (25)
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From (20) it follows that for β ∈ (0, a] the kernel h(x) ≥ 0. Therefore from (19) we
obtain

‖h‖L1 =

+∞∫

−∞

h(x)dx = ρ∗ = 1 − 2β2

b∫

a

dσ(s)

s3
< 1. (26)

On the other hand in each space of E for the norm of Wiener-Hopf operator the
following estimation takes place

‖H‖E ≤ ‖h‖L1 . (27)

Taking into account (26) from (27) we conclude that the operator H in each space
of E is contractive with coefficient ρ∗. Therefore the equation (25) in the space of
bounded functions has a unique solution which satisfies the double inequalities:

c∗0 ≤ S∗
1 ≤ c∗0(1 − ρ∗)−1. (28)

Solving equations (24) we obtain

S∗(x) = S∗
1(x) + β

x∫

0

S∗
1(t)dt. (29)

Step. II. The following more general linear equation is considered

Φ∗(x) = µ(x)

∞∫

0

K(x − t)Φ∗(t)dt, x > 0. (30)

Arabadjyan [5] proved that equation (30) by conditions (3), (4) has nonnegative
and nontrivial solution with asymptotic Φ∗(x) = O(x), x → +∞. Moreover the
solution is represented in the form of

0 ≤ Φ∗(x) = S∗(x) − ϕ∗(x), x > 0 (31)

where ϕ∗(x) ≥ 0 is the solution of the equation

ϕ∗(x) = (1 − µ(x))S∗(x) + µ(x)

∞∫

0

K(x − t)ϕ∗(t)dt, x > 0 (32)

and has the following asymptotic behavior (see [6])

x∫

0

ϕ∗(τ)dτ = o(x), x → +∞. (33)

Consider the following iteration

Φ(n+1)(x) = µ(x)

∞∫

0

K(x − t)Φ(n)(t)dt, Φ(0)(x) ≡ S∗(x) > 0

n = 0, 1, 2, . . . , x ∈ (0,+∞).

(34)
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Using (2)–(4), (31), by induction it is easy to check the truth of the following facts

• Φ(n)(x) ↓ in n, (35)

• Φ(n)(x) ≥ Φ∗(x), n = 0, 1, 2 (36)

• Φ(n)(x) ↑ in x, n = 0, 1, 2. (37)

Therefore the sequence of functions {Φ(n)(x)}∞0 has the limit

lim
n→∞

Φ(n)(x) = Φ(x) (38)

and the function Φ(x) satisfies the equation (30), moreover

Φ∗(x) ≤ Φ(x) ≤ S∗(x), x > 0. (39)

From (37) it follows that
Φ(x) ↑ in x, (40)

Now we show that
α = infess

x>0
Φ(x) > 0. (41)

As Φ(x) ≥ 0 and Φ(x) 6≡ 0, then even if one point x0 ≥ 0 there exists such that
Φ(x0) > 0. From (30) we have

Φ(x) ≥ ε0

∞∫

x0

K(x − t)Φ(t)dt ≥ ε0Φ(x0)

−x0∫

−∞

K(τ)dτ > 0.

Therefore the statement (41) is true.

Step. III. Now we consider the following linear integral equation with the
kernel depending on the sum and difference of arguments:

S(x) =

∞∫

0

K(x − t) + ε
◦
K(x + pt)]S(t)dt, x > 0. (42)

We rewrite the equation (42) in the operator form

(I −K− ε
◦
K)S = 0

where
◦
K is the Hankell integral operator

(
◦
K f)(x) =

∞∫

0

◦
K(x + pt)f(t)dt, f ∈ E (43)

with kernel
◦
K(x).
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By Ω0 we denote the class of Hankel integral operators: T̂0 ∈ Ω0 if

(T̂0f)(x) =

∞∫

0

T0(x + pt)f(t)dt, f ∈ E, p > 0,

0 ≤ T0 ∈ L1(0,+∞).

(44)

Let I + R± be resolvent operators for Volterra-type operators I −V± (see formulae
(17) and (18)).

It is easy to check that

(R−f)(x) = β

∞∫

x

f(t)dt, β > 0, x > 0, (45)

(R+f)(x) = β

x∫

0

f(t)dt, β > 0, x > 0, f ∈ L1(0,+∞). (46)

Using (45) and (46) and taking into account (16) we have

I −K − ε
◦
K = (I − V−)(I − H)(I − V+) − ε

◦
K =

= (I − V−)[I − H − ε(I + R−)
◦
K(I + R+)](I − V+) =

= (I − V−)(I − H − εT̂0)(I − V+).

From (7), (45), (46) and Fubin’s theorem it follows that the kernel of the operator

T̂0 = (I + R−)
◦
K(I + R+) ∈ Ω0

has the form of

T0(x) = K0(x) + β

∞∫

x

◦
K(τ)dτ +

β

p

∞∫

x

◦
K(τ)dτ +

β2

p

∞∫

x

∞∫

y

◦
K(u)dudy. (47)

Finally we come to the following factorization

I −K− ε
◦
K = (I − V−)(I − T̂ )(I − V+) (48)

where T̂ = H + εT̂0. Thus the Lemma holds

Lemma 1. Let the condition

0 ≤ ε < 4β2p2(β2m2 + (2p + 2)βm1 + 2m0p)−1

b∫

a

1

s3
dσ(s)

be fulfilled. Then the equation (42) has a positive solution with asymptotic S(x) =
O(x) as x → +∞. Moreover S(x) ≥ S∗(x), where S∗(x) is given by (29).
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Proof. From (47) and (20) it follows that

T (x, τ) ≥ 0, (x, τ) ∈ (0,+∞) × (0,+∞),

moreover

∞∫

0

T (x, τ)dτ ≤

+∞∫

−∞

h(x)dx +
ε

p

∞∫

0

T0(τ)dτ =

= ρ∗ +
εm0

p
+

εβm1

p
+

εβm1

p2
+

εβm2

2p2
< ρ∗ + 2β2

b∫

a

1

s3
dσ(s) = 1,

(49)

∞∫

0

T (x, τ)dx ≤

+∞∫

−∞

h(x)dx+ε

∞∫

0

T0(τ)dτ = ρ∗+εm0+εβm1+
εβm1

p
+

εβ2m2

2p
< +∞.

(50)
The factorization (48) reduces the solution of equation (42) to the solution of the
following coupled equations:

(I − V−)S0 = 0, (51)

(I − T̂ )S1 = S0, (52)

(I − V+)S = S1. (53)

Note that an arbitrary constant satisfies the equation (51). As S0 we take

S0(x) = c∗0(1 − ρ∗)−1. (54)

Inserting (54) in (52) and using (50) we come to the conclusion that equation (52)
has a unique, positive and bounded solution S1(x), and moreover

c∗0(1 − ρ∗)−1 ≤ S1(x) ≤
c∗0

(1 − ρ∗)(1 − ρ̃)
(55)

where
ρ̃ = ρ∗ +

ε

2p2
(β2m2 + (2p + 2)βm1 + 2ρm0) < 1. (56)

Solving equation (53) we obtain

S(x) = S1(x) + β

x∫

0

S1(t)dt. (57)

From (55), (57) it follows that

S(x) = O(x), x → ∞.

To finalize the proof of Lemma it is necessary to show that

S(x) ≥ S∗(x). (58)
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Really we have

S(x) ≥ c∗0(1 − ρ∗)−1(1 + βx) ≥ S∗
1(x) + β

x∫

0

S∗
1(t)dt = S∗(x). �

Step. IV. Finally we consider the linear equation corresponding to nonlinear
equation (1)

B(x) = µ(x)

∞∫

0

[K(x − t) + ε
◦
K(x + pt)]B(t)dt, x ∈ (0,+∞) (59)

and the following iteration process.

B(n+1)(x) = µ(x)

∞∫

0

[K(x−t)+ε
◦
K(x+pt)]B(n)(t)dt, B(0)(x) = S(x), n = 0, 1, 2.

(60)
By induction it is easy to check that

• B(n)(x) ↓ in n (61)

• B(n)(x) ≥ Φ(x), n = 0, 1, 2, (62)

where Φ(x) satisfies the equation (30) and possesses properties (39)–(41).
Therefore there exists

lim
n→∞

B(n)(x) = B(x). (63)

Note that B(x) satisfies the equation (59) and the double inequalities hold

Φ(x) ≤ B(x) ≤ S(x), x > 0. (64)

From (64) we have
infess

x>0
B(x) ≡ β0 ≥ α > 0. (65)

The (65) inequality will be of essential use in future.
Thus the following lemma is true:

Lemma 2. Let the conditions of lemma 1 be fulfilled. Then the equation (59) has the
nontrivial solution with asymptotic B(x) = O(x), x → ∞. Moreover the estimation
holds

β0 ≡ infess
x>0

B(x) > 0.

Step. V. Consider the following nonhomogeneous equations with the sum-
difference kernel:

f(x) = 2
◦
w(x + δ0) + µ(x)

∞∫

0

[K(x − t) + ε
◦
K(x + pt)]f(t)dt, x ∈ (0,+∞), (66)
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f̃(x) = 2
◦
w(x + δ0) +

∞∫

0

[K(x − t) + ε
◦
K(x + pt)]f̃(t)dt, x ∈ (0,+∞), (67)

with respect to unknown functions f(x) and f̃(x). Using factorization (48) the solu-
tion of equation (67) may be reduced to solutions of the following coupled equations

(I − V−)f̃0 = g, (68)

(I − T̂ )f̃1 = f̃0, (69)

(I − V+)f̃ = f̃1 (70)

where

g(x) = 2
◦
w(x + δ0). (71)

From (68) by direct checking we obtain

f̃0(x) = g(x) + β

∞∫

x

g(t)dt. (72)

It is obvious that

f̃0 ∈ L1(0,+∞) ∩ C0[0,+∞). (73)

Now pass to equation (69). We introduce the following simple iterations:

f̃
(n+1)
1 (x) = f̃0(x) +

∞∫

0

[h(x − t) + εT0(x + pt)]f̃
(n)
1 (t)dt, (74)

f̃
(0)
1 (x) ≡ f̃0(x), n = 0, 1, 2, . . .

Note that

f
(n)
1 (x) in n. (75)

On the other hand, if

0 ≤ ε < 4β2pj

b∫

a

1

s3
dσ(s)(β2m2 + (2p + 2)m1β + 2m0β)−1, j = 1, 2, (76)

then from (49), (50) it follows that

f̃
(n)
1 (x) ∈ L1(0,+∞) ∩ M(0,+∞), n = 0, 1, 2 . . . (77)

Moreover

f̃
(n)
1 (x) ≤

supess
x>0

f̃0(x)

1 − q1
, (78)
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∞∫

0

f̃
(n)
1 (x)dx ≤

∞∫
0

f̃0(x)dx

1 − q2
(79)

where

qj = ρ∗ +
1

2pj
ε(β2m2 + (2p + 2)βm1 + 2m0p), j = 1, 2. (80)

Taking into consideration B. Levi’s theorem (see [7]), from (75), (78), (79) we
conclude that:

i) there exists

lim
n→∞

f̃
(n)
1 (x) = f̃1(x) ∈ L1(0,+∞) ∩ M(0,+∞), (81)

ii) the function f̃1(x) satisfies equation (69).

Finally solving equation (70) we obtain

f̃(x) = f̃1(x) + β

x∫

0

f̃1(t)dt ∈ M(0,+∞), (82)

because f̃1(x) ∈ L1(0,+∞) ∩ M(0,+∞).

We consider the following iteration

f (n+1)(x) = 2
◦
w(x + δ0) + µ(x)

∞∫

0

[K(x − t) + ε
◦
K(x + pt)]f (n)(t)dt, (83)

f (0)(x) = 2
◦
w(x + δ0), n = 0, 1, 2, . . . , x ∈ (0,+∞). (84)

By induction we obtain

• f (n)(x) ↑ by n,

• f (n)(x) ≤ f̃(x), n = 0, 1, 2, . . .
Therefore there exists

lim
n→∞

f (n)(x) = f(x) ≤ f̃(x) (85)

which satisfies the equation (66).

From (85) and (82) it follows that f ∈ M(0,+∞).

Step. VI. Let λ(x) be a defined in (0,+∞) measurable function of the form

λ(x) = 1 −
w0(x + Bγ(x))

Bγ(x)
(86)

where

Bγ(x) ≡ γB(x), (87)
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γ ∈ △ ≡

[
max(æ, γ0)

β0
,+∞

)
is an arbitrary number. Here γ0 ∈ [δ0,+∞) is the first

root when w0(γ0) < γ0 takes place and æ = supess
x>0

f(x).

We have Bγ ≥ γβ0 ≥ max(æ, γ0) ≥ γ0 ≥ δ0, therefore

0 < 1 −
w0(γ0)

γ0
≤ λ(x) ≤ 1, x ∈ (0,+∞), (88)

1 − λ(x) =
w0(x + Bγ(x))

Bγ(x)
≤

1

γ0
w0(x + δ0) ∈ L1(0,+∞),

(1 − λ(x))x ≤
x + δ0

γ0
w0(x + δ0) ∈ L1(0,+∞),

i.e.
(1 − λ(x))xj ∈ L1(0,+∞), j = 0, 1, (89)

|1 − λ(x)| ≤
1

γ0
w0(x + Bγ(x)) ≤

1

γ0
w0(x + δ0) → 0

when x → ∞.

It is easy also to check that λ(x) ↑ in x. Now we consider the following nonho-
mogeneous integral equation

ϕ(x) = 2
◦
w(x + Bγ(x)) + λ(x)µ(x)

∞∫

0

[K(x − t) + ε
◦
K(x + pt)]ϕ(t)dt (90)

with respect to the function ϕ(x).
Introduce the following simple iteration

ϕ(n+1)(x) = 2
◦
w(x + Bγ(x)) + λ(x)µ(x)

∞∫

0

[K(x − t) + ε
◦
K(x + pt)]ϕ(n)(t)dt,

n = 0, 1, 2, . . . , ϕ(0)(x) = 2
◦
w(x + Bγ(x)).

(91)
The following statements are valid:

• ϕ(n)(x) in n, (92)

• ϕ(n)(x) ≥ 2
◦
w(x + Bγ(x)), n = 0, 1, 2, . . . (93)

• ϕ(n)(x) ≤ f(x), n = 0, 1, 2, . . . (94)

The last inequality follows from (88) and from the following obvious inequality

◦
w(x + Bγ(x)) ≤

◦
w(x + δ0), x > 0. (95)

Therefore there exists the limit of sequences of function {ϕ(n)(x)}∞0

lim
n→∞

ϕ(n) = ϕ(x) ≤ f(x)



78 A.KH.KHACHATRYAN, KH.A.KHACHATRYAN

and ϕ(x) satisfies the equation (90).

Step. VII. Notice that the function Ẽ(x) = 2Bγ(x)−ϕ(x) satisfies the following
homogeneous integral equation

E(x) = λ(x)µ(x)

∞∫

0

[K(x − t) + ε
◦
K(x + pt)]E(t)dt, x > 0. (96)

Really we have

λ(x)µ(x)

∞∫

0

[K(x − t) + ε
◦
K(x + pt)](2Bγ(t) − ϕ(t))dt =

= 2λ(x)µ(x)

∞∫

0

[K(x − t) + ε
◦
K(x + pt)]Bγ(t)dt+

+2
◦
w(x + Bγ(x)) − ϕ(x) = 2λ(x)Bγ(x) + 2

◦
w(x + Bγ(x)) − ϕ(x) = 2Bγ(x) − ϕ(x).

Now we consider the following iteration

E(n+1)(x) = λ(x)µ(x)

∞∫

0

[K(x − t) + ε
◦
K(x + pt)]E(n)(t)dt,

E(0)(x) = 2Bγ(x), n = 0, 1, 2, . . .

(97)

By induction we check that

• E(n)(x) ↓ in n, (98)

• E(n)(x) ≥ Ẽ(x), n = 0, 1, 2, . . . (99)

Therefore there exists the solution E(x) of equation (96), moreover the double in-
equalities hold

2λ(x)Bγ(x) ≥ E(x) ≥ Ẽ(x). (100)

As Bγ(x) ≥ γβ0 ≥ max(æ, γ) ≥ æ ≥ f(x) ≥ ϕ(x), then

Ẽ(x) ≥ Bγ(x), therefore (101)

2λ(x)Bγ(x) ≥ E(x) ≥ Ẽ(x), x > 0. (102)

It is obvious that if E(x) satisfies equation (86) and the chain of inequalities
(102), then the function

Y (x) =
E(x)

λ(x)
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will satisfy the equation

Y (x) = µ(x)

∞∫

0

[K(x − t) + ε
◦
K(x + pt)]λ(t)Y (t)dt, x > 0, (103)

and the inequalities

Bγ(x) ≤ Ẽ(x) ≤ E(x) ≤ Y (x) ≤ 2Bγ(x), x > 0. (104)

The next steps the chain of inequalities (104) will be of essential use in future.

3 One parameter family of solutions

Step. VIII. At this stage we construct one parameter family of solutions for
the following class Hammerstein type nonlinear integral equation:

N(x) = µ(x)

∞∫

0

[K(x − t) + ε
◦
K(x + pt)](N(t) − w(t,N(t)))dt, x > 0 (105)

with respect to unknown functions N(x).

We consider the following iteration

N (p+1)(x) = µ(x)

∞∫

0

[K(x − t) + ε
◦
K(x + pt)](Np(t) − w(t,Np(t)))dt,

N (0)(x) = 2Bγ(x), p = 0, 1, 2, . . .

(106)

First we prove that

N (p)(x) ≥ Y (x), p = 0, 1, 2, . . . (107)

In the case when p = 0, the inequality (107) immediately follows from (104). We
suppose that (107) is true for some p ∈ N and prove the assertion when p+1. Using
(10), (12) and obvious inequalities

Y (x) ≥ Bγ(x) ≥ δ0, x ∈ (0,+∞)

from (106) we have

N (p+1)(x) ≥ µ(x)

∞∫

0

[K(x − t) + ε
◦
K(x + pt)](Y (t) − w(t, Y (t)))dt ≥

≥ µ(x)

∞∫

0

[K(x − t) + ε
◦
K(x + pt)](Y (t) − w0(t + Y (t)))dt ≥
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≥ µ(x)

∞∫

0

[K(x − t) + ε
◦
K(x + pt)](Y (t) − w0(t + Bγ(t)))dt =

= µ(x)

∞∫

0

[K(x − t) + ε
◦
K(x + pt)](Y (t) − (1 − λ(t))Bγ(t))dt ≥

≥ µ(x)

∞∫

0

[K(x − t) + ε
◦
K(x + pt)](Y (t) − (1 − λ(t))Y (t))dt = Y (x).

Now we prove that

Np(x) ↓ in p . (108)

We have

N (1)(x) ≤ µ(x)

∞∫

0

[K(x − t) + ε
◦
K(x + pt)]N (0)(t)dt = 2Bγ(x),

because w(t,N (0)(t)) = w(t, 2Bγ(t)) ≥ 0, since 2Bγ(x) ≥ 2γβ0 ≥ 2δ0 ≥ δ0.

Assuming N (p)(x) ≤ N (p−1)(x), from (106), taking into account (10) we obtain

N (p+1)(x) ≤ N (p)(x).

Thus the sequences of functions {N (p)(x)}∞0 have the pointwise limit

lim
p→∞

N (p)(x) = N(x) ≥ Y (x),

moreover the following chain inequalities are valid:

Bγ(x) ≤ Ẽ(x) ≤ E(x) ≤ Y (x) ≤ N(x) ≤ 2Bγ(x), x > 0. (109)

Using B. Levi’s theorem it is easy to check that N(x) = Nγ(x) satisfies the
equation (105).

Now we prove that to different parameters γ ∈ △ different solution of equation
(105) correspond. Really we take arbitrary numbers γ1 > γ2 and consider the cor-
responding iterations

N (p+1)
γj

(x) = µ(x)

∞∫

0

[K(x − t) + ε
◦
K(x + pt)](N (p)

γj
(t) − w(t,N (p)

γj
(t)))dt,

j = 1, 2, p = 0, 1, 2, . . . , N (0)
γj

(t) = 2Bγj
(x).

(110)

By induction we prove that

N (p)
γ1

− N (p)
γ2

≥ 2(Bγ1(x) − Bγ2(x)), p = 0, 1, 2, . . . (111)
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For p = 0 it is obvious. Let (111) take place for some p ∈ N. Then from (111) taking
into account (10) we have

N (p+1)
γ1

(x) − N (p+1)
γ2

(x) ≥ µ(x)

∞∫

0

[K(x − t) + ε
◦
K(x + pt)][2Bγ1(t) − 2Bγ2(t)]dt+

+µ(x)

∞∫

0

[K(x − t) + ε
◦
K(x + pt)](w(t,N (p)

γ2
(t)) − w(t,N (p)

γ1
(t)))dt =

= 2µ(x)

∞∫

0

[K(x − t) + ε
◦
K(x + pt)][Bγ1(t) − Bγ2(t)]dt =

= 2Bγ1(x)−2Bγ2(x)+µ(x)

∞∫

0

[K(x−t)+ε
◦
K(x+pt)])(w(t,N (p)

γ2
(t))−w(t,N (p)

γ1
(t)))dt.

On the other hand

Bγ1(x) − Bγ2(x) = (γ1 − γ2)B(x) ≥ (γ1 − γ2)β0 > 0.

Therefore

N (p+1)
γ1

(x) − N (p+1)
γ2

(x) ≥ 2(Bγ1(x) − Bγ2(x)) ≥ 2(γ1 − γ2)β0.

Passing to limit in (111) we obtain

Nγ1(x) − Nγ2(x) ≥ 2(Bγ1(x) − Bγ2(x)) ≥ 2(γ1 − γ2)β0 > 0,

i.e.
Nγ1(x) ≥ Nγ2(x).

Thus the following theorem is valid.

Theorem 1. Let conditions (2)–(7), (9)–(11), (76) be fulfilled. Then equation (105)
possesses one parameter family of positive solutions {Nγ(x)}γ∈△, moreover for each
function from the family the asymptotic equality holds: Nγ(x) = O(x) as x → +∞.

4 Solution of basic equation (1)

Step. IX. In this step by means of previous results we proof the existence of
solution of basic equation (1). We introduce special iterations:

F (n+1)(x) = µ(x)

∞∫

0

[K(x − t) + ε
◦
K(x + pt)]Q(t, F (n)(t))dt,

F (0)(x) = 2Bγ(x), n = 0, 1, 2, . . .

(112)
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Whence taking into consideration (8) and Theorem 1 we get

• F (n)(x) ↓ in n, (113)

• F (n)(x) ≥ Nγ(x), n = 0, 1, 2. (114)

Therefore there exists
lim

n→∞
F (x) = F (x) (115)

which satisfies equation (1). From (114) and (112) it follows that

Nγ(x) ≤ F (x) ≤ 2Bγ(x). (116)

Thus the following theorem holds.

Theorem 2. Let conditions (9)–(11), (76) be fulfilled. Then equation (1) has posi-
tive solutions with asymptotic F (x) = O(x), as x → ∞.

Examples of function Q(t, z).

1) Q(t, z) = (z2 − w(t, z)z)
1
2 , (117)

2) Q(t, z) =
1

2
w(t, z)u(z) + z −

1

2
w(t, z), (118)

where u(z) is a defined on (−∞,+∞), measurable function and

0 ≤ u(z) ≤ 1, u(z) ↑ in z on [δ0,+∞), u ∈ C[δ0,+∞), (119)

3) Q(t, z) =
2(z2 − zw(t, z))

2z − w(t, z)
, (120)

4) Q(t, z) = z − w(t, z) + ln
1 + ew(t,z)

2
. (121)

Step. X. Using Theorem 2 we get a more general result.

Theorem 3. Let all conditions of Theorem 2 be fulfilled. Assume R(x, τ) is a
measurable function on (0,+∞) × (−∞,+∞) satisfying the following conditions:

• R(x, τ) ∈ Carat(Ωδ0), (122)

• R(x, τ) ↑ in τ on [δ0,+∞) for each x > 0, (123)

• µ(x) ≤ R(x, τ) ≤ 1, (x, τ) ∈ Ωδ0. (124)

Then the equation

χ(x) = R(x, χ(x))

∞∫

0

[K(x − t) + ε
◦
K(x + pt)]Q(t, χ(t))dt, x > 0, (125)

possesses positive solution with asymptotic χ(x) = O(x), x → ∞. Moreover the
inequalities are valid

Nγ(x) ≤ F (x) ≤ χ(x) ≤ 2Bγ(x). (126)
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Examples of function R(x, τ). Below we give two examples of function R:

1) R(x, τ) =
1 − µ(x)

2
u(τ) +

1 + µ(x)

2
, where u satisfies conditions (119),

2) R(x, τ) = (1 − µ(x))P (x, τ) + µ(x), where

• 0 ≤ P (x, τ) ≤ 1, (x, τ) ∈ Ωδ0 ,

• P ↑ on τ on [δ0,+∞),

• P (x, τ) ∈ Carat(Ωδ0).
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