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A criterion for parametrical completeness

in the 8-valued algebraic model of modal logic S5
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Abstract. The problem of parametrical completeness in the logic of 8-element
topological Boolean algebra with trivial open elements is considered. The conditions
permitting to determine the parametrical completeness of an arbitrary system of for-
mulas in the mentioned logic are established in terms of 25 parametrical pre-complete
classes of formulas.
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In mathematical logic, in modern algebra and in its applications the problem to
construct an algorithm that, for every list of formulas, could recognize those formulas
(functions or operations) which can be obtained from the initial list by means of
some given tools remains to be actual. The best known method of the expressibility
of some Boolean functions by the other ones by means of superpositions has its
background in the works of American mathematician E. Post [9, 10] who described
all closed with respect to superposition classes of two-valued Boolean functions.

A.V. Kuznetsov [6] proposed the notion of parametrical expressibility (in short,
p. expressibility), which is a generalization of the traditional expressibility of for-
mulas (or functions). On the base of the p. expressibility the notion of paramet-
rical completeness (p. completeness) of an arbitrary system of formulas appeared.
A.V. Kuznetsov [6] described all parametrical closed classes of Boolean functions.
The number of these classes was determined to be equal to 25. On the base of this
description one not very complex criterion for p. completeness in the classical logic
may be formulated. He also obtained an original criterion for p. expressibility in
the k-valued logic (k = 3, 4, . . . ).

In the present paper we establish the necessary and sufficient conditions for the
p. completeness of an arbitrary system of formulas in the 8-valued extension of S5
modal logic, which is the logic of 8-element topological Boolean algebra with two
trivial open elements.

1 Basis notions and preliminary formulations

We consider the (propositional) modal logic in the sense of works [5, 7, 8, 13],
which is based on modal formulas built in a traditional way from small letters of
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the Latin alphabet p, q, r, . . . (possibly indexed) with the help of symbols for the
logical operations & (conjunction), ∨ (disjunction), ⊃ (implication), ¬ (negation),
2 (necessitation) and parentheses. Arbitrary formulas, as a rule, are denoted by
capital letters of the Latin alphabet possibly indexed.

We come to note down by F (p1, . . . , pn) the formula F which does not contain
other variables besides p1, . . . , pn. Let π1, π2, . . . , πn be some pairwise different vari-
ables. Then F [π1/D1, . . . , πn/Dn] or, shorter F [D1, . . . ,Dn] denotes [8] the result
of the substitution of formulas D1, . . . ,Dn, respectively, for variables π1, . . . , πn into
F . We use analogical symbolism also in the case of substitution of variable values.

The modal calculus S4 is defined by means of classical propositional calculus
completed with the modal axioms

(2p ⊃ p), (2p ⊃ 22p), (2(p ⊃ q) ⊃ (2p ⊃ q)),

as well as by the necessity rule (Gödel rule), which permits the transition from
formula A to formula 2A. We identify conventionally the logic S4 with the set of
all formulas deducible in the calculus S4.

Any set of modal formulas which includes the axioms of S4 modal calculus and
is closed with respect to its 3 deduction rules is called a (normal) modal logic [7]. If
one logic is included into the other, then the last of them is called the extension of
the first logic [7].

The S5 modal logic is defined by S5 calculus which contains all axioms and
deduction rules of S4 calculus plus the formula (3p ⊃ 23p) as a new axiom. So
the S5 logic is the extension of S4 logic generated by the mentioned formula.

For the interpretation of modal formulas we use the notion of topological Boolean

algebra [11], which is an algebra θ = 〈A; &,∨,⊃,¬,2〉 of type (2, 2, 2, 1, 1) such
that the system 〈A; &,∨,⊃,¬〉 is a Boolean algebra and the 2 operation, called the
interior operation, for any two elements α and β of A, satisfies the conditions:

2(α&β) = (2α&2β), 22α = 2α, 21 = 1 = ¬0, 2α ≤ α.

We define the partially ordered relation α ≤ β by means of the relation α = α&β
(or β = α ∨ β). We denote the smallest element of algebra - zero by the symbol 0,
and we denote the biggest element - the unity by 1. An element α is called open if
α = 2α.

A formula A is called valid in Boolean algebra X if for every evaluation of the
formula A with elements from X the value of F is identically equal to 1. Remind
that for every X algebra, the set of all valid formulas in X constitutes a some modal
logic denoted below by the symbol LX [11]. A modal logic is called tabular if it
coincides with the logic of some finite topological Boolean algebra. A modal logic
L is called locally tabular if the logic of any finitely generated topological Boolean
algebra including all valid in L formulas is finite.

The following series of finite topological Boolean algebras with trivial open ele-
ments

θ1, θ2, . . . , θk, . . . (1)
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called the series of Scroggs [13], played an significant role in the study of S5 modal
logic.

The following inclusions of logics take place:

Lθ1 ⊇ Lθ2 ⊇ Lθ3 . . . . (2)

In the logic Lθ1 the formulas p, 2p and 3p are pairwise equivalent, and so the
logic Lθ1 coincides whit the propositional classical logic. The following relation:

S5 = Lθ1 ∩ Lθ2 ∩ Lθ3 . . . (3)

was established by Scroggs [13]. From the last equality it follows that the modal
logic S5 is not tabular.

Two formulas F and G are called equivalent in a logic L if their equivalence
F ∼ G is valid in L (F ∼ G == (F ⊃ G)&(G ⊃ F )). They say that an F formula
is explicitly expressible in a logic L via a system of formulas Σ if F can be obtained
from variables and formulas which belong to Σ by a finite number of applications
of the weak rule of substitution (that is the transition from two formulas B and
C to B[π/C], where π is a variable in B), and a finite number of applications
of the replacement by equivalent rule in L. The relation of explicit expressibility
is transitive. If all transitions from some formulas to the another consist only of
applications of weak rule of substitution, then they say that F is directly expressible
via Σ. The system Σ is called explicitly complete in L if all formulas of the language
of L are explicitly expressible in L via Σ.

A formula F is called parametrically expressible [6] (in short, p. expressible) in
L logic via the system of formulas Σ , if there exist such numbers l and m, variables
π1, ...,πl without any appearances in F , formulas B1, C1, ..., Bm, Cm explicitly
expressible in L via Σ and formulas D1, ..., Dl which do not contain the variables
π1, ..., πl such that the following relations take place:

(F ∼ π) ⊃ (B1 ∼ C1)& . . . &(Bm ∼ Cm)[π1/D1] . . . [πl/Dl], (4)

(B1 ∼ C1)& . . . &(Bm ∼ Cm) ⊃ (F ∼ π). (5)

Remind that for the cases of classical logic and of k-valued logic, the pithy sense
of these relations consists essentially in that the predicate F ∼ π is equivalent (in
classical sense) with ∃π1 · · · ∃πlS, where S is the following conjunction of equalities
[6, p. 27]:

(B1 = C1)& . . . &(Bm = Cm),

or, in other words, S is the system of equations

Bi = Ci (i = 1, . . . m).

The implicit expressibility is a particular case of parametrical expressibility [6].
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The system Σ of formulas is called parametrically complete (p. complete) in the
L logic if all formulas of the language of L are p. expressible in L via Σ. A Σ system
is called parametrically pre-complete (p. pre-complete) in L if Σ is not p. complete
in L, but for every formula F which is not p. expressible in L via Σ the system
Σ ∪ {F} is p. complete in L.

We’ll say that a formula F (p1, . . . , pn) preserves the predicate R(x1, . . . , xm) on
the algebra θ = 〈M ; &,∨,⊃,¬,2〉 if for every elements

αij ∈ M(i = 1, . . . ,m; j = 1, . . . , n)

because the following affirmations are true

R(α11, . . . , αm1), . . . , R(α1n, . . . , αmn)

it results [6]

R(F (α11, . . . , α1n), . . . , F (αm1, . . . , αmn)).

In the case when the predicate is defined on a finite set M it is often convenient to
talk about the conservation of a matrix

(αij) (i = 1, . . . ,m; j = 1, . . . , l)

of elements of M , corresponding to R, such that R is true on those and only on
those sets of elements of M which are met in columns of the given matrix.

They say that two functions f(p1, . . . , pm) and g(p1, . . . , pn) are permutable [4]
if they are bound up with each other by the following identity

f(g(p11, . . . , p1n), . . . , g(pm1, . . . , pmn)) = g(f(p11, . . . , pm1), . . . , f(p1n, . . . , pmn)).

Remind that the situation when the functions f and g are permutable is equivalent
to the fact that f preserves the predicate

g(x1, . . . xn) = xn+1,

where xn+1 differs from x1, . . . , xn, and at the same time it is equivalent to the fact
that g preserves the predicate

f(x1, . . . xm) = xm+1,

where xm+1 is distinct from x1, . . . , xm [6]. So, any class of formulas preserving the
predicate of type f(x1, . . . , xm) = xm+1 (xm+1 6= x1, . . . , xm) is closed with respect
to p. expressibility [6, p. 28]. The set of all formulas which preserve the predicate
of type

f(x1, . . . , xm) = xm+1 (xm+1 6= x1, . . . , xm)

on the θ algebra may be defined also as the centralizer of the function f(p1, . . . , pm)
[4, p. 142-143].
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2 Criterion for parametrical completeness in the 8-element

extension of S5 logic

In 2001 the author [2] realized the first step from classical logic to the modal
logic S5 in the approach of p. completeness problem for the S5 modal logic. Namely
we obtained a criterion of p. completeness in the logic of 4-element algebra θ2. The
mentioned criterion is based on 22 p. pre-complete classes C1, C2, . . . , C22, the first
six of them are known from the case of classical logic.

In the present article the author accomplishes the second step to the logic S5.
And namely we present the criterion for p. completeness in the 8-element model of
S5 modal logic.

Let specify that the base of θ3 algebra is the set

E = {0, ρ, µ, ε, ω, ν, σ, 1},

and the signature consists of the set

Ω = {&,∨,⊃,¬,2}.

The partial order of elements of base E is the following: 0 < ρ < ω < 1, 0 < ρ < ν,
0 < µ < ω, 0 < µ < σ, 0 < ε < ν < 1, 0 < ε < σ < 1, the elements of triplets
〈ρ, µ, ε〉 and 〈ω, ν, σ〉 are pairwise incomparable. The base operations of algebra θ3

are expressed by formulas of the list

(p&q), (p ∨ q), (p ⊃ q),¬p,2p, (6)

and may be represented through the 8-valued tables.

Consider the following subalgebras of θ3 algebra

〈{0, µ, ν, 1}; Ω〉; 〈{0, ε, ω, 1}; Ω〉. (7)

Observe that these subalgebras are pairwise isomorphic with the subalgebra

θ2 = 〈{0, ρ, σ, 1}; Ω〉

and any of them determines one and the same 4-valued modal logic Lθ2. So if
an operation of θ3 algebra is expressed by mean of some 1-ary formula, then this
operation is completely determined by the values of this formula on θ2 algebra.
Therefore it takes place

Lemma 1. If 1-ary formula F (p) is expressible through the Σ system of formulas

in Lθ2 logic, then F (p) is expressible through Σ also in the Lθ3 logic.

Remind that there exist 16 unary pairwise non-equivalent in Lθ3 formulas. Be-
low we present these formulas by means of theirs tables together with some of its
designations.
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p 0 1 2p 3p ¬2p ¬3p ¬p ∆p ¬∆p

0 0 1 0 0 1 1 1 1 0
ρ 0 1 0 1 1 0 σ 0 1
µ 0 1 0 1 1 0 ν 0 1
ǫ 0 1 0 1 1 0 ω 0 1
ω 0 1 0 1 1 0 ǫ 0 1
ν 0 1 0 1 1 0 µ 0 1
σ 0 1 0 1 1 0 ρ 0 1
1 0 1 1 1 0 0 0 1 0

p Nρ(p) ¬Nρ(p) Zρ(p) Zσ(p) Uρ(p) Uσ(p)

0 1 0 0 0 1 1
ρ ρ σ ρ σ ρ σ
µ µ ν µ ν µ ν
ǫ ǫ ω ǫ ω ǫ ω
ω ω ǫ ω ǫ ω ǫ
ν ν µ ν µ ν µ
σ σ ρ σ ρ σ ρ
1 0 1 0 0 1 1

Consider the following matrix

















0 ρ µ ǫ ω ν σ 1
0 ρ ǫ µ ν ω σ 1
0 µ ρ ǫ ω σ ν 1
0 µ ǫ ρ σ ω ν 1
0 ǫ ρ µ ν σ ω 1
0 ǫ µ ρ σ ν ω 1

















. (8)

We note that every its line contains without repetition all elements of algebra θ3,
and any two different lines of matrix determine some automorphism [4] of θ3 algebra.
Any formula of list [6] preserves on θ3 matrix (8), and so any formula conserves the
matrix (8).

In the present work the following matrices will play a special role:

M1 =

(

0 ρ µ ǫ ω ν σ 1
0 ρ ρ ρ σ σ σ 1

)

,

M2 =

(

0 ρ µ ǫ ω ν σ 1
0 ρ ν ω ǫ µ σ 1

)

, (9)

M3 =

(

0 ρ µ ǫ ω ν σ 1
0 σ ν ω ǫ µ ρ 1

)

.
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Denote by symbols C23, C24, and C25 the classes of formulas preserving on
θ3 algebra, respectively, these matrices. Considering the definitions of the classes
C1, . . . , C22 [2], it is not difficult to verify that the classes C1, C2, ..., C25 are pairwise
incomparable by inclusion.

The following criterion for parametrical completeness in the logic Lθ3 is the basic
result of the present work.

Theorem 1. In order that a system Σ of formulas to be parametrically complete in

the 8-valued logic Lθ3 it is necessary and sufficient that Σ be parametrically complete

in the 4-valued logic Lθ2, and for every of classes C23, C24 and C25 there exist in Σ
formulas F23, F24 and F25 not belonging, respectively, to these classes.

Necessity results from the fact that the logic Lθ3 is included in the logic Lθ2

(on the base of relations (2)), the classes C23, C24 and C25 are closed with respect to
p. expressibility in the logic Lθ3, and these classes are not parametrically complete
in Lθ3 logic.

Sufficiency. Let Σ system be p. complete in the Lθ2 logic, and the formulas

F23(p1, . . . , pn), F24(p1, . . . , pn), F25(p1, . . . , pn) (10)

be such that Fi ∈ Σ\Ci(i = 23, 24, 25). Then on base of Lemma 1 any 1-ary formula
is p. expressible through Σ in the Lθ3 logic. From the fact that Σ is p. complete in
the Lθ2 logic and the subalgebras (7) are isomorphic with θ2 it results that all the
1-ary formulas, and also any formula containing no more than one variable which is
not under one of operator 2, 3 or ∆ are p. expressible via Σ in Lθ3. For example,
the following formulas

(p&2q), (p ∨ 3q), (2p ⊃ q), (p ∼ 2F ) (11)

are p. expressible through Σ in Lθ3 (it is sure that F is p. expressible in Lθ3

through Σ).

It is sufficient to prove that conjunction (p&q) is p. expressible in Lθ3 through
1-ary formulas, the formulas of type (11) and formulas F23, F24, F25. But the last
follows from the next three Theorems, which we prezent without demonstrations.

Theorem 2. If system Σ of formulas is p. complete in the Lθ2 logic, then the

formula 2(p ∼ q) is p. expressible in Lθ3 through Σ and the formulas F23 and F25.

Theorem 3. The formula 2(p ∨ q) ∨ 2(p ⊃ q) ∨ 2(q ⊃ p) is p. expressible in the

Lθ3 logic through 1-ary formulas, the formulas 2(p ∼ q), F24, F25 and the formulas

K(p, q) and D(p, q) which express the conjunction and, respectively, disjunction in

the logic Lθ2.

Theorem 4. The conjunction (p&q) is p. expressible in the Lθ3 logic through 1-ary

formulas, the formulas 2(p ∼ q), 2(p ∨ q) ∨ 2(p ⊃ q) ∨ 2(q ⊃ p), and the formulas

K(p, q) and D(p, q) which express the conjunction and, respectively, disjunction in

the logic Lθ2.
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Theorem 5. There is an algorithm, practically not complex, which for every finite

system of formulas can recognize whether this system is p. complete in the Lθ3 logic.

Theorem 6. There are exactly 25 classes of formulas which are p. pre-complete in

the Lθ3 logic, and namely, the following classes and only they: C1, C2, . . . , C25.
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